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1 Abstract

Cortico-thalamo-cortical loops have a central role in cognition and motor control, but precisely how

thalamus contributes to these processes is unclear. Recent studies showing evidence of plasticity

in thalamocortical synapses indicate a role for thalamus in shaping cortical dynamics – and thus

behavior – through learning. Since corticothalamic projections compress cortical activity into a

lower-dimensional thalamic activity space, we hypothesized that the computational role of tha-

lamus would depend critically on the structure of corticothalamic connectivity. To test this, we

identified the optimal corticothalamic structure that promotes biologically plausible learning in

thalamocortical synapses. We found that corticothalamic structures specialized to carry an ef-

ference copy of the cortical output benefit motor control, while corticothalamic connections that

communicate the directions of highest variance in cortical activity are optimal for working memory

tasks. We analyzed neural recordings from mice performing grasping and delayed discrimination,

and found corticothalamic interactions consistent with these predictions. These results suggest

that thalamus orchestrates cortical dynamics in a functionally precise manner through structured

connectivity.

2 Introduction

Recent years have seen a renewal of interest in understanding the role of higher-order thalamus

in mammalian behavior. Unlike primary thalamic nuclei, such as the lateral geniculate nucleus,

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.509618doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509618
http://creativecommons.org/licenses/by-nc-nd/4.0/


which relays information from the sensory periphery to cortex, higher-order nuclei do not receive

inputs from the periphery. Consequently, the conventional view of thalamus as a relay has been

revised to accommodate a role for higher-order thalamus as a “higher-order relay” that transmits

information from one cortical area to another (Sherman, 2007; Sherman & Guillery, 2018). Mean-

while, molecular tracing studies have revealed a frequent motif of reciprocal interactions in which

cortical projections to the thalamus target nuclei that project back to the same cortical area. Such

reciprocal cortico-thalamo-cortical (CTC) loops have been observed in rodent sensory (Guo, Ya-

mawaki, Barrett, Tapies, & Shepherd, 2020), motor (Yamawaki & Shepherd, 2015; Guo, Yamawaki,

Svoboda, & Shepherd, 2018; Economo et al., 2018; Muñoz-Castañeda et al., 2021), and prefrontal

(Collins, Anastasiades, Marlin, & Carter, 2018) cortices and stand in contrast to a view of such

nuclei as higher-order relays across cortical areas. Recent physiological studies have demonstrated

that these loops are required for many cognitive functions (Bolkan et al., 2017; Guo et al., 2017;

Schmitt et al., 2017; Rikhye, Gilra, & Halassa, 2018; Alcaraz et al., 2018). Furthermore, the evo-

lution of cortical activity depends on thalamus (Sauerbrei et al., 2020) and inhibiting higher-order

thalamus suppresses cortical activity (Guo et al., 2017; Schmitt et al., 2017). However, the specific

computational role of cortico-thalamo-cortical loops is not fully understood.

Reciprocal CTC loops represent a departure from the labelled line view of thalamus as they feature

signal compression (from cortex to thalamus) and expansion (from thalamus to cortex). Normative

models developed to clarify the role of compression and expansion in feedforward neural networks

have improved our understanding of the computations in many brain areas including the retina

(Zhaoping, 2006; Druckmann, Hu, & Chklovskii, 2012), primary visual cortex (Olshausen & Field,

1996; Zhu & Rozell, 2013), olfactory bulb (Zhang & Sharpee, 2016; Qin, Li, Tang, & Tu, 2019) and

the cerebellum (Litwin-Kumar, Harris, Axel, Sompolinsky, & Abbott, 2017; Muscinelli, Wagner,

& Litwin-Kumar, 2022; Xie, Muscinelli, Harris, & Litwin-Kumar, 2022). For instance, theories of

compressed sensing and efficient coding have shown that whereas random compression can preserve

the similarity structure of sparse representations, the optimal compression strategy is to extract

the principal components when inputs are strongly correlated (Ganguli & Sompolinsky, 2012).

Unfortunately, insights gained from analyzing feedforward networks cannot be directly applied to

understand signal transformation in CTC loops due to their recurrent processing.

We and others have shown in prior theoretical studies that it is possible to perform computations

by tuning synaptic weights in the CTC loop appropriately (Kao, Sadabadi, & Hennequin, 2021;

Logiaco, Abbott, & Escola, 2021), consistent with experimental studies showing that thalamo-

cortical synapses exhibit plasticity in many areas of the adult brain (Herry, Vouimba, & Garcia,

1999; Oberlaender, Ramirez, & Bruno, 2012; Biane, Takashima, Scanziani, Conner, & Tuszynski,

2016; Audette, Bernhard, Ray, Stewart, & Barth, 2019; Hasegawa, Ebina, Tanaka, Kobayashi, &

Matsuzaki, 2020; Adam, Schaeffer, Johnston, Menon, & Everling, 2021; Sohn et al., 2022). Such
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modifications can be viewed as low-rank weight modifications to the connectivity of cortical re-

current neural networks (Mastrogiuseppe & Ostojic, 2018; Schuessler, Mastrogiuseppe, Dubreuil,

Ostojic, & Barak, 2020; Dubreuil, Valente, Beiran, Mastrogiuseppe, & Ostojic, 2022). However,

these models have not addressed how these synapses may be updated with biologically plausible

learning rules that operate using locally available signals. In particular, we show that standard

approaches for local, biologically plausible learning in recurrent neural networks fail to optimize

corticothalamic connectivity, because accurate credit assignment at these synapses requires knowl-

edge of the global structure of network activity.

In this study, we hypothesize that the ability of the thalamus to contribute to learning depends

critically on the structure of corticothalamic synapses and ask what forms of corticothalamic con-

nectivity structure optimize learning. We use a recently proposed biologically plausible, three-factor

supervised learning rule (Murray, 2019) to update thalamocortical synapses, while assuming that

corticothalamic synapses are optimized on a slower evolutionary or developmental timescale. We

separately train models to perform two different tasks – autonomous motor control and work-

ing memory – and determine the optimal corticothalamic structure in each case (Wang, 2021;

Hospedales, Antoniou, Micaelli, & Storkey, 2022). We find that the optimal corticothalamic con-

nectivity is structured and task-dependent. Specifically, learning motor control is optimized by

corticothalamic connections specialized to carry an efferent copy of the muscle command, while

learning to perform working memory is optimized by corticothalamic connections that convey modes

of cortical activity with the highest variance. We analyzed neural recordings from mice performing

grasping and delayed discrimination tasks (Guo et al., 2017; Sauerbrei et al., 2020), and found that

the influence of cortical activity on thalamus is consistent with this model. These results suggest

that thalamus orchestrates cortical dynamics in a functionally precise manner through structured

connectivity.

3 Results

We begin by constructing a model combining cortex and thalamus based on two fundamental prop-

erties of thalamic nuclei that distinguish them from the cortex. First, there are far fewer neurons in

the thalamus (Halley & Krubitzer, 2019) which acts as a structural bottleneck in this loop. Second,

local recurrent excitation is a defining feature of the cortex but absent within the thalamus (Arcelli,

Frassoni, Regondi, Biasi, & Spreafico, 1997; Halassa & Sherman, 2019). Therefore, we consider

a model in which a network of N interconnected cortical neurons is reciprocally connected with

M uncoupled thalamic neurons, with M ≪ N (Figure 1A). The cortical population activity is

denoted by ht ∈ RN , thalamic population activity by rt ∈ RM , and S external inputs (if any) by
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xt ∈ RS . The cortical activity evolves according to:

τ ḣt = −ht + ϕ(WCCht +WCTrt +W Ixt), (1)

where subscripts denote time, τ is the neuronal time constant, and the nonlinearity ϕ(·) is the

tanh function. WCC ∈ RN×N , WCT ∈ RN×M and W I ∈ RN×S denote corticocortical, thalamo-

cortical and input weight matrices respectively. Thalamic activity, on the other hand, is assumed

to depend only on cortical activity as rt = ϕ(WTCht) where WTC ∈ RM×N denotes the matrix

of corticothalamic weights. Therefore, the thalamic membrane potential vt = WTCht is an M -

dimensional projection of the cortical activity. Network output yt ∈ RR, which we optimize to

perform behavioral tasks, is modeled as a linear readout of the cortical activity, yt = WOht with

readout weights WO ∈ RR×N .

