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Summary 18 
 19 

Background 20 
The ongoing pandemic of the coronavirus disease 2019 (COVID-19) caused by the severe 21 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has limited treatment options 22 
partially due to our incomplete understanding of the molecular dysregulations of the COVID-23 
19 patients. We aimed to generate a repository and data analysis tools to examine the 24 
modulated proteins underlying COVID-19 patients for the discovery of potential therapeutic 25 
targets and diagnostic biomarkers. 26 

 27 

Methods 28 
We built a web server containing proteomic expression data from COVID-19 patients with a 29 
toolset for user-friendly data analysis and visualization. The web resource covers expert-30 
curated proteomic data from COVID-19 patients published before May 2022. The data were 31 
collected from ProteomeXchange and from select publications via PubMed searches and 32 
aggregated into a comprehensive dataset. Protein expression by disease subgroups across 33 
projects was compared by examining differentially expressed proteins. We also visualize 34 
differentially expressed pathways and proteins. Moreover, circulating proteins that 35 
differentiated severe cases were nominated as predictive biomarkers. 36 
 37 
Findings 38 
We built and maintain a web server COVIDpro (https://www.guomics.com/covidPro/) 39 
containing proteomics data generated by 41 original studies from 32 hospitals worldwide, 40 
with data from 3077 patients covering 19 types of clinical specimens, the majority from 41 
plasma and sera. 53 protein expression matrices were collected, for a total of 5434 samples 42 
and 14,403 unique proteins. Our analyses showed that the lipopolysaccharide-binding protein, 43 
as identified in the majority of the studies, was highly expressed in the blood samples of 44 
patients with severe disease. A panel of significantly dysregulated proteins was identified to 45 
separate patients with severe disease from non-severe disease. Classification of severe disease 46 
based on these proteomic signatures on five test sets reached a mean AUC of 0.87 and ACC 47 
of 0.80. 48 
 49 
Interpretation 50 
COVIDpro is an online database with an integrated analysis toolkit. It is a unique and 51 
valuable resource for testing hypotheses and identifying proteins or pathways that could be 52 
targeted by new treatments of COVID-19 patients. 53 
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Research in context 63 
Evidence before this study 64 
Although an increasing number of therapies against COVID-19 are being developed, they are 65 
still insufficient, especially with the rise of new variants of concern. This is partially due to 66 
our incomplete understanding of the disease’s mechanisms. As data have been collected 67 
worldwide, several questions are now worth addressing via meta-analyses. Most COVID-19 68 
drugs function by targeting or affecting proteins. Effectiveness and resistance to therapeutics 69 
can be effectively assessed via protein measurements. Empowered by mass spectrometry-70 
based proteomics, protein expression has been characterized in a variety of patient specimens, 71 
including body fluids (e.g., serum, plasma, urea) and tissue (i.e., formalin-fixed and paraffin-72 
embedded (FFPE)). We expert-curated proteomic expression data from COVID-19 patients 73 
published before May 2022, from the largest proteomic data repository ProteomeXhange as 74 
well as from literature search engines. Using this resource, a COVID-19 proteome meta-75 
analysis could provide useful insights into the mechanisms of the disease and identify new 76 
potential drug targets. 77 
 78 
Added value of this study 79 
We integrated many published datasets from patients with COVID-19 from 11 nations, with 80 
over 3000 patients and more than 5434 proteome measurements. We collected these datasets 81 
in an online database, and generated a toolbox to easily explore, analyze, and visualize the 82 
data. Next, we used the database and its associated toolbox to identify new proteins of 83 
diagnostic and therapeutic value for COVID-19 treatment. In particular, we identified a set of 84 
significantly dysregulated proteins for distinguishing severe from non-severe patients using 85 
serum samples. 86 

 87 

Implications of all the available evidence 88 
COVIDpro will support the navigation and analysis of patterns of dysregulated proteins in 89 
various COVID-19 clinical specimens for identification and verification of protein 90 
biomarkers and potential therapeutic targets.    91 
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Introduction 92 
Since the end of 2019, the world population has been threatened by the severe acute 93 
respiratory syndrome coronavirus 2 (SARS2-CoV-2) and the ongoing rise of its constantly 94 
evolving variants that have the potential for increased transmissibility, morbidity, and 95 
mortality1. The spread of coronavirus disease 2019 (COVID-19) shows no signs of being 96 
restrained, and drugs with new daily cases worldwide regularly surpassing 1 million2. Drugs 97 
to treat SARS2-CoV-2 are still insufficiently effective 3,4. 98 

