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ABSTRACT 

The future of personalized health relies on knowledge of dietary composition. The current 

analytical methods are impractical to scale up, and the computational methods are 

inadequate. We propose machine learning models to predict the nutritional profiles of 

cooked foods given the raw food composition and cooking method, for a variety of plant 

and animal-based foods. Our models (trained on USDA’s SR dataset) were on average 

31% better than baselines, based on RMSE metric, and particularly good for leafy green 

vegetables and various cuts of beef. We also identified and remedied a bias in the data 

caused by representation of composition per 100grams. The scaling methods are based 

on a process-invariant nutrient, and the scaled data improves prediction performance. 

Finally, we advocate for an integrated approach of data analysis and modeling when 

generating future composition data to make the task more efficient, less costly and apply 

for development of reliable models.  

 

Keywords: food processing, nutritional profile, machine learning, prediction models, data 

science 
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INTRODUCTION  

Food processing, such as fermentation, baking, or even boiling alters the chemical 

composition of food, often in unpredictable ways from the raw to the finished state. This 

is due to the unresolved chemical and structural complexity of the food and the physio-

chemical transformation mechanisms that occur during processing. [1] [2] Yet in spite of 

these challenges, the objectives for prediction models are compelling which include 

sensory properties [3] such as aroma, texture, taste, etc., and nutrient profiles, and here 

we address the latter. The models in use currently, simplify the inherent complexity and 

instead predict the content of a nutrient based on only a few parameters. For instance, 

kinetic modelling based on experimental data for any given food establishes the 

relationship between nutrient concentration, time and temperature conditions. [4] [5] [6] 

[7]. This can then be applied to compute concentrations, for example predicting vitamin 

C (ascorbic acid) content in processed orange juice [6]. Another approach to compute 

post-process nutrition composition, is to apply retention factors (RF) which are based on 

analytical composition data on a representative set of foods and processes. RF-based 

computation is used widely by food manufacturers for nutrition labels, and by USDA’s 

dietary survey group to calculate nutrient intakes that investigators may use to determine 

correlations between intake and health outcomes [8]. However, all of these methods have 

limited potential. Kinetic models are difficult to scale up to capturing more food and 

processing parameters, as these measurements are time-consuming, expensive [9] and 

have many experimental challenges such as certain chemicals which degrade rapidly. 

RF-based methods in practice inevitably under or overestimate the nutrient content in a 
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particular instance, since any single RF is representative of several foods and a cooking 

method. Here we address the challenge that our knowledge of composition and reactions 

of food systems is limited, which inevitably manifests to such incomplete or 

underdetermined models. This can be at least partially addressed with predictive machine 

learning (ML) methods that can learn the multi-parametric transformation patterns 

between the compositions of raw and cooked foods, from experimental data across 

diverse foods and cooking methods. 

  

The application of ML to food science data is at an early stage, yet it has been successful 

in generalizing across a variety of prediction tasks when trained on relevant datasets. 

Some examples of recent work include prediction of nutrient profiles or properties of food. 

Classifiers model have been applied to predict sensory properties from the molecular 

structure, such as bitter [10] [11] and sweet [12] [13]and aroma labels [14]. A number of 

food quality classifiers use hyperspectral data, for example for the freshness classification 

of shrimp [15], detection of adulteration in red meat products [16] or detection of 

damaged/bruised fruits and vegetables [17] [18]. Several models have addressed 

attributes related to nutrient profiles. Natural language processing (NLP) methods were 

used to predict the macronutrient (proteins, fats and carbohydrates) content of foods from 

a text description of the food [19]. USDA investigators predicted the content of 3 label 

nutrients (carbohydrates, protein and sodium) in processed foods from the ingredient list, 

using the Branded Foods datatype in Food Data Central (FDC) [20]. Several projects 

predicted nutrient contents from the composition data; nutrient content was predicted for 

the missing values in food composition data [21], lactose content was predicted in dietary 
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recall database [22], fiber content was predicted for commercially processed foods [23]. 

Availability of datasets with high quality data for training and testing is essential, and 

databases such as BitterDB [24], BTP640 [25], FlavorDB [26],FooDB [27], SuperSweet 

[28], Fenaroli [29],GoodScents [30] , FDC [31] as well as specifically curated datasets of 

hyperspectral images may contribute to this end.  