In this model, cortical neurons interact directly via corticocortical connections and indirectly via

the thalamic bottleneck, which compresses the cortical signal into anM -dimensional space (through

WTC) before expanding it back into an N -dimensional space (through WCT). The effective inter-

action weights can be expressed as a sum of recurrent connectivity within the cortex and weights in

the CTC loop, W eff = WCC+WCTV WTC where V = diag(ϕ′(vt)) is an M ×M diagonal matrix

composed of the derivative of the activity of thalamic neurons. This effective interaction matrix can

be viewed as a low-rank (rank-M) perturbation of the N ×N cortical connectivity matrix WCC.

Such models are interesting from a computational perspective because recent theoretical work has

shown that many tasks can be solved by combining a full-rank random component with appro-

priate low-rank connectivity structures (Mastrogiuseppe & Ostojic, 2018) and that gradient-based

learning typically induces low-rank changes in recurrent weights (Schuessler, Mastrogiuseppe, et

al., 2020). We ask whether low-rank CTC connectivity can be learned to support behavioral tasks

in a biologically plausible manner within our model.

3.1 Thalamocortical learning rule

Recent experimental evidence suggests that thalamocortical plasticity continues into adulthood

and is a major substrate for learning (Oberlaender et al., 2012; Biane et al., 2016; Audette et

al., 2019; Hasegawa et al., 2020; Adam et al., 2021; Sohn et al., 2022), and inhibiting thalamus

impairs learning (Tanaka et al., 2018). Accordingly, we assume that thalamocortical synapses

(WCT, Figure 1B – green) are adjusted such that the overall model minimizes
∑

t ∥εt∥2, where
εt = y∗

t −yt denotes the mismatch between the network output yt and some desired target output

function y∗
t . Specifically, we train thalamocortical synapses in the model using a local, biologically

plausible learning rule based on a recently proposed algorithm (Random-Feedback-Local-Online,

or RFLO, learning; see Methods) (Murray, 2019).
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Figure 1: Combined model of cortex and thalamus. A. Schematic illustration of a thalam-
ocortical network model. B. Synaptic weights of the model. Corticocortical weights (WCC) are
fixed. Local learning rules can be used to update thalamocortical weights (WCT), but it is not
known whether such rules are effective for corticothalamic weights (WTC). C. Learning perfor-
mance as a function of thalamic population size when learning is mediated by a local plasticity
rule (RFLO) in corticothalamic weights (black), thalamocortical weights (green), or both (gray).
Models have N = 256 cortical neurons. The number of thalamic neurons (M) is varied from 1 to
128. Error bars denote standard errors estimated by bootstrapping.

The synaptic weight updates in this scheme are derived by making two approximations to algorithms

that minimize squared-error by computing the full gradient with respect to the weights (Williams

& Zipser, 1989). The first approximation consists of dropping nonlocal terms from the gradient, so

that computing the update to a given thalamocortical synapse requires only presynaptic (thalamic

neuron) and postsynaptic (cortical neuron) activities, rather than information about the entire state

of the cortex including all of its synaptic weights. The second is to project the error εt back into

the cortical network for learning using a random feedback pathway with weights B ∈ RN×R, rather

than feedback weights that are precisely tuned to match the readout weights (i.e. BT ̸= WO). This

relaxation is made possible by learning readout weights WO in conjunction with thalamocortical

weights, such that alignment between readout and feedback weights can be established during the

course of learning (Lillicrap, Cownden, Tweed, & Akerman, 2016). The resulting update rule for

thalamocortical weights is given by:

δWCT
ij ∝ [Bεt]i pij , (2)

where WCT
ij denotes the synaptic weight from thalamic unit j onto cortical unit i. The eligibility

trace pij reflects the correlation between recent activity of the thalamic unit j and the cortical

unit i: τ ṗij = −pij(t) + ϕ
′
(ui(t))rj(t). Readout weight updates follow a standard delta-rule,

δWO
ij ∝ εi(t)hj(t) where εi(t) denotes the error in the ith output dimension. Like other three-factor

rules (Gerstner, Lehmann, Liakoni, Corneil, & Brea, 2018), the update rule for thalamocortical
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synapses depends only on the presynaptic activity (thalamic neuron), the postsynaptic activity

(cortical neuron), and the error signal at each moment (Methods). Evidence for error signals in

the superficial layers of the cortex (Inoue, Uchimura, & Kitazawa, 2016; Heindorf, Arber, & Keller,

2018) suggests that thalamocortical synapses located on apical dendrites e.g. (Guo et al., 2018)

are particularly good candidates for this learning rule, but apical error signals could also drive

plasticity in basal thalamocortical synapses via dendritic plateau potentials (Guerguiev, Lillicrap,

& Richards, 2017; Bittner, Milstein, Grienberger, Romani, & Magee, 2017).

We found that the performance of models trained by applying the above learning rule improves with

the number of thalamic neurons, suggesting that local plasticity at thalamocortical synapses (WCT)

faciliates learning (Figure 1C – green). This improvement in learning performance is accompanied

by an increase in the alignment between weights in the feedback pathway B (which communicate

error signals to post-synaptic neurons) and readout weights WO (Figure S1B – green), indicating

that the learning rule performs credit assignment – conveying appropriate learning signals to neu-

rons upstream of behavioral output. Nonetheless, the performance of this learning strategy may

depend critically on the signal received by thalamic neurons via corticothalamic projections (WTC,

Figure 1B – black). Studies of biologically plausible algorithms in recurrent neural networks have

typically dealt only with the learning of synapses onto neurons that are directly connected to the

readout (Miconi, 2017; Alemi, Denève, Machens, & Slotine, 2018; Murray, 2019; Gilra & Gerstner,

2017). Since corticothalamic synapses are further upstream than thalamocortical synapses, it is

not known whether biologically plausible plasticity rules can perform credit assignment in these

synapses. To test this, we trained our model by applying a local plasticity rule analogous to Equa-

tion 2 to update corticothalamic synapses (Methods – Equation 6, Figure S1A). In contrast to

models that learn by updating thalamocortical synapses, the resulting model fails to learn even

when the thalamic population size is comparable to the size of the cortex (Figure 1C – black). In

fact, local plasticity operating simultaneously at both thalamocortical and corticothalamic synapses

does not yield any improvement in learning performance over what is obtained from learning only

thalamocortical synapses with fixed random corticothalamic connections (Figure 1C – gray vs

green).

The failure of local plasticity in corticothalamic synapses to improve performance can be understood

by comparing the feedback alignment of neurons in cortex and thalamus. Whereas local plasticity

achieves a high level of feedback alignment in cortical neurons, the alignment is no greater than

chance in thalamic neurons (Figure S1B). Therefore, error signals cannot mediate learning via

local plasticity in corticothalamic synapses (Figure S1C). In general, performing accurate credit

assignment for signals in brain areas that do not directly drive behavior requires accounting for the

downstream transformations performed on these signals prior to their influence on behavior. In

our model, this means that weight updates in corticothalamic synapses would need to be guided by
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error signals gated through both the time-varying neural activity in the cortex and thalamocortical

weights, a requirement that cannot be easily implemented in a biologically plausible way.

3.2 Optimal corticothalamic connectivity

Since biologically plausible feedback-driven plasticity was unable to optimize corticothalamic con-

nectivity, we asked whether other mechanisms could select patterns of synaptic weights that improve

performance. In particular, we sought to identify subspaces of cortical activity that, when commu-

nicated to the thalamus, improve learning supported by thalamocortical plasticity (Figure 2A).

Specific corticothalamic connectivity that routes activity in such subspaces may be established by

evolutionary or developmental processes, or by plasticity rules of a different form than Equation

(2).