 99 
Most COVID-19 drugs, if not all, target or act through proteins. Specifically, they mainly 100 
target the RNA-dependent RNA polymerase (RdRp) and the main protease of the virus 101 
(3CLpro or Mpro), thus inhibiting virus entry and replication5,6. However, most of the 102 
targeted proteins are not human, partially due to the limited understanding of the molecular 103 
dysregulation occurring in patient specimens7. Furthermore, proteins are not only relevant as 104 
drug targets: they can be robust diagnostic and prognostic biomarkers and the effectiveness of 105 
certain drugs can be better assessed via protein measurements. 106 
 107 
Using mass spectrometry (MS)-based proteomics, the expression of thousands of proteins can 108 
be simultaneously profiled in a variety of patient specimens, including body fluids (e.g., 109 
serum, plasma, urine) and tissue (i.e., frozen or formalin-fixed paraffin-embedded (FFPE)). 110 
Proteome studies have successfully identified novel biomarkers and drug targets in several 111 
clinical studies8. Since the first molecular characterization of COVID-19 patient sera9, more 112 
clinical specimens have been analyzed using mass spectrometry-based proteomics8,10. 113 
Proteomics data analysis offers unique insights for discovering new potential drug targets. 114 
While most published studies analyzed in this research area have focused on the following 115 
specimen types: blood samples, including serum11-21, plasma 12,13,22-32, and peripheral blood 116 
mononuclear cells (PBMC)33,34, there are also studies analyzing FFPE tissue35,36, urine37-41, 117 
fecal42, sputum23, extracellular vesicle43,44, cerebrospinal fluid21, semen45, colostrum46, 118 
colostrum47 and nasopharynx swabs samples48. All these studies have provided proteomic 119 
snapshots of different aspects of tissues from COVID-19 patients. However, few studies have 120 
compared the results of multiple studies to fully evaluate this disease due to the lack of proper 121 
software tools and databases. While other types of COVID-19 molecular databases exist 49-52, 122 
none of these is focused on proteomic data from patient samples.   123 
 124 
In our meta-analysis, we expert-curated a selection of protein expression datasets published 125 
until May 2022, as well as metadata related to the patient and sample information from over 126 
3000 patients. We analyzed the differentially expressed proteins and pathways in various 127 
conditions and identifed patterns of recurrently altered protein expression, which can serve as 128 
new potential drug targets for treating patients with COVID-19. We also generated a machine 129 
learning model for stratifying COVID-19 severity. 130 
 131 
Methods 132 
Literature search strategy and selection criteria 133 
To produce a comprehensive proteomics data of COVID-19 patients, we used two curation 134 
approaches. First, we searched the literature in PubMed using the keywords ‘COVID-19’, 135 
‘patient’, ‘proteomics’, and ‘clinic’. Second, we searched ProteomeXchange, the largest 136 
proteomics data repository, using the identifier ‘COVID-19’. Next, we manually went 137 
through each study and collected data from their supplementary files. Using these data 138 
collation procedures, we thus identified and collected data from 41 studies containing protein 139 
expression datasets of COVID-19 patients. 140 
 141 
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The datasets were organized into tables with patient and sample information, together with 142 
the protein expression data. The patient information table includes gender, age, and severity 143 
of COVID-19, if available in the original studies. The sample information table describes the 144 
types of clinical specimen, the sample preparation, and the methods used for the proteomics 145 
data acquisition. For studies using more than two types of clinical specimens, we divided the 146 
sample information of each type into separate datasets to facilitate meta-analytic comparisons. 147 
The protein expressions were then represented as the measured signals of each protein in each 148 
sample. Since protein group quantifications can be ambiguous, we included unique proteins. 149 
 150 
Data analysis 151 
Patient, sample, and data information 152 
When stratifying patients for analysis, we focused on the information that most studies 153 
provide about patients: gender, age, and disease subgroup. The disease subgroups describe 154 
each patient's severity level by symptoms. We included the following subgroups: healthy 155 
donors, non-COVID-19 controls, COVID-19 (non-severe), COVID-19 (severe), COVID-19 156 
(critical), COVID-19 (non-critical) and COVID-19 (fatal) patients. Disease severity was 157 
determined using World Health Organization scores16. For several studies, we further 158 
classified patients according to their diagnosis of pulmonary fibrosis or their levels of 159 
interleukin-6 (IL-6). The datasets were derived from 12 types of clinical specimens: plasma, 160 
serum, urine, peripheral blood mononuclear (PBMC), bronchoalveolar lavage fluid, 161 
colostrum, extracellular vesicle (EV), feces, nasopharynx swabs, sputa, and FFPE samples 162 