 

Here, we have constructed an ML model that predicts food micronutrient (specifically 7 

vitamins and 7 minerals) composition after processing (Figure 1). We have curated a 

sample of 820 foods, for 5 processes, namely steaming, boiling, grilling, broiling, and 

roasting from FDC, and trained regressors per nutrient and per process that have 

achieved a correlation(R2) between measured and predicted micronutrient values that 

range from 0.42 to 0.95 (outliers are -0.42, -0.09,0.13 and 0.23). 

METHODS 

Dataset. We downloaded the composition dataset of 7,793 foods from the Standard 

Reference (SR) legacy dataset, which is the most suitable of the 5 data types in FDC 

(Figure 1; as of November 2021), since it is aligned with our objectives. This dataset is 

intended for application in public health initiatives such as the assessment of nutrient 

intakes for the purpose of national nutrition monitoring, in creating meal plans in schools 

and day-care centers, in product development and labeling by manufacturers. The 

composition data for the foods in SR is obtained from 3 sources; analytical experiments, 

calculations (based on the analytical data), and literature. For our models, we selected a 

subset of these data according to the following criteria. We matched raw/cooked food 
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pairs, where the raw foods were a single ingredient harvested from a plant or from an 

animal (includes butchery products), and the cooked food was the outcome of the raw 

food treated to wet (boiling, steaming), or dry (roasting, grilling, broiling) heat processes. 

Foods were excluded from the dataset if either there was no single-ingredient raw food 

corresponding to the cooked food and vice-versa, or the foods had several ingredients 

and produced by a multi-step process like ‘Luncheon meat, pork and chicken, minced, 

canned, includes SPAM Lite’, ‘Bread, banana, prepared from recipe, made with 

margarine’. We excluded processes which have added ingredients, such as oil for frying, 

while we included boiling and steaming (simple aqueous, i.e., wet heat processes), as 

well as roasting, broiling and grilling (dry heat processes).  This resulted in 840 foods total 

in the dataset, with 178 and 247 pairs from wet and dry heat processes, respectively. In 

this dataset, all plant-based foods were cooked by wet heat process (WH), and all animal-

based foods by a dry heat (DH) process. The categorical breakdown of the number of 

pairs for plant-based and animal-based foods is shown in Figure 2. 

 

The composition data consists of content values for up to 232 ‘chemical constituents’ or 

‘components’, which include specific chemicals (vitamins, amino-acids, fatty acids, etc.) 

and aggregated chemicals or chemical groups (total fats, total proteins, etc.) for every 

food. Here, we selected the components that are reported for at least 80% of the foods in 

our dataset. This resulted in 27 components per food, namely 9 vitamins, 10 minerals, 

water, and 7 aggregates of total protein, total carbohydrates and various fat categories 

(Supplementary materials). The pair-wise composition data was used to train the 

prediction models where the input feature set to every model is the content of the 27 
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components in the raw food and the outputs are the contents of the 14 micronutrients in 

the cooked food. Prior to model fitting, the composition data should be preprocessed to 

adjust for the bias resulting from the conventional format of representing nutrient contents 

per 100 grams of a food sample. In practice, the raw sample is likely not always 100 

grams, and the cooked food sample would have a relatively higher or lower weight yield 

primarily due to loss or gain of water in the cooking process. As a result, when water is 

lost the solid components have a relatively higher concentration, and in comparing the 

raw and cooked food composition per 100 grams, there is a concentration bias in the 

cooked food. Similarly, there is a dilution bias when water is absorbed in the cooking 

process. Ideally the data preprocessing would reverse this scaling effect. We use two 

different scaling methods, solid content scaling in equations 1 and 2 and process-invariant 

nutrient scaling in equations 3 and 4.  For the solid content scaling (SCS), the water 

content in the raw food is set to that in the cooked food which assumes that the water 

content stays constant while scaling the content of other components. Then the 

composition is scaled preserving the proportions and the weight of the sample is 

maintained at 100 grams. This method lowers the extent of the dilution or concentration 

biases while the “process-invariant nutrient” scaling (PINS) method intends to undo this 

bias. The method is based on identifying a nutrient that is largely invariant to processing 

and can be used to calculate the scaling factor as per equation 3. This factor is then used 

as per equation 4 to derive the composition for the “true” weight of the cooked food 

corresponding to a 100-gram sample of raw food. From the 27 components in our dataset, 

cholesterol, iron and zinc are invariant to changes in processing for animal-based foods, 

but there is no such information for the plant-based foods. Cholesterol in the various 
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meats is invariant to processing since it is in the muscle-cell membranes which are 

resistant to cooking loss. [32]. Iron and zinc were reported to be process invariant as per 

experimental studies conducted by UDSA [33]. For confirmation of these hypotheses, all 

components are used in the PINS method and prediction performance is compared for 

both animal and plant-based foods. 