To begin, we took an approach known as meta-learning or “learning to learn” (Wang, 2021;

Hospedales et al., 2022). Corticothalamic weights were optimized at a longer time scale across

thousands of epochs (“outer loop”), each of which comprises a few hundred trials of thalamocorti-

cal learning (“inner loop”) (Figure 2B; Methods). The outer loop represents the evolutionary or

developmental processes that optimize corticothalamic connectivity. Optimization was performed

via backpropagation through time. To ensure that corticothalamic weights discovered by this tech-

nique did not depend on the precise state of thalamocortical weights at the beginning of learning,

we reset the thalamocortical weights at the beginning of each epoch. Moreover, to ensure that this

technique promotes learning specifically via thalamocortical synapses, we fixed all other weights,

and enforce feedback alignment (BT = WO) during the meta-learning procedure. We later relax

these constraints and test our conclusions in a model with plasticity in corticocortical and readout

weights. To test the learning performance, we train the thalamocortical weights in the model using

the fixed, optimized corticothalamic weights and compare the performance against a model trained

using fixed random corticothalamic weights (Methods).

Which corticothalamic projections are most suitable for thalamocortical learning could depend on

the task. To test this hypothesis, we consider two prototypical neuroscience tasks with distinct

computations – an autonomous motor control task and a working memory task. The goal of the

autonomous control task is to output a complex temporal waveform without the aid of external

inputs (i.e., analogous to the EMG activity required for internally generated movement). The goal

of the working memory task is to output the amplitude of one of eight possible transient input

pulses during a subsequent delay period (Methods). We optimized corticothalamic weights for

each task as outlined above, and found that meta-learned corticothalamic weights substantially

improved learning supported by thalamocortical weights in both tasks (Figure 2C). We quantified
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Figure 2: Corticothalamic connectivity optimized by meta-learning. A. Corticothalamic
weights may prioritize communicating specific subspaces of cortical activity, such as the readout
(cyan) or principal component directions (purple), in contrast to a random subspace (orange). B.
Schematic of meta-learning procedure. Optimizing corticothalamic weights on a slow timescale (top,
“outer loop”) improves error-driven learning in thalamocortical synapses (middle, “inner loop”),
improving performance (bottom). C. Left: Median outputs (across simulations) of networks trained
using meta-learned corticothalamic weights (gray) and random corticothalamic weights (orange),
on the autonomous control task. Black line denotes the target function. Right: Inputs and outputs
of networks trained using meta-learned corticothalamic weights (gray) and random corticothalamic
weights (orange) for the different conditions of the working memory task. D. Task average per-
formance error of the model (across simulations initialized with different thalamocortical weights)
trained using the meta-learned corticothalamic weights (gray), compared to the average perfor-
mance error of the model trained using random corticothalamic weights (orange). E Alignment of
meta-learned corticothalamic weights with the readout direction (cyan) and the direction of the
leading principal component of cortical activity (purple) in the two tasks. Error bars denote ± 1
SEM estimated by bootstrapping. All models have N = 256 cortical neurons and M = 32 thalamic
neurons.

the task performance error as 1–R2 where R2 denotes the fraction of variance in the target that

is predicted by the readout at the end of thalamocortical learning. The error dropped several fold

across both tasks when thalamocortical learning was performed using optimized corticothalamic
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weights as opposed to random corticothalamic weights (Figure 2D; Median factor of reduction in

error — Motor control: 5.8, Working memory: 5.1). We found qualitatively similar results when

learning in the presence of random error-feedback weights, B (Methods; Figure S2A), showing that

the improvement in learning performance cannot be attributed to feedback alignment used in the

meta-learning procedure.

We next sought to understand what structure in the optimized corticothalamic weights led to

improved performance. We calculated the alignment β between the optimized corticothalamic

weights and both the direction with the highest variance (principal component direction) and the

direction that drives output (readout direction) (Methods; Figure 2E). We express the alignment

in a normalized scale, (β − β0)/(1 − β0) where β0 corresponds to the average alignment between

meta-learned corticothalamic weights and a random direction in the cortical activity space. Whereas

alignment with the readout direction was significantly greater than the alignment with the leading

principal component in the motor control task, this pattern was inverted for the working memory

task where in fact the corticothalamic weights were more strongly aligned with the direction of

the leading principal component (Figure 2E). Pre-aligning corticothalamic weights to the readout

direction at the beginning of the meta-learning procedure did not alter these results (Figure S2B).

Together, these results demonstrate a nontrivial interplay between corticothalamic structure and

task demands. Specifically, corticothalamic projections promote learning of autonomous control

largely by communicating the cortical output to the thalamus, while learning of working memory

benefits from communicating the principal components of the cortical activity to the thalamus.

3.3 Subspace aligned corticothalamic connectivity

The above analyses suggest that alignment of corticothalamic weights with specific subspaces of

cortical activity improves performance. To directly test whether these subspaces are able to support

learning by themselves, we consider three idealized models with categorically different forms of

corticothalamic connectivity that correspond to varying degree of structure (Methods; Figure

2B). First, we consider unstructured connectivity that carries a random subspace of the cortical

activity. Then, we consider connectivity aligned with the leading principal components (PC) of

cortical activity. Finally, we consider corticothalamic connectivity that is aligned with the readout

direction and thus transmits a copy of the network output to the thalamus.

We first trained the above models separately on different tasks by assuming maximum corticotha-

lamic compression (M = 1). In both autonomous motor control and working memory tasks, we

found that learning thalamocortical synapses from a single thalamic neuron is sufficient to per-

form the task provided the corticothalamic projection onto that neuron is chosen appropriately.
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For autonomous control, aligning corticothalamic connectivity with the readout direction yielded

a substantial improvement over other strategies (Median −log(1 − R2); Random: 1.2, PC: 1.2,

Readout: 2.1; Figure 3A). In contrast, the working memory task benefited from aligning corti-

cothalamic connectivity to the leading principal component of cortical activity (Random: 1.9, PC:

2.5, Readout: 1.8; Figure 3B). These is consistent with the structure of corticothalamic weights

optimized by meta-learning of each task (Figure 3E).

Models with a single thalamic neuron represent an extreme scenario in which only a one-dimensional

subspace of cortical activity supports learning. We therefore asked how our results change for

higher-dimensional corticothalamic projections. We tested this by training the above models for

a range of thalamic sizes (M). When aligning corticothalamic connectivity with the readout sub-

space, the remaining M − 1 thalamic neurons receive random projections. When corticothalamic

connectivity is aligned with PCs, each thalamic neuron receives one of the M leading PCs of cortical

activity. As expected, the performance of all models gradually improved with the number of thala-

mic neurons (Figure 3C,D). This makes sense because an increasingly larger subspace of cortical

activity participates in learning, as we approach the limit where there would be no compression

(M = N). Nonetheless, the advantage of aligning corticothalamic projections with the readout

direction (for autonomous control; Figure 3C) or principal component directions (for working

memory; Figure 3D) persists even when M is relatively large, demonstrating that structured

connectivity is beneficial for realistic ratios of thalamic to cortical neurons.

To verify that the relative performance of different corticothalamic structures is governed by the

type of task and not the level of complexity, we trained the models on variants of both types of

tasks at different levels of complexity. We varied task complexity by either scaling the frequency

of the waveform (autonomous control task), or increasing the number of unique input amplitudes

to memorize (working memory task). We found that the choice of corticothalamic structure that

maximized learning is robust to task complexity, depending only on the type of task being learned

(Figure 3E,F). An exception is when the tasks are made too simple, where performance is nearly

perfect regardless of whether the corticothalamic structure is aligned with the principal component

direction or the readout direction. Notably, even for the simplest task variants, models with random

corticothalamic connectivity learn poorly.