derived from heart, kidney, liver, lung, spleen, testis, and thyroid. The sample preparation 163 
methods included serum depletion, serum non-depletion, plasma depletion, plasma non-164 
depletion, breast pump, fecal boiling, filter 3kDa, iST kit, methanol precipitation, immune 165 
affinity purification, dithiothreitol, ethanol precipitation, acetone precipitation, pressure 166 
cycling technology (PCT), RapiGest, red blood cell (RBC) removal, sonication, 167 
ultracentrifugation, and others. The proteomics data acquisition methods included data-168 
dependent acquisition (DDA), tandem-mass tags (TMT), enzyme-linked immunosorbent 169 
assay (ELISA), multiple reaction monitoring (MRM), data-independent acquisition (DIA), 170 
sequential window acquisition of all theoretical fragment ion spectra (SWATH), scanning 171 
SWATH (sSWATH), and O-link assays. The proteins included in the database are identified 172 
by their UniProt names or HUGO Gene Nomenclature Committee gene names. 173 
 174 
Detection of proteins in different datasets and functional roles 175 
Proteins that were identified in multiple datasets were used for further exploration. We list  176 
the fraction of missed detection by mass spectrometry for each protein in each dataset, 177 
computed as the percentage of missed detections across all sample files in that dataset. Next, 178 
we focused on the 76 proteins that were identified in more than 70% of datasets. The number 179 
of unique proteins in the datasets are also listed. The proteins that were consistently identified 180 
were analyzed using gene set enrichment analysis using GO, the R databases org.Hs.eg.db53, 181 
and the package clusterProfiler54 for biological process analysis. 182 
 183 
Boxplot analysis of selected proteins 184 
The distributions of the protein abundances were organized by disease subgroups. 185 
Specifically, we used grouped boxplots for each dataset and the R package ggboxplot. 186 
Unpaired two-sided t-tests were performed with p-values calculated by comparing subgroup 187 
pairs with the function of t_test in the R package rstatix with a normal distribution 188 
assumption. The significance levels of the differential changes were indicated by the 189 
corrected p-value of 0.5, 0.1, 0.01, and 0.001. For the dataset of Nie et al., the protein 190 
expression fold changes were calculated for different tissue types. For Tang et al., Fisher et 191 
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al., Lam et al., and Zhong et al., which contained information on the disease course, we 192 
provided the temporal grouped boxplots with the loess smooth curve fitting regions. For the 193 
D'Alessandro et al. dataset, the comparative groups were based on the levels of IL-6.  194 
 195 
Pathway analysis of differentially expressed proteins 196 
The molecular pathways containing proteins detected by a specific dataset can be visualized 197 
using network graphs and the R package cyjShiny55. A pair of disease subgroups can be 198 
chosen so that the node size is proportional to the protein expression fold change; the fold 199 
change is calculated as the ratio between the mean expression values in each group with an 200 
unpaired two-sided t-test. Colors highlight only the nodes with significant changes. The 201 
significantly dysregulated proteins were those with a p-value < 0.05. KEGG and GO gene set 202 
enrichment analyses were performed for such dysregulated proteins using the R package 203 
clusterProfiler. 204 
 205 
Co-regulated differentially expressed proteins 206 
Given any two disease subgroups, we identified the proteins that were differentially 207 
expressed in the same direction. Fold changes were calculated as the ratios of the mean 208 
expression values, the p-values were calculated using an unpaired two-sided t-test between 209 
the two chosen disease subtypes. The differentially expressed proteins were identified by the 210 
user's cutoff fold change and p-value. Using a set of sera samples as an example, we 211 
identified the proteins that were either up- or down-regulated (adjusted p-value < 0.05) in 212 
more than five datasets in patients with severe disease vs. patients with non-severe diseases. 213 
51 differentially expressed proteins were used to build a preliminary random forest model to 214 
classify COVID-19 severity using the Shen_1 data set as the training set. The resulting top 215 
nine proteins were used to build a random forest-based classifier validated in five 216 
independent datasets. 217 
 218 
Statistical packages 219 
The statistical analyses of this study used several R packages. Their names and associated 220 
version numbers are: org.Hs.eg.db 3.12.0, AnnotationDbi 1.52.0, IRanges 2.24.1, S4Vectors 221 
0.28.1, Biobase 2.50.0, clusterProfiler 3.18.1, cyjShiny 1.0.19, base64enc 0.1-3, graph 1.68.0, 222 
BiocGenerics 0.36.1, ggbeeswarm 0.6.0, pheatmap 1.0.12, rstatix 0.7.0, ggpubr 0.4.0, 223 
ECharts2Shiny 0.2.13, jsonlite 1.7.2, igraph 1.2.6, htmlwidgets 1.5.3, leaflet 2.0.4.1, shiny 224 
1.6.0, shinydashboard 0.7.1, DT 0.18, plotly 4.9.4.1, ggplot2 3.3.5, shinyWidgets 0.6.0, 225 
shinythemes 1.2.0, RColorBrewer 1.1-2, and BiocManager 1.30.16. 226 
 227 
Role of the funding source 228 
The study's funders were not involved in the study design, data collection, data analysis, data 229 