 

In the equations for scaling methods, R represents the raw food and C represents the 

cooked food, and component is the generalized term for each of the 26 solid components.  

𝑆𝑐𝑎𝑙𝑒𝑑 𝑅[𝑤𝑎𝑡𝑒𝑟] = 𝐶[𝑤𝑎𝑡𝑒𝑟]                                                                                    1 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑅[𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡] =
𝑅[𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡]

100 − (𝑅[𝑤𝑎𝑡𝑒𝑟] − 𝐶[𝑤𝑎𝑡𝑒𝑟])
. 100                       2 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑅[𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙]

𝐶[𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙]
                                                                           3 

𝑆𝑐𝑎𝑙𝑒𝑑 𝐶[𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡] = 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 ∗  𝐶[𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡]                            4 

 

The final dataset includes 425 pairs of foods, with 27 components, 5 processes (boiling, 

steaming, roasting, grilling and broiling), in two states (raw and cooked). (Supplementary 

materials).  

MODEL 

We trained models to predict the content of 14 micronutrients for which we had baseline 

retention factors in the cooked food. Of those, seven are vitamins, namely vitamin B1 

(thiamin), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B6 (pyridoxine), vitamin B9 

(folate), vitamin C (ascorbic acid), vitamin A, and the other seven are minerals, namely 

calcium, iron, potassium, phosphorus, magnesium, sodium and zinc. We created 
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separate models based on the process category (wet, dry), as these are fundamentally 

different processes, but not based on the actual process (e.g., boiling vs. steaming), as 

there are not sufficient data per process to avoid overfitting. All models have the same 

input, which is the composition of the raw food, as illustrated in Figure 1. Other details 

that might be informative to the task (cooking time, temperature, water content) were not 

available in the SR legacy dataset, and consequently were not present in our dataset, or 

our model. Since vitamin C is not present in meats (which are all the foods for DH models), 

the dry heat models are only 13, for the other micronutrients, resulting in 27 models total 

(13 for DH and 14 for DH). These sets of WH and DH models were trained and tested on 

scaled variants of the dataset explained earlier. We applied a filtering step to the scaled 

datasets to select the pairs of foods where the nutrient being predicted was more in the 

raw food than in the cooked food. So, each of the nutrient models were trained on different 

subsets of the data. The unscaled data for the dry heat models and wet heat models was 

not filtered for this condition. The effect of the data scaling and filtering on the predictive 

models is explained in the Results. 

 

The best performing model (for any dataset variant) was selected based on a cross 

validation grid search across 6 regressor types (MLP, LASSO, Elastic Net, Gradient 

Boost, Random Forest, Decision Trees ), each with a variety of hyperparameters totaling 

12,336 regressors where the metric for the best model was the least root mean squared 

error (RMSE). This was done for each of the 27 models using the sklearn library [34] and 

the best hyperparameters for each of the regressor types along with the RMSE is in 

Supplementary materials. We then performed a feature selection technique, a recursive 
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feature elimination variant as described in the sequential feature selector function of the 

mlxtend package [35]. The model performances for data variants for the WH and DH 

process are compared in Table 1. 

 

We assessed the predictive performance (RMSE) in comparison with 2 baseline models. 

The first is to naively assume that the dependent variable (the micronutrient to predict 

after cooking) is equal to its value in the raw food. This baseline serves as a comparison 

to a naïve regressor where the retention factor (RF) is 100%, i.e., the amount of the 

micronutrient after the heat process is the same as in the raw food. The second baseline 

was based on the USDA Retention Factors table, a common, standard model for the 

retention of nutrients after a process [8]. The nutrient outputs were computed as a product 

of the RF for the specific nutrient and the content of that nutrient in the raw food.  We use 

RSME, the coefficient of determination (R2), Pearson Correlation Coefficient (PCC), and 

Spearman Rank Correlation Coefficient (SRC) to assess the performance of our 

regressor model (Table 2 and Supplementary materials).  At each case, we performed 

5-fold cross validation runs, bootstrapped 50 times to avoid overfitting and increase the 

generalization potential of our classifiers. For a subset of foods (Supplementary 

materials), we provide a higher resolution baseline using retention factors from 

experimental studies in literature. Finally, we analyze the prediction performance through 

a breakdown of R2 by food category for plant-based foods (Leafy greens, Roots, 

Vegetables, Legumes, Cereals) and animal-based foods (Beef, Lamb, Chicken, Veal) as 

shown in Table 3. We do this by tagging every predicted micronutrient value by the 

category (associated with the food) and calculate the R2 for every group. This is repeated 
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for all predictions, and the average R2 of a category is used to determine the best and 

worst performances in the plant-based and animal-based foods. 