To understand why the relationship between corticothalamic structure and learning performance is

task dependent, we examined the principal components of the cortical dynamics in both tasks. In

the autonomous motor control task, the temporal fluctuations of the leading principal components

tend to be very slow (Figure S3G). Communicating signals in this subspace to the thalamus cannot

support learning because these signals are not adequate to generate the high frequency components

in the target function. In contrast, the principal components of the cortical activity in the working
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Figure 3: Different corticothalamic structures support different tasks. A. Top: Median
outputs (across simulations) of networks with a single thalamic unit (M = 1) and different corti-
cothalamic connectivity, trained on the autonomous control task. Bottom: The deviation of the
output from the target function (bottom). Black dashed line denotes the target function. B.
Network inputs and outputs for 8 different conditions of the working memory task. C. Median
performance of models with different numbers of thalamic units, M . Lower values of 1 − R2 cor-
respond to better performance. D. Similar to C, but for the working memory task. E. Median
performance as a function of task complexity (Methods). F. Similar to E, but for the working
memory task. All models have N = 256 cortical units. Error bars are standard errors.

memory task are dominated by the transient external inputs, and therefore encode the identity of

the input (Figure S3H). Projecting these signals to the thalamus allows thalamocortical synapses

to facilitate learning by contributing to building persistent activity that encodes stimulus identity

during the subsequent delay period.

Taken together, these results highlight the need for communicating signals from specific subspaces

via corticothalamic projections and suggest that the subspace of cortical activity to which thalamic

neurons should be tuned is task-dependent. The benefits of optimized corticothalamic connectivity

are not observed unless thalamocortical synapses are learned (Figure S3A,B). This suggests that

performance cannot be improved if thalamus simply relays the activity in this subspace. Instead,

structured corticothalamic connectivity improves task performance by enabling thalamocortical
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learning. Furthermore, we found that the readout signal need not be concentrated in a single tha-

lamic neuron in order to support learning motor control (Figure S3C). Likewise, for the working

memory task, different principal components need not be segregated in different thalamic neurons

(Figure S3D). Therefore, thalamocortical learning can benefit from specific corticothalamic con-

nectivity even if signals conveyed to individual thalamic neurons are not perfectly aligned with

the readout or principal components. Finally, we found that structure in the corticothalamic con-

nectivity is useful even if this structure is established gradually in conjunction with the learning

of thalamocortical synapses (Figure S3E,F). Thus learning is facilitated regardless of whether the

corticothalamic connectivity is developmentally hardwired (as for efferent copies of signals to the

motor periphery) or learned via activity-dependent mechanisms (as for projections of the principal

components of cortical activity).

3.4 Composite task: Delayed reaching

We have seen that different patterns of corticothalamic compression benefit autonomous control

and working memory. However, naturalistic tasks often require both computations. To test whether

our results generalize to such settings, we consider the problem of goal-directed reaching inspired

by experiments in primates (Churchland et al., 2012). In this task, the model is required to execute

reaching movements to a transiently cued location in a two-dimensional space represented on a

screen. However, the movement can be initiated only upon the arrival of a go cue which follows the

location cue after a random delay. Although the learning objective is solely a function of action

and does not explicitly promote working memory, success in this task depends both on the ability

to remember the target location during the delay (working memory) and the ability to execute

movements in the absence of visual feedback (autonomous control). Therefore, we hypothesized

that performance would be improved when different cortical subspaces are communicated to the

thalamus during the delay and movement periods. Specifically, we hypothesized that learning

benefits from communicating the principal component directions during the delay period versus

the readout direction during the movement period.

To test this, we considered a thalamocortical model in which a cortical network is reciprocally

connected to two distinct thalamic nuclei that are active either during preparation or execution

(Methods; Figure 4A). This architecture is motivated by recent experiments which show that

distinct populations of thalamic neurons are active before and during movement (Gaidica, Hurst,

Cyr, & Leventhal, 2018). Due to the two-dimensional nature of this task, we considered a minimal

model in which thalamic nuclei have two neurons each (M=2). The cortex receives transient input

pulses whose amplitudes encode one of eight possible target locations and a binary input which

serves as the go signal. The goal is to generate a pair of temporal waveforms that correspond to
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torques applied to the links of a two-joint arm, such that the endpoint of the arm reaches the target

location (Methods). We systematically varied the structure of corticothalamic connectivity onto

both thalamic nuclei to select between a random subspace, leading principal components, or read-

out directions. Thalamocortical synapses were trained with RFLO. Consistent with our hypothesis,

maximal performance was obtained in a model that conveyed principal components and readout

signals to the thalamic nucleus that engaged in learning during preparation and execution, respec-

tively (Figure 4B). This model exhibited excellent reaching performance to all targets (Figure

4C). The results are robust both to the number of target locations and the distribution of delays

(Figure S4). These results suggest that thalamocortical learning allows the cortex to perform dif-

ferent movements over a range of realistic delays, provided the corticothalamic structure is chosen

appropriately.
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Figure 4: Thalamocortical model of goal-directed reaching. A. The model comprises two
thalamic modules, one of which is active only during movement preparation and the other only
during movement execution (dark gray period). The 2D output of the network controls the angular
accelerations of the links of a two-joint arm. B. Performance of models with different types of cor-
ticothalamic connectivity onto preparatory and execution thalamic modules. Median performance
of the best models from each row and column are shown in the bar plots. C. Left: Outputs of
the best model for 8 different reach conditions, shown in different shades of gray. Right: Hand
trajectories (center-out) corresponding to the outputs shown on the left. Open circles show target
locations. Error bars denote standard errors.
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3.5 Data are consistent with model predictions

Two recent studies in rodents used a combination of neurophysiology and optogenetics to demon-

strate that dexterous movement generation (Sauerbrei et al., 2020) and working memory (Guo et

al., 2017) both depend on interactions between thalamus and cortex. We wanted to know whether

this dependence is consistent with structured corticothalamic interactions that are optimized for

learning. Since our findings indicate that thalamocortical learning of movement and memory are

optimized by distinct patterns of corticothalamic interactions, we reanalyzed data from both ex-

periments to directly test whether thalamic activity during those tasks depends on the components

of cortical activity predicted by our model.

In the first task (Sauerbrei et al., 2020), neural recordings were performed in the motor cortex and

motor thalamus while mice performed a reach-to-grasp movement to grab a food pellet (Figure 5A

– left, Figure S5A). In the second (Guo et al., 2017), recordings were performed in the frontal cortex

– specifically anterior lateral motor cortex (ALM), and thalamus – specifically ventral medial (VM)

and ventral anterior–lateral (VAL) nuclei, while mice performed a delayed discrimination task to

report the location of an object following a delay of ∼1.3 seconds after the object was removed

(Figure 5B – left, Figure S5B). We used a linear regression model to decode behavior (hand

acceleration or choice depending on the task) and the activity of individual thalamic neurons, from

the cortical population activity (Figures 5A-B – right, Methods). This technique identifies which

modes of cortical activity propagate to behavior (i.e. estimate of readout weights, WO) and to the

thalamus (estimate of corticothalamic weights, WTC). We restricted our analyses to the movement

period and delay period for the motor control and working memory task, respectively.

We found that behavior was well explained by cortical activity in both tasks (R2 — Motor control:

0.93, Working memory: 0.97). To determine specifically which directions of cortical activity cor-

relate with these behaviors, we examined the alignment of the readout weights with the principal

components of cortical activity. In mice performing the working memory task, leading principal

components (PCs) of the frontal cortex activity had a large influence on the animal’s behavioral

choice (Figure 5C – blue). In contrast, hand movements during the motor task were primarily

influenced by PCs of lower variance in the motor cortex (Figure 5C – red, Figure S5C). This

difference is consistent with our model results and suggests that the principal components of the

cortex that drive behavior are different for the two tasks.