interpretation, or report writing. 230 
 231 
Results 232 
A preliminary set of 41 studies was identified after systematic collection of proteomic data 233 
for COVID-19 patients from a set of 316 search results collected from publications as the 234 
result of PubMed searches and 178 collected from ProteomeXchange. After manually 235 
scrutinizing the full-text and supplementary files of these studies, we selected those 236 
containing patient proteomics data for further meta-analyses. The selected studies were 237 
further grouped according to their clinical sample type. If a study contained multiple clinical 238 
sample types, each sample type was considered a different project with a different dataset. As 239 
a result, we collected 53 datasets involving samples from 3,077 patients, 5434 clinical 240 
specimens, and 14,403 unique proteins (Figure 1A). For ease of presentation, the projects are 241 
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represented by author names and a numeric index. We uploaded all 53 datasets to a freely 242 
accessible database: COVIDpro (https://www.guomics.com/covidPro/). Using this database, 243 
users may select their projects of interest and query for perturbed proteins from specific 244 
COVID-19 specimen types. For ease of presentation, the projects are referred to by their first-245 
listed author and PubMed Unique Identifier (PMID). The details of each project are 246 
summarized in Appendix 1 and Figure 1B, including the hospital name, city, and nation,  as 247 
well as the sample type, the MS method, the sample preparation method, and the PMID.  248 
 249 
Of the 1,794 patients with gender and age information, 60.4% were male and the median age 250 
was 49.1 years with a standard deviation of 17.12. Patients were categorized into seven 251 
disease subgroups. A total of 1083 COVID-19 patients had non-severe disease, while 629 had 252 
severe symptoms. Control cases, including healthy or non-COVID-19 patients, accounted for 253 
19% and 12.5% of all cases, respectively. More than 80% of the samples were derived from 254 
blood: 50.4% from plasma and 30.3% from sera. Besides blood samples, urine samples 255 
constituted 9.6% and FFPE tissue 4.9% of all samples. As blood samples contain many high-256 
abundance proteins that may interfere with the identification of low abundant ones, some 257 
studies performed additional depletion procedures on plasma or sera samples56. Specifically, 258 
4.2% of the plasma and 28.9% of the serum samples were depleted of the highly abundant 259 
proteins. Regarding the mass spectrometry acquisition strategies used by the various studies, 260 
label-free quantification methods, including DDA (13.5%), DIA (7%), MRM (0.3%), 261 
scanning SWATH (2.5%), and SWATH (27.3%), were used for more than half of the 262 
samples. Otherwise, the Olink kit (27.3%) or TMT multiplexing methods (19.2%) were used 263 
(Table 1). 264 
 265 
We next describe the analyses performed on the collected data and the results found. 266 
Specifically, after general data evaluations, we performed protein, pathway, and integrative 267 
analyses. We then demonstrate one of the possible use cases for the COVIDpro database. 268 
 269 
To gain an overview of the various datasets, we first report the number of proteins identified 270 
by each study with the mass spectrometry’s missed detecting ratios. Although more than 271 
14,403 proteins were measure by mass spectrometry across all projects, the largest proportion 272 
of proteins were identified in non-sera and non-plasma datasets. More than ten thousand 273 
proteins were detected in FFPE samples, while nasopharynx swabs accounted for over six 274 
thousand proteins, urine for about three thousand proteins, and several hundreds of proteins 275 
were measured in most sera and plasma samples. The number of proteins identified varies 276 
between different clinical specimens (Figure 2A). The number of patients and their disease 277 
subgroups are shown in Figure 2B. Most individual datasets described a few dozens to over a 278 
hundred patients; the only exception was a study that profiled 384 patients, which had high 279 
missing value rates. 280 
 281 
Next, to perform functional analyses, we focused on 66 proteins identified in at least 70% of 282 
the studies. Using a Gene Ontology (GO) analysis, we found that most of the identified 283 
proteins were involved in the immune response and the activation of the complement system 284 
(Figure 2C), which is consistent with previous findings that these proteins were more 285 
involved in the regulation of COVID-19 severity9. We then further evaluated the most 286 
frequently differentially expressed proteins. The most frequently appearing protein is the 287 
lipopolysaccharide binding protein (LBP) which binds to lipopolysaccharide (LPS). The 288 
latter has been reported to bind to SARS-CoV-2 S protein57. LBP is known to increase in the 289 
presence of bacterial infections and is a marker of sepsis58-60. It has been suggested that in 290 
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COVID-19 patients this LBP increase is caused by dysfunction of the gut-blood barrier that 291 