 

 

Figure 1. Overview of architecture (left to right) from data selection to prediction 

results. Single ingredient foods are selected from SR legacy (one of the 5 data types in 

FDC), and then organized by pair (raw,cooked) and process type. Cooking processes 

include boiling and steaming which are grouped into wet heat processes(WH)  and 

broiling, grilling, and roasting which are grouped into dry heat processes (DH) . Foods are 

mapped to composition, with 27 components per food. Models are trained from 

composition data, such that the input feature is the composition of the raw food, and each 

model is trained separately for every micronutrient in the cooked food. Models are trained 

separately for both process types, with 14 for WH and 13 for DH (excluding vitamin C 

predictor model). Prior to model fitting, the composition data is scaled and filtered. Model 

fitting uses a grid search cross validation approach, such that there are 12336 regressor 

models. The best model has the least error, RMSE. Then predicted composition is 

compared to the actual (ground truth) composition in two results. The scatter plot for 

prediction of magnesium content shows the both the prediction (black dots) and baseline 
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(red dots) values on the Y axis, versus the actual values (X axis). The other result is the 

performance (RMSE) analysis against the feature (input features) size.  

 

RESULTS 

Approximately 10% of SR Legacy foods can be paired in processes to be used in 

model training. The single ingredient foods that are either raw or cooked were found in 

35% of the SR legacy data, and 30% of these were paired into raw and cooked samples. 

The final selection of 840 foods (or 425 pairs) is 10% of SR legacy data (Figure 2A), with 

an unequal distribution of data pairs by food category (Figure 2B). We identified an 

anomaly where the content of a micronutrient was more in the cooked food than in the 

raw food in 50% of the pairs on average across the 14 micronutrients. The anomaly was 

more severe for the animal-based foods (77% vs 23% pairs, respectively; see 

Supplementary materials). This was partially caused by the bias introduced by the data 

representation convention. For the animal-based foods, the non-anomalous pairs are 

30% of the total pairs for unscaled data and increase to 70% for PINS-cholesterol scaled 

data, p-value<0.01. This is reasonable, since the anomaly is due to a concentration bias 

(nutrient content in cooked food is more than in raw food), which is mitigated by scaling. 

For the plant-based foods, there is no significant change(p-value>0.05) in non-anomalous 

pairs using the scaling methods for plant-based foods, since the issue is a dilution bias 

which is mitigated however this does not cause an anomaly (nutrient content in cooked 

food is more than in raw food). The comparison of non-anomalous pairs for animal and 

plant-based foods is shown in Figure 2. The Discussion section explains the reasons 
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for this differing effectiveness of the scaling methods in reducing the bias and suggests 

other possible causes for the bias. 

 

Scaling improves model performance.  We trained predictive models on variants of the 

datasets as explained in Methods. The dry heat models (broiling, grilling, roasting 

processes; 247 animal-based foods) and wet heat models (steaming, boiling; 178 plant-

based foods) were trained on the unscaled data, which is not filtered for the anomalous 

condition, and on data from both the scaling methods which is filtered for non-anomalous 

data. We use the metric RMSE to compare model performance and confirm the 

hypotheses described in Methods.  For the dry heat models, the average RMSE (for 13 

predictions) was 20% lower when the model was trained on data scaled by the PINS-

cholesterol method than data scaled using SCS method, which had 15% lower RMSE 

compared to the model trained on unscaled data. Although the model performance based 

on PINS data for iron and zinc has lower average RMSE than cholesterol, we consider 

the model trained on PINS-cholesterol as the best model since there is a mechanistic 

explanation described in Methods. For the wet heat models, the average RMSE was 35% 

lower when the model was trained on SCS data than that on unscaled data. These 

comparisons are shown in Table 1, and all results are in Supplementary materials and 

further analysis is in Discussion. The best model for the wet heat process is trained on 

SCS data and for the dry heat process it is trained on PINS-cholesterol data. We now 

compare results from the best predictive ML models to the baseline model. 
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Figure 2. Data Review. (A) Out of 7,793 foods in the SR Legacy datatype in FDC dataset, 