Due to the greater contribution of lower variance PCs to the behavioral readout in the motor

control task, we can test the key model prediction pertaining to the structure of corticothalamic

connectivity – namely whether the structure is optimized for learning each task. Specifically, we

predict that corticothalamic weights should be aligned with readout weights in the motor control
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Figure 5: Corticothalamic interactions in mice are consistent with the model. A. Left:
Motor control task – mice reached for a pellet of food following an acoustic cue, during recordings
from motor cortex and motor thalamus. Right: Regression of cortical activity against behavior
(hand acceleration) and thalamic neuron activity, respectively. Traces show the activity of a subset
of cortical neurons (middle panel), and decoded estimates of behavior and example thalamic neuron
activity (right panel; data in black and decoded estimate in color). Data were aligned to movement
onset prior to regression. B. Left: Working memory task (modified from (Bjerre & Palmer, 2020))
– mice reported the location of a pole by directional licking after a delay period, during recordings
from frontal cortex and thalamus. Right: Regression of cortical activity against behavior (choice),
and thalamic neuron activity. Data are aligned to the onset of delay period. C. Mean alignment
between the direction of readout weights and different cortical PCs, in both tasks. Error bars
denote ±1 SEM. (Motor control: n=3 sessions, Working memory: n=5). D. Cumulative fraction
of explainable variance in thalamic activity as a function of the number of cortical PCs. Fractions
were normalized to a scale between 0 and 1 for each thalamic neuron before averaging. E. Top:
Fraction of variance in an average thalamic neuron explained by cortical PCs during the motor task.
Bottom: Average alignment between readout weights and corticothalamic weights across thalamic
neuron. Gray bars denote chance levels obtained by shuffling trial indices. Error bars in D and E
denote standard errors in mean (Motor control: n=101, Working memory: n=72).
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task. This means that we would need lower variance PCs of cortical activity to capture the response

of neurons in the thalamus. In contrast, in the working memory task, we predict that corticotha-

lamic weights should extract the leading PCs of cortical activity. If this is the case, we should

be able to capture thalamic responses using only the high variance PCs. We first quantified the

fraction of variance explained (R2) in each thalamic neuron when using the activity of all neurons

recorded in the cortex (Methods). We found that we could capture a substantial fraction of thala-

mic variance in both tasks, although the fraction was higher in the working memory task (Motor

control: 0.46± 0.01, Working memory: 0.70± 0.01; Figure S5D). We then repeated this analysis to

compute the fraction of variance explained in each thalamic neuron when using only the k leading

PCs of cortical activity (R2(k)). To compare corticothalamic interactions across the two tasks,

we computed the fraction of explainable variance as a function of the number of PCs, R2(k)/R2.

Consistent with the model prediction, we found that more principal components are needed to

explain thalamic activity during the motor control task than in working memory task (Figure 5D

– red vs blue, Figure S5E). The fraction of explainable variance in thalamus captured by the

top 5 cortical PCs was significantly greater during the working memory task than motor control

(Motor control: 0.29± 0.02, Working memory: 0.63± 0.04).

Further analysis suggested that corticothalamic interactions identified above are not solely due to

common input to cortex and thalamus. In the working memory task, inhibiting cortex dramatically

reduces variability in thalamus indicating that the interactions are causal (Guo et al., 2017). Similar

inactivation experiments were not performed in the motor control task, but we took advantage of

the fact that neural recordings were simultaneous to test whether trial-by-trial fluctuations in

motor cortex propagate to the motor thalamus. We found that thalamic activity on any given

trial was substantially better predicted by cortical activity in the same trial (Figure 5E – top)

suggesting that the corticothalamic interactions do not merely reflect common inputs to motor

cortex and thalamus that are similar across trials, such as context signals. Furthermore, we found

that corticothalamic weights that capture trial-by-trial activity in thalamic neurons were better

aligned with the readout weights than those that capture only trial-averaged thalamic activity

(Figure 5E – bottom). Therefore, fluctuations in corticothalamic signals across trials reflect

fluctuations in the output of the motor cortex, suggesting that motor thalamus receives an efference

copy of the motor command.

4 Discussion

We investigated how the connectivity of cortico-thalamo-cortical loops contributes to learning of

motor and cognitive functions. Current theories that propose a computational role for these loops

(Kao et al., 2021; Logiaco et al., 2021) do not address how the connectivity weights could be learned.
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We found that local feedback-driven learning algorithms, which have been proposed as biologically

plausible solutions for credit assignment in recurrent networks (Miconi, 2017; Gilra & Gerstner,

2017; Alemi et al., 2018; Murray, 2019) are effective for updating thalamocortical synapses but

ineffective for corticothalamic synapses, challenging theories proposing a computational role for

CTC loops. We resolved this challenge by developing a model in which structured corticothala-

mic connectivity supports thalamocortical learning. Such structure dramatically enhances learning

of thalamocortical synapses, and the structure that optimizes performance depends on the task.

Specifically, autonomous motor control requires a specialized corticothalamic pathway that com-

municates the efferent copy of the motor command, whereas connectivity structure that projects

the principal components of cortical activity facilitates working memory tasks. We analyzed neural

recordings from cortex and thalamus of mice during both types of tasks and found that the influence

of cortex on thalamus is qualitatively consistent with these predictions.

4.1 Constraints on anatomy

We used meta-learning or “learning to learn” (Wang, 2021; Hospedales et al., 2022) to optimize

corticothalamic weights while a local plasticity rule was applied to thalamocortical synapses. Sim-

ilar approaches have recently been applied to other neural systems (Wang et al., 2018; Jiang &

Litwin-Kumar, 2021; Tyulmankov, Yang, & Abbott, 2022). Since this approach involves a slow

optimization process based on gradient descent, in the context of our model the structure of the

corticothalamic pathway identified in this manner is best viewed as a product of evolutionary and

developmental processes. This view is consistent with a lack of clear evidence for plasticity in the

corticothalamic pathway during learning, and supported by our finding that error-driven, biolog-

ically plausible learning algorithms are ineffective in adjusting corticothalamic synapses. While

synapses in the cortex might undergo more sophisticated forms of plasticity by leveraging the com-

plex dendritic machinery involving distinct apical and basal compartments (Urbanczik & Senn,

2014; Guerguiev et al., 2017), such structures are absent in the thalamus and therefore cannot be

used to perform credit assignment in corticothalamic synapses. It is possible that there are feedback

pathways communicating error signals to the thalamus that are themselves optimized by evolution

and confer corticothalamic synapses with the potential for error-driven plasticity. Modeling stud-

ies have shown that such an approach is effective in the context of feedforward networks (Lee,

Zhang, Biard, & Bengio, 2014; Akrout, Wilson, Humphreys, Lillicrap, & Tweed, 2019; Lindsey

& Litwin-Kumar, 2020), and would make for an interesting alternative hypothesis of learning in

thalamocortical loops. However, the predictions of such a model would be difficult to test because

to our knowledge, pathways conveying error signals to the thalamus, if any, are yet to be mapped

out. Instead, we optimized corticothalamic synapses to make predictions that can be corroborated

with available anatomical and physiological data.
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Anatomical tracing studies show that there is, indeed, an evolutionarily conserved pathway from

layer V pyramidal neurons in the cortex to higher-order thalamus through axonal branching of

corticofugal projections (Bourassa, Pinault, & Deschênes, 1995; Bourassa & Deschênes, 1995; Kakei,

Na, & Shinoda, 2001; Kita & Kita, 2012; Sherman, 2016). Since a major target of corticofugal

projections is lower motor centers such as the spinal cord, this pathway is ideally suited to convey

an efference copy of the cortical motor output (Guillery & Sherman, 2011; Sherman & Usrey,

2021). This is precisely the signal that would optimize thalamocortical learning of motor control

according to our model. Our analysis of neural data confirmed that the alignment of the activity

of thalamic neurons with the cortical motor output was significantly greater than chance during

pellet grasping. While the degree of alignment was not perfect, we showed that learning with

partial alignment is sufficient to facilitate learning (Figure S3C). It should be noted that we used

acceleration of the limb as a proxy for motor output, which is not perfectly correlated with EMG

signals (Keil, Elbert, & Taub, 1999; Fougner, Scheme, Chan, Englehart, & Stavdahl, 2011; Chen et

al., 2011). Furthermore, one recent study showed that corticofugal projections that branch into the

thalamus primarily target midbrain and not spinal cord (Economo et al., 2018), suggesting that

thalamocortical loops might not participate in learning all types of movement. Determining the

conditions under which neural activity in cortico-recipient motor thalamus resembles an efference

copy measured using EMG signals will help elucidate the function of thalamus in motor learning.