leads to increased microbial translocation61,62
. 292 

 293 
We then compared the expression of LBP across all the studies where it was detected. The 294 
level of LBP increased significantly with the severity of disease, from healthy to non-severe 295 
and severe groups, when sera and plasma samples were analyzed. By contrast, we observed 296 
different LBP dynamics in urine, EV, colostrum, and cerebrospinal fluid samples (Figure 3A). 297 
In COVID-19 autopsies, LBP was seen to have significantly decreased in the kidneys and 298 
lungs (Figure 3B). Also, LBP showed slightly different expression dynamics in COVID-19 299 
patients with prolonged RNA shedding (Figure 3C). Furthermore, the level of IL-6 also 300 
positively correlated with the level of LBP (Figure 3D); IL-6 is known to be involved in both 301 
fever and inflammation responses63,64. The expression of IL-6 decreased in plasma during 302 
convalescence (Figure 3E). Finally, in extracellular vesicle samples, LBP increased and then 303 
decreased around the third week (Figure 3F). As elevated levels of LBP have also been 304 
observed in infections and inflammatory diseases, this protein could be an indicator for the 305 
severity progression of COVID-19.  306 
 307 
Next, we analyzed and compared the urine proteomes of non-severe and healthy patients 308 
from the Bi_2 dataset using the Student's t-test. We found that 59 and 839 proteins were up- 309 
and down-regulated, respectively, in severe patients (Figure 4A). Using GO (Figure 4B) and 310 
KEGG enrichment analyses (Figure 4C), we discovered that a large proportion of the up-311 
regulated proteins were involved in the central carbon cycles, while the down-regulated ones 312 
were associated with binding and adhesion proteins. Empowered by cyjshiny55 package and 313 
KEGG pathway interactions taken from Pathway Commons version 1265, which contains 79 314 
common metabolic pathways, we identified 74 pathways containing these dysregulated 315 
proteins. Six pathways having higher number of differentially changed proteins are shown in 316 
Figure 4D. The down-regulated proteins were illustrated in the metabolism of the amino acids 317 
while most up-regulated proteins were involved in the TCA cycles (Figure 4D). Compared 318 
with the non-severe patients, many proteins involved in glycolysis and glucogenesis were 319 
down-regulated in the urine samples of the severe cases; however, only a few proteins 320 
involved in glycolysis and glucogenesis were dysregulated in the blood samples (Figure 4E). 321 
 322 
COVIDpro’s datasets can be used to explore and validate diagnostic biomarkers of COVID-323 
19. As a proof of principle, we generated a machine learning model for classifying COVID-324 
19 severity (severe vs. non-severe) based on specific proteins. First, using the tools provided 325 
in our server, we identified the differentially expressed proteins between severe and non-326 
severe patients across all the studies that included these two categories (Figure 5A). We thus 327 
focused on 51 differentially expressed proteins that appeared in at least five studies. Next, we 328 
built a preliminary random forest model to classify COVID-19 severity using the Shen_1 329 
dataset as the training set (Figure 5B). The top nine proteins were selected: SAA1, 330 
SERPINA1, angiotensinogen (AGT), C9, LRG1, HABP2, SERPINA3, HRG, and HP (Figure 331 
5C). These nine proteins were used to build a random forest-based classifier, which correctly 332 
classified all COVID-19 cases from the Shen_1 dataset. Our classifier was then further 333 
validated using five independent datasets, achieving a mean area under the curve (AUC) of 334 
0.87 and a mean accuracy (ACC) of 0.79 (Figure 5D). Many of the selected proteins, 335 
including the acute phase proteins SAA1 as well as the complement activation protein C9, 336 
have been associated with severe patients66. In addition, the serine protease inhibitor 337 
SERPINA1/3 has been reported to inhibit the viral spike protein TRMPRSS267. AGT was 338 
also a selected model feature. The enzymatic product of AGT is the precursor of angiotensin 339 