2,724 (35%) are single ingredient foods. Within that set, we identified 425 pairs of raw-

cooked single ingredient foods. (B) The food pairs per category for plant-based and 
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animal-based foods. There are a total of 178 pairs of plant-based foods and 247 pairs of 

animal-based foods. (C) The food-pair distribution by the method of data generation. (D) 

Comparing the percentage of food-pairs of non-anomalous data by scaling method. 
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Figure 3. Model Performance Analysis. Centre: Box plot of R2 (coefficient of 

determination) for 14 prediction models and corresponding USDA baseline model. Scatter 

plots for values from the prediction models and USDA baseline model, against actual 

values (ground truth) are shown in both cases where prediction was better or worse than 

the baseline. The top 2 scatter plots are for the case where prediction was better. Plots 

for vitamin B9 (folate) and magnesium show that the baseline model tends to have 

erroneously higher values than the predicted values, relative to the actual data. Lower 2 

scatter plots are for the case where prediction was worse than baseline by only a small 

margin. Plots for vitamin C and calcium have a noticeable overlap in values for the 

prediction model and baseline. 

 

The predictive model performs 43% and 18% better than using the standard USDA 

Retention Factor model for wet and dry heat processes, respectively. We compared 

the predicted concentrations of the micronutrients in the cooked foods for both the wet 

heat processes and the dry heat processes against the two baseline models, as described 

in the Methods section. When compared to the naïve baseline (i.e., retention factor is 

always 100%), the predictive model is better in all 27 out of the 27 comparisons (100%; 

RMSE of 9.90±16.45 vs 31.29±56.56, respectively; 64% decrease of RMSE on average 

for wet heat, p-value < 0.01; 52% decrease in RMSE on average for dry heat, p-value < 

0.01). Then, to compare with the standard practice, we computed micronutrient 

concentrations using the USDA’s Retention Factor table (see Methods) as shown in 

Table 2. In that case, the predictive model was better than this baseline in 22 out of the 

27 comparisons (81%; RMSE of 9.90±16.45 vs 16.45±28.41, respectively; 43% decrease 
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of RMSE on average for wet heat, p-value < 0.01; 18% decrease in RMSE on average 

for dry heat, p-value < 0.01). Figure 3 depicts the correlation between predicted and 

actual (ground truth) values for the 14 micronutrients, for both the ML model and the 

USDA retention factor baseline. Next, we investigated the difference in the predictive 

performance when curating retention factors from literature. For this, we identified the 

retention factors of vitamin C (ascorbic acid) for 12 sample foods (green beans, beet 

greens, broccoli, Chinese cabbage, carrots, cauliflower, mustard greens, green peas, 

green peppers, pumpkin, spinach, zucchini) and of vitamin B9 (folate) for 12 sample foods 

(amaranth leaves, broccoli, drumstick leaves, snap beans, lentils, okra, onions, potatoes, 

green peas, soybeans spinach, taro leaves) (see Supplementary materials). In both 

cases, the ML model had a better agreement with the ground truth data than the Literature 

Retention factor baseline, although less so for vitamin C (for vitamin C (ascorbic acid), 

RMSE 10.51 vs 13.31, p-value=0.026; for vitamin B9 (folate) RMSE 25.84 vs 97.22, p-

value=0.013). Note that retention factor information for each micronutrient is not available 

for the majority of foods, and it is a time consuming and expensive process to measure 

it. Using scale-invariant metrics reach the same conclusions (see Supplementary 

materials). The Discussion section elaborates further on the reasons that any RF 

baseline method is error prone and not appropriate to compute nutritional baselines.  

 

Prediction performance is best for leafy green vegetables, and worst for cereals, in 

the plant-based food categories, and best for beef and worst for veal in the animal-

based food categories. 
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As reported in prior literature, the food structure/phenotype influences the chemical and 

physical changes that occur in food processes. Here we use the food category to 

represent this concept and show the differences in predictability. We group the 14 

predicted micronutrient values by the food category and calculated the R2 (Table 3 and 

Figure 4A). Leafy green vegetables have the highest average R2 of 0.75±0.10 and 

cereals have the least average R2 of 0.52±0.25. In the dry-heat processed animal-based 

foods, beef had the highest average with R2 of 0.48±0.46 and veal the least average R2 

of - 0.50 ±1.21. Due to the uncertainty associated with methods of data generation, USDA 

specifies the nutrients with most reliable data, these are vitamin B3 (niacin), vitamin B6, 

calcium, iron and zinc. The highest average R2 is now 0.85 ±0.08 for beef and the lowest 

is -0.06 ±1.26 for veal. As such, the nutrient loss is better predicted