Our model also suggests that a motor efference copy is not required for all types of tasks. For learn-

ing to maintain stimulus identity in working memory, communicating the principal components of

cortical activity to the thalamus is sufficient. This could be accomplished through unsupervised

plasticity mechanisms that tune corticothalamic weights. Unlike error-based learning, unsuper-

vised mechanisms such as Hebbian learning do not require credit assignment and can successfully

operate on corticothalamic synapses (Magee & Grienberger, 2020). This possibility is consistent

with our analysis of neural data during the delayed discrimination task which suggests that the

corticothalamic pathway from ALM to VM/VAL complex communicates the principal components

of activity in ALM. While there is evidence for both Hebbian and homeostatic forms of plasticity

in sensory thalamus (Krupa, Ghazanfar, & Nicolelis, 1999; Butts, Kanold, & Shatz, 2007; Krahe &

Guido, 2011; Taylor et al., 2021), evidence for plasticity in higher-order thalamus is limited (Ding,

Li, Clark, Diaz, & Rafols, 2003). Our results identify the pathway from ALM to thalamus (Guo et

al., 2018) as a leading candidate to investigate whether corticothalamic synapses undergo Hebbian

plasticity, but we note that such mechanisms may be at play even in thalamic nuclei receiving

motor efference copies.
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4.2 Assumptions and extensions

In our models, thalamocortical synapses are updated according to a local plasticity rule for error-

based learning (Murray, 2019). There is also evidence for a role of dopamine in mediating cortical

plasticity (Hosp, Pekanovic, Rioult-Pedotti, & Luft, 2011; Li et al., 2017) suggesting that reward-

based learning rules may also modify thalamocortical synapses. Further research is needed to verify

whether our results generalize to other forms of plasticity including spike-based algorithms (Gilra &

Gerstner, 2017). Furthermore, we used a coarse-grained model composed of a homogeneous neural

populations in the cortex and thalamus. However, recent experiments show evidence for convergent

inputs from multiple cortical areas to individual thalamic neurons (Sampathkumar, Miller-Hansen,

Sherman, & Kasthuri, 2021), rich heterogeneity in wiring across cortical layers that project to/from

thalamus (Muñoz-Castañeda et al., 2021), and diversity in the membrane properties across thala-

mic neurons (Phillips et al., 2019), placing important constraints on computation in CTC loops.

Furthermore, thalamus receives commands from other brain structures like the cerebellum and BG

which may interact with corticothalamic inputs to influence thalamocortical plasticity (Tanaka et

al., 2018). Corticothalamic weights in our model contain both positive and negative values. Al-

though we do not explicitly model excitatory and inhibitory populations, negative weights can be

implemented by feedforward inhibition from cortex to thalamus via the thalamic reticular nucleus

(TRN). TRN also mediates local inhibition in the thalamus, which we did not include in our models

as it is beyond the scope of this study.

4.3 Relationship to other studies

Our model expands a body of work that conceptualizes connectivity in recurrent networks as a

sum of a random matrix and a tunable low-rank perturbation (Mastrogiuseppe & Ostojic, 2018;

Schuessler, Dubreuil, Mastrogiuseppe, Ostojic, & Barak, 2020), and is closely related to recent

studies that suggest a role for thalamocortical loops in motor control. Specifically, it has been shown

that CTC loops can support motor preparation by tuning the thalamocortical weights to minimize

prospective errors (Kao et al., 2021) and facilitate fluid transition between learned movement motifs

in addition to supporting noise-robust movement execution (Logiaco et al., 2021). In these studies,

synaptic weights were set via numerical optimization without specifying how this optimal solution

could be learned using biological mechanisms. By postulating that CTC loops are optimized for the

task of learning to minimize errors, we show how these objectives may be achieved in a biologically

plausible way. At the same time, we accommodate experimental findings which demonstrate that

behavioral improvement during training is accompanied by thalamocortical plasticity (Biane et al.,

2016; Audette et al., 2019; Hasegawa et al., 2020; Sohn et al., 2022).
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Our results also suggest that changes in cortical representations observed during learning (Huber

et al., 2012; Peters, Chen, & Komiyama, 2014; Masamizu et al., 2014) may not be entirely due to

plasticity of corticocortical (CC) synapses. There is evidence for corticocortical plasticity which

contributes to activity remapping observed during training (Biane, Scanziani, Tuszynski, & Conner,

2015; Biane, Takashima, Scanziani, Conner, & Tuszynski, 2019; Hasegawa et al., 2020). However,

we found that CTC loops can contribute substantially even in the presence of corticocortical plas-

ticity. Determining the differential contribution of thalamocortical and corticocortical plasticity to

learning is an important direction for future studies. One possibility is that different CTC loops are

engaged in different contexts such that thalamocortical plasticity contributes to learning context-

specific behavioral components whereas corticocortical plasticity helps consolidate components that

are shared across contexts. Such coordination between cortex and thalamus is a potential solution

to the problem of continual learning (Wang & Halassa, 2022). A related proposal is that corti-

cothalamic synapses facilitate transfer of control over flexible sensorimotor associations from basal

ganglia (BG) to CTC loops (Wang & Halassa, 2022). Although we do not explicitly model BG,

we demonstrated that our model can take advantage of thalamic control by BG to learn composite

reaching tasks by switching between thalamic units with appropriate corticothalamic structures

during different phases of the task (Figure 4C).

4.4 Conclusion

Task-optimized recurrent neural networks have become a leading tool to investigate neural mech-

anisms and representations underlying cognition and motor control. However, the standard ap-

proach of generic network architectures in which synaptic weights are trained end-to-end using,

e.g., the backpropagation algorithm, is not a biologically plausible model of the learning process

itself (Mante, Sussillo, Shenoy, & Newsome, 2013; Sussillo, Churchland, Kaufman, & Shenoy, 2015;

Barak, 2017). Therefore, such approaches do not reveal how the brain makes use of specific anatom-

ical circuit motifs and local plasticity rules to facilitate learning. We fill this gap in the context of

cortico-thalamo-cortical loops by demonstrating that task-specific, structured corticothalamic con-

nectivity is necessary to optimize learning when biologically plausible plasticity rules are employed,

thereby establishing a link between anatomy and computation. Our findings show that understand-

ing the structure of corticothalamic connectivity may be key to determining the computational role

of higher-order thalamus in orchestrating behavior.
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5 Methods

Task description. We trained networks separately to solve three different types of tasks based

on experiments that study computations underlying different functions – motor control, working

memory, and goal-directed reaching. The motor control task tests the ability of networks to generate

complex temporal patterns (like electromyograms) autonomously in the absence of external inputs.

The working memory task tests how well networks maintain the identity of transient inputs, shortly

after they have been removed. The reaching task tests a combination of the above two skills: the

ability to remember a transiently cued target location, and then generate an appropriate movement

pattern to reach that location upon the arrival of a go cue.

Motor control. The input x(t) is set to zero. The target function is a sum of sinusoidal func-

tions, y∗(t) =
∑

iwisin(
2πct
T fi), where f = [1, 2, 4, 6] denotes the frequencies of the sinusoids,

w = [1, 0.75, 0.5, 0.25] denotes their relative strengths, and T is the total duration. In the basic

version of the task, we set c = 2 and T = 20τ where τ is the time-constant of the cortical neurons.

Task complexity is controlled by varying c from 1 to 5 which has the effect of scaling all frequency

components of the target function by the same factor.

Working memory. The input x(t) is a pulse with one of P possible amplitudes Ap spaced evenly

between +1 and −1 and a duration of 10τ . The goal is to reproduce the input amplitude during the

subsequent delay period, so the target is a constant function y∗(t) = Ap for a period of 30τ after

the end of the input pulse. The basic version of the task corresponds to P = 8. Task complexity

is controlled by varying P from 1 to 16 on a logarithmic scale.