II, which is the substrate of the host protein angiotensin-converting enzyme (ACE) homolog-340 
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2 (ACE2). As a consequence, severe diseased COVID-19 patients have exhibited an elevated 341 
expression of AGT68. Of the genes we identified as part of our model, HABP2 has been 342 
studied less thoroughly in connection with COVID-19, and our work suggests it warrants 343 
further study. HABP2 plays a role in blood coagulation and may be involved in the 344 
abnormalities of coagulation seen in COVID-19 patients69,70. 345 
 346 
Discussion 347 
In this study, we generated a large public database, COVIDpro, including the most relevant 348 
published proteomics datasets of COVID-19 patients. We also showed the results of a set of 349 
analyses we performed using the toolkits available in COVIDpro. The COVIDpro database 350 
covered the published proteomics data of COVID-19 patients till May 2022, containing 3077 351 
patient cases, 5434 samples from 19 of sample types, and 14,403 proteins profiled. This data 352 
resource allows performing meta-analyses of protein regulations across multiple clinical 353 
specimens of COVID-19 patients from eleven nations. For each protein from the 14,403 354 
proteins included in COVIDpro, we developed a user-friendly interface for browsing its 355 
expression and pathway involvement across multiple datasets. This resource could be used to 356 
support biomarker and therapeutic discoveries for COVID-19. As a showcase, we used 357 
COVIDpro to identify biomarkers of COVID-19 severity and perform in silico validation 358 
experiments. To the best of our knowledge, this is the most comprehensive COVID-19 359 
protein expression repository. 360 
 361 
We included a module to search for the latest relevant literature and another to append new 362 
datasets to this database resource, allowing its timely update. The sever will be maintained 363 
every quarter in the coming few years. The collected proteomic datasets were downloadable 364 
as readable text tables or in an R object RDS format, allowing other researchers to re-analyze 365 
the data for new discoveries. For example, identifications of clusters of proteins that go 366 
beyond the severity of the disease; dysregulated proteins in different ages, genders and 367 
geographical locations; specific patterns in the immune response for vaccine development. 368 
 369 
Our data-driven study was different from the hypothesis-driven research, where more 370 
combinations of results could be shown depending the questions to address using our online 371 
database application. Here we only show one typical result and its interpretation due to the 372 
space limitation. In addition, our study is phenomenological by nature for the observance of 373 
the measured data, molecular functional validation cannot be surrogated to confirm the 374 
dysregulated proteins as therapeutic targets or potential biomarkers for diagnostic prediction. 375 
 376 
Constructed with an R shiny framework, the COVIDpro analysis pipeline works as a cross-377 
platform browser application that does not require any software installation. The R shiny 378 
framework integrates well with JavaScript and Cascading Style Sheets (CSS), allowing 379 
customized analysis modules to be generated. Our easy-to-access application allows users to 380 
explore COVID-19 proteomics datasets and validate their hypotheses. This COVID-19pro 381 
database may be a useful resource for nagivating dysregulated proteins in various clinical 382 
specimens from patients with COVID-19.   383 
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Figure legends 573 
 574 
Figure 1 Study design. (A) Selection of a set of COVID-19 proteomics datasets. (B) List of 575 
the COVID-19 studies selected for our database. 576 
 577 
Figure 2 Protein expression in the COVID-19 datasets selected for COVIDpro. (A) 578 
Upper panel: the number of proteins in each dataset; lower panel: the 76 most frequently 579 
characterized proteins in the database. (B) Number of patients involved in each study. (C) GO 580 
enrichment of the biological processes involving the 76 most frequently identified proteins. 581 