Reaching. The input x(t) ∈ R2 comprises the target location encoded in the amplitude of a

2D pulse of duration 4τ , and the go signal encoded in a step function 1t<g where g ∈ (5τ, 20τ)

denotes the variable timing of the go signal. The goal is to generate a 2D output pattern that

is zero for t < g, and subsequently deliver appropriate torques to control a two-link arm, such

that the endpoint of the arm reaches the target location within a period of 10τ . The moment

of inertia of the arms was taken to be unity such that the amount of torque applied is identical

to the angular acceleration of the arms. The precise temporal pattern of angular acceleration,

y∗(t) needed to perform successful reaching was obtained by training a recurrent neural network

via backpropagation through time. The function y∗(t) was then used as the target function for

training biologically plausible models.
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Thalamocortical model. The thalamocortical model has a network architecture in which

N interconnected cortical neurons is reciprocally connected with M uncoupled thalamic neurons

where M ≪ N . In this model, the cortical population activity h depends on thalamic activity r

and external input x according to Equation 1, τ ḣt = −ht + ϕ(WCCht +WCTrt +W Ixt), where

the nonlinearity ϕ(·) is the tanh function. The thalamic activity depends only on cortical activity

as there is no recurrence within the thalamus, rt = ϕ(WTCht), and the network output is assumed

to be a linear readout of the cortical activity: yt = WOht. Simulations were performed using a

timestep, dt = 10ms, and the neuronal time constant was set to τ = 100ms (10 timesteps). The

dimensionality of the network input, S, and the network output, R, are task specific. S is 0,1,

and 3 respectively for motor control, working memory, and reaching. R = 1 for motor control and

working memory tasks and R = 2 for reaching. The number of cortical units, N , is fixed at 256

and the number of thalamic units, M , is varied systematically from 1 to 256 on a logarithmic scale.

Elements of the input weight matrix W I and the recurrent weight matrix WCC are Gaussian,

sampled from N (0, 1/S) and N (0, g2/N), respectively. The strength of recurrent connectivity was

chosen such that the network operated in the chaotic regime, g = 1.5. Output weights WO are

sampled from a uniform distribution, U(0, 2/N). Thalamocortical weights WCT are sampled from

N (0, g2/M).

Connection sparsity in the cortex is controlled by varying the fraction of cortical neurons that each

cortical neuron makes a synaptic contact with (f). The fraction is varied from f = 1/N (very

sparse) to f = 1 (fully connected) on a log scale. To ensure that the variance of total input current

into single neurons remains independent of connection sparsity, we sampled the elements of WCC

from N (0, g2/(fN)). The dynamical regime of the cortex is controlled by varying the strength of

recurrence within the cortex, g = [0.5, 0.75, 1.0, 1.25, 1.5]. For the simulations in which we vary

the output dimensionality, we use variants of the motor control and working memory tasks with

R = [1, 2, 3, 4] outputs.

Canonical models of corticothalamic connectivity. We consider three types of thala-

mocortical models that differ in the structure of corticothalamic connectivity.

Random. In this version of the model, elements of WTC are sampled randomly from N (0, 1/N).

Therefore, the thalamic activity in this model corresponds to a random low-dimensional projection

of the cortical activity. These weights are held fixed throughout learning.

Principal component. In this strategy, elements of WTC are proportional to the M leading

eigenvectors U of the covariance in cortical population activity, where the constant of proportional-

ity is 1/
√
N . The resulting thalamic activity corresponds to the M leading principal components of

the cortical activity. Since the structure of cortical dynamics changes during thalamocortical learn-
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ing, corticothalamic weights are dynamically updated in this version at the end of each learning trial:

WTC
k+1 = (1 − β)WTC

k + βUk where Uk denotes the leading eigenvectors of the cortical covariance

at the end of k trials, and β = 0.01 is the corticothalamic learning rate. Biologically, the dynamic

updating of corticothalamic weights in this manner corresponds to a Hebbian learning strategy op-

erating at the corticothalamic synapses. We also trained a variant of this strategy where individual

principal components are distributed across all M thalamic neurons instead of being segregated in

individual neurons. This variant was constructed by multiplying the corticothalamic weights that

yield segregated PCs, by a random orthonormal matrix.

Readout. This version of the model is characterized by a perfect alignment between readout

weights WO and corticothalamic weights onto a small subset of the thalamic units. This subset

contains a maximum of R units whose activity mirrors the network output, where R denotes

the number of output units. Corticothalamic projections onto the remaining M − R thalamic

units are sampled randomly from N (0, 1/N). Similar to the principal component strategy, the

corticothalamic weights onto the subset of R thalamic neurons are updated dynamically: WTC
k+1 =

(1 − β)WTC
k + βWO

k where WO
k denotes the readout weights at the end of k trials and β = 1.

Biologically, this strategy is analogous to a pathway that carries signals from cortex to thalamus

via axon collaterals. For models with M > R, we also trained a variant of this strategy where

the R-dimensional readout signal is distributed across all M thalamic neurons instead of being

concentrated in R neurons. This variant was constructed by multiplying the corticothalamic weights

by a random orthonormal matrix.

Learning algorithm. Thalamocortical weights are trained using a biologically plausible al-

gorithm called Random Feedback Local Online, RFLO (Murray, 2019) (Figures 2-4). With the

exception of Figure 1C (see below), we use meta-learning to optimize corticothalamic weights while

learning thalamocortical weights concurrently via RFLO (Wang, 2021; Hospedales et al., 2022)(Fig-

ure 2).

RFLO. The goal of learning is to minimize the discrepancy between the network output and

a desired target function. Therefore, the loss function is taken to be the squared-error across all

output units, integrated over time where the error in dimension r of the output is the difference

between the target and the actual output of the network in that dimension, εr(t) = y∗r (t)− yr(t).

L =
1

2T

T∑
t=1

R∑
r=1

[εr(t)]
2 (3)

The weight updates in RFLO are derived by making two approximations to standard gradient-based
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algorithms that minimize the loss with respect to the weights. The first approximation consists

of dropping nonlocal terms from the gradient, so that computing the update to a given synaptic

weight requires only pre- and postsynaptic activities, rather than information about the entire

state of the cortex including all of its synaptic weights. Second, we project the error back into the

cortical network for learning using random feedback weights B sampled from U(0, 2/N), rather

than feedback weights that are precisely tuned to match the readout weights. This relaxation is

made possible by learning readout weights in conjunction with thalamocortical weights. Third,

the weight updates are performed in real-time instead of accumulating gradients and updating the

weights at the end of each trial. The resulting update rules for thalamocortical weights WCT and

readout weights WO are given by:

δWO
ij = ηεi(t)hj(t) (4)

where hj is the activity of cortical unit i, WO
ij denotes the readout weight from cortical unit j to

output unit i, and η is the learning rate.

δWCT
ij = η[Bε(t)]ipij(t) (5)

whereWCT
ij denotes the thalamocortical weight from thalamic unit j onto cortical unit i; pij denotes

the eligibility trace that accumulates the correlation between the activity of the (presynaptic)

thalamic unit j and the (postsynaptic) cortical unit i: τ ṗij = −pij(t) + ϕ
′
(ui(t))rj(t) where rj is

the activity of thalamic unit j, ui =
∑

j W
CC
ij hj+

∑
j W

CT
ij rj+

∑
j W

I
ijxj is the total input current

to cortical unit i, and α is the leak rate of the cortical units. For the simulation in Figure 1C, the

update rule for the update rule for corticocortical weights WTC is given by:

δWTC
ij = η[B′ε(t)]iqij(t) (6)

whereWTC
ij denotes the corticothalamic weight from cortical unit j onto thalamic unit i; qij denotes

the eligibility trace defined as the product of the activity of the (presynaptic) cortical unit j and

the (postsynaptic) thalamic unit i: qij = ϕ
′
(vi(t))hj(t) where hj is the activity of cortical unit j,

vi =
∑

j W
TC
ij hj is the total input current to thalamic unit i. B′ denotes the random feedback

weights through which error signals arrive at the thalamus. Elements of B′ are sampled from

U(0, 2/M). Prior to learning, thalamocortical weights and readout weights are both initialized

randomly by sampling from N (0, g2/M) and U(0, 2/N) respectively. The learning rate was set

to η = 0.1 for readout and thalamocortical weight updates, and the training was performed for
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K = 10, 000 trials unless specified otherwise. The learning rate for corticothalamic weights for the

simulation in Figure 1C was determined by hyperparameter optimization (η = 0.001).

Meta-learning. We use meta-learning to determine the optimal structure of corticothalamic

projection that supports biologically plausible of thalamocortical weights. Corticothalamic weights

WTC are initialized randomly at the beginning of the meta-learning procedure by sampling from

N (0, 1/N), and weights are updated using backpropagation through time at the end of each epoch

containing K = 200 learning trials. The objective is to minimize the average loss L̄ across trials

of the epoch, L̄ = 1
K

∑
k Lk where the loss in each trial Lk is given by Equation 3. Thalamo-

cortical weights WCT are reinitialized randomly at the beginning of each epoch by sampling from

N (0, g2/M), and weights are updated using RFLO according to Equation 5. We considered a

model with N = 256 cortical neurons and M = 32 thalamic neurons. Meta-learning was used to

update corticothalamic weights onto only one of the thalamic units. Optimization is performed for

10,000 epochs using Adam optimizer with a learning rate of 0.0001. By restricting meta-learning

to a single thalamic unit, we can readily evaluate the relative optimality of the different strategies

used in Figure 2 by measuring the alignment of the meta-optimized corticothalamic weights with

the readout direction and the principal component direction.

Statistical analyses. Each model tested in this study was simulated 40 times with different

parameter initializations, and those initializations were identical across models sharing similar

architecture. Unless specified otherwise, we used median as the summary statistic and error bars

denote standard errors estimated by bootstrapping.

Task performance. We quantify task performance as 1−R2 where R2 = 1−
∑

k Var[y∗k−yk]∑
k Var[y∗k]

and

Var[·] denotes variance across time. For tasks with multiple conditions – Working memory and

Reaching – the outputs from different conditions were concatenated before computing R2. A value

of 0 corresponds to perfect performance, while 1 corresponds to chance level. Note that this measure

reduces to the loss L defined in Equation 1 when the target function has unit temporal variance.

Alignment between weights. We quantified the alignment between pairs of weight vectors m

and n by taking their normalized dot product (m·n)
∥m∥∥n∥ where ∥·∥ denotes the ℓ2 norm. For computing

feedback alignment in the cortex (Figure 1C), m = B and n = WO where B denotes the feedback

weights projecting the error signal to cortical neurons. For computing feedback alignment in the

thalamus (Figure 1C), m = B′ and n = WCTϕ
′
(ut)W

O where B′ denotes the feedback weights

projecting the error signal to thalamic neurons. The alignment between optimized corticothalamic

weights and readout weights is computed by taking, m = WTC and n = WO. The alignment

between optimized corticothalamic weights and principal component weights is computed by taking,

m = WTC and n = z, where z denotes the leading eigenvector of the cortical covariance matrix.
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Neural datasets. Detailed experimental methods for behavioral and neural recordings in the

motor control task and working memory task are described in (Guo et al., 2015; Sauerbrei et

al., 2020) and (Guo et al., 2017) respectively. In the motor control task (Sauerbrei et al., 2020),

neural recordings were performed simultaneously in the motor cortex and motor thalamus while

mice performed a reach-to-grasp movement to grab a food pellet (Figure 5A – left). The dataset

includes one behavioral session each from 3 different mice. The mean number of cortical and

thalamic units was 53± 9 and 33± 5 respectively. In the working memory task (Guo et al., 2017),

recordings were performed in separate sessions in the frontal cortex, specifically anterior lateral

motor cortex (ALM), and thalamus, specifically ventral medial (VM) and ventral anterior–lateral

(VAL) nuclei, while mice performed a delayed discrimination task to detect (by whisking) and

report (by licking left/right) the location of a pole (anterior/posterior) following a delay of ∼1.3

seconds after the pole was removed (Figure 5B – left). The dataset includes 5 behavioral sessions

from one mouse. The total number of cortical and thalamic units was 151 and 72 respectively.

Estimation of readout weights. We estimated the readout weights for both tasks by regressing

behavior against the activity of the population of cortical neurons. We split the trials into a training

set (80% for estimating weights), a validation set (10% for hyperparameter optimization), and a

test set (10% for computing variance explained R2).

For the motor control task, behavior was defined as the time-varying acceleration profile of the

hand. To obtain acceleration profiles, hand position traces were first aligned to the onset of hand

movement and averaged across trials in the training set. We then numerically computed the

second derivative to obtain the average acceleration profile along the three axes (ax(t), ay(t), az(t)).

Likewise, we aligned spike trains of motor cortex neurons to the onset of hand movement, convolved

them with a gaussian function (width σ as hyperparameter), and computed the trial-averaged

population activity, h(t) in the training set. We regressed the acceleration profiles against the

population activity to estimate the readout weights ŵO
x , ŵ

O
y , and ŵO

z using ordinary least squares,

and optimized the smoothing parameter σ by cross-validation. Finally, we expressed the readout

weights in the basis of the principal components (PC) of the population activity. To do this, we first

performed eigendecomposition of the population covariance, ⟨hhT⟩ = UΛUT, and then projected

the estimated readout weights for each component of acceleration onto the top k = 16 eigenvectors,

e.g., ŵO
PC,x = ŵO

x U1:k. Since the weight profiles of the three components of acceleration were

qualitatively similar in the PC basis, we averaged them to obtain a single readout weight profile

for the motor control task (ŵO
PC = 1

3(|ŵ
O
PC,x|+ |ŵO

PC,y|+ |ŵO
PC,z|)).

For the working memory task, behavior was defined as the choice made on each trial. We aligned

spike trains of ALM neurons to the onset of the delay period, convolved them with a gaussian

function (width σ as hyperparameter), and averaged them separately across trials with leftward
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and rightward choices (hl(t) and hr(t)). We restricted out analysis to trials in which the choice

was correct. We concatenated the response from the two sets of trials (h(t) = [hl(t) hr(t)]) and

used them as predictors in a linear regression model to decode choice, c(t) = [cl(t) cr(t)], where

cl(t) = −1 and cr(t) = +1. As in the motor control task, readout weights ŵO were estimated using

ordinary least squares, and we optimized the smoothing parameter σ by cross-validation. Finally,

we expressed the readout weights in the basis of the principal components (PC) of the population

activity to obtain ŵO
PC.

Analysis of corticothalamic communication. For estimating corticothalamic weights, we

used a procedure similar to the one outlined above, except now the activity of cortical neurons

h(t) was used to decode the activity of individual thalamic neurons r(t), instead of decoding

behavior. We used the principal components of cortical activity as predictors instead of raw firing

rates. Specifically, we first performed eigendecomposition of the population covariance, ⟨hhT⟩ =

UΛUT, and projected the cortical activity onto the top k eigenvectors, hk(t) = h(t)U1:k. We then

estimated the regression weights to decode r(t) from hk(t). By varying k from 1 to 16, we estimated

the corticothalamic weights ŵTC
k that captured the influence of the top k principal components

of cortical activity on each thalamic neuron. The cumulative variance in the thalamic neuron

activity explained by the top k cortical principal components was quantified using the coefficient of

determination, R2(k) = 1− Var[r(t)−ŵTC
k h(t)]

Var[r(t)] . Finally, we divided the cumulative variance explained

by k principal components by the variance explained all K = 16 principal components to obtain a

normalized measure of variance explained, R2(k)/R2(K), for each thalamic neuron in the dataset.
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