 582 

Figure 3 Meta-analysis of LBP expression. (A) Expression of LBP in non-longitudinal 583 
studies. (B) Expression of LBP in seven FFPE tissues. (C) Expression of LBP in a study 584 
including cases with either a long (LC) or a short course (SC) of the disease. (D) Expression 585 
of LBP in a study where samples were grouped according to IL-6 expression. (E) Expression 586 
of LBP in two longitudinal plasma studies. (F) Expression of LBP in longitudinal EV 587 
samples. 588 

 589 

Figure 4 Pathway analysis of the differentially expressed proteins of COVID-19 590 
patients. (A) Volcano plots for differentially expressed proteins (DEPs) in non-severe vs. 591 
healthy cases from the Bi_2 dataset. (B) GO enrichment results of the up- and down-592 
regulated DEPs. (C) KEGG enrichment results of the up- and down-regulated DEPs. (D) 593 
Selected pathways from the Bi_2 dataset involving dysregulated proteins. Red (up) and blue 594 
(down) indicate the direction of the regulation. (E) Differentially changed proteins in 595 
glycolysis and glucogenesis for severe and non-severe cases. 596 
 597 
Figure 5 Differentially expressed proteins between severe and non-severe patients and 598 
machine learning modeling. (A) Volcano plots of the differentially expressed proteins in 599 
non-severe vs. severe patients across all the datasets containing these patient groups. (B) The 600 
51 dysregulated proteins that appeared in at least five projects. (C) The nine features with the 601 
highest mean decrease Gini from the random forest model. (D) Performance of random forest 602 
classifier for training and independent validation cohorts, including Receiver operation 603 
curves (ROCs), Area under curves (AUCs), and accuracies (ACCs).   604 
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Table 1 Baseline characteristics of the patient included 605 

Gender  
Female 745/1847(40.3%) 
Male 1102/1847(59.7%) 

Age  49.1(17.12)(n=1794) 
Disease subgroup  

Healthy 586/3077(19%) 
Non COVID-19 385/3077(12.5%) 
COVID-19 (non-severe) 1083/3077(35.2%) 
COVID-19 (severe) 629/3077(20.4%) 
COVID-19 (fatal) 85/3077(2.8%) 
COVID-19 (critical) 212/3077(6.9%) 
Non-pulmonary fibrosis 6/3077(0.2%) 
Pulmonary fibrosis 21/3077(0.7%) 
COVID-19 (non-critical) 21/3077(0.7%) 
Control IL-6 16/3077(0.5%) 
Low IL-6 18/3077(0.6%) 
Medium IL-6 5/3077(0.2%) 
High IL-6 10/3077(0.3%) 

Clinical sample type  
Bronchoalveolar lavage fluid 9/5434(0.2%) 
Cerebrospinal fluid 8/5434(0.1%) 
Colostrum 6/5434(0.1%) 
Extracellular vesicle 23/5434(0.4%) 
Fecal 72/5434(1.3%) 
Heart FFPE 38/5434(0.7%) 
Kidney FFPE 61/5434(1.1%) 
Liver FFPE 52/5434(1%) 
Lung FFPE 37/5434(0.7%) 
Nasopharynx swabs 16/5434(0.3%) 
PBMC 103/5434(1.9%) 
Plasma 2737/5434(50.4%) 
Semen 27/5434(0.5%) 
Sera 1645/5434(30.3%) 
Spleen FFPE 32/5434(0.6%) 
Sputa 13/5434(0.2%) 
Testis FFPE 15/5434(0.3%) 
Thyroid FFPE 29/5434(0.5%) 
Urine 511/5434(9.4%) 

Sample preparation method  
Acetone precipitation 149/5434(2.7%) 
Breast pump 6/5434(0.1%) 
DTT 44/5434(0.8%) 
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Ethanol precipitation 27/5434(0.5%) 
Fecal boiling 72/5434(1.3%) 
filter 3kDa 10/5434(0.2%) 
Immune affinity purification 11/5434(0.2%) 
iST kit 77/5434(1.4%) 
Methanol precipitation 16/5434(0.3%) 
PCT 248/5434(4.6%) 
Plasma depletion 115/5434(2.1%) 
Plasma non-depletion 2535/5434(46.7%) 
RapiGest 13/5434(0.2%) 
RBC removal 8/5434(0.1%) 
Serum depletion 476/5434(8.8%) 
Serum non-depletion 1169/5434(21.5%) 
Sonication 16/5434(0.3%) 
Ultracentrifugation 329/5434(6.1%) 
Unknown 113/5434(2.1%) 
MS methods  
DDA 732/5434(13.5%) 
DIA 381/5434(7%) 
ELISA 11/5434(0.2%) 
MRM 19/5434(0.3%) 
Olink 1491/5434(27.4%) 
Scanning SWATH 134/5434(2.5%) 
SWATH 1485/5434(27.3%) 
TMT 1044/5434(19.2%) 
Unknown 137/5434(2.5%) 

 606 
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n = 41 studies

n = 53 datasets

n = 5434 samples

n = 3077 patients

n = 14403 proteins

19 sample types
9 MS methods

19 sample preparations 

Age
Gender 

Disease subgroups

Fold change by disease subgroups
with adjusted p values

Missing ratios 

178 studies deposited on 
ProteomeXchanges 

316 studies identified 
by PubMed search

Disease subgroupProjectHospital MS method Sample type Sample preparation
Ai-Nesf et al.

Alessandro et al.
Bi et al.

Carapito et al.
Chavan et al.

Demichev et al.
Filbin et al.
Fisher et al.
Ghosh et al.
Gisby et al.

He et al.
Lam et al.
Lee et al.
Leng et al.
Li J. et al.
Li Y. et al.
Liu et al.

Messner et al.
Nie et al.
Park et al.

Patel et al.
Pesce et al.
Shen et al.
Shu et al.

Suvarna et al.
Tang et al.
Tian et al.

Vanderboom et al.
Villar et al.

Voellmy et al.
Wang et al.

Wang H. et al.
Wanner et al.

Wu et al.
Yang et al.
Zeng et al.
Zhang et al.
Zhao et al.
Zhong et al

Bronchoalveolar lavage fluid
Cerebrospinal fluid

Colostra
Extracellular vesicle

Fecal
FFPE lung 

FFPE spleen
FFPE liver
FFPE heart

FFPE kidney
FFPE testis

FFPE thyroid
Nasopharynx swabs

PBMC
Plasma
Semen
Sera
Sputa
Urine

Acetone precipitation
Breast pump
Dithiothreitol

Ethanol precipitation
Fecal boiling
Filter 3kDa

Immune affinity purification
iST

Methanol precipitation
PCT

Plasma depletion
Plasma non-depletion

RapiGest
RBC removal

Serum depletion
Serum non-depletion

Sonication
Ultracentrifugation

Unknown

DDA
DIA

ELISA
MRM
Olink

Scanning SWATH
SWATH

TMT
Unknown

healthy
non COVID-19

COVID-19 (non-severe)
COVID-19 (severe)

COVID-19 (non-critical)
COVID-19 (critical)
COVID-19 (fatal)

non pulmonary fibrosis
pulmonary fibrosis

Charite Universitaetsmedizin, Berlin, Germany
Columbia Irving, New York, United States

Ditan, Beijing, China
Enze Hospital, Taizhou, China
First Hospital, Wenzhou, China

Guangzhou Eighth People’s Hospital,Guangzhou, China
Hamad Medical Corporation, Doha, Qatar

Hospital Civil, Strasbourg, France
Hospital General Universitario, Ciudad Real, Spain

Imperial, London, United Kindom
Jaslok Hospital, Mumbai, India

Jinyintan, Wuhan, China
Kasturba Hospital, Mumbai, India

Landeskrankenhaus, Innsbruck, Austria
Massachusetts General Hospital, Boston, United States

Mayo Clinic Hospital, Minnesota, United States
National Medical Center, Seoul, China

Ospedale Maggiore Policlinico, Milan, Italy
People's Hospital, Nanning, China

PLA General, Beijing, China
Sahlgrenska University Hospital, Gothenburg, Sweden

Skane University Hospital, Lund, Sweden
SPHCC, Shanghai, China

Sun Yat-Sen, Guangzhou, China
Tongji Hospital, Wuhan, China
Umraniye, Instanbul, Turkey

Union Hospital, Wuhan, China
University Hospital, Ferrara, Italy

University Medical Center, Hamburg, Germany
Women, Guangzhou, China

Wuhan Red-Cross Hospital, Wuhan, China
Youan Hospital, Beijing, China

B

A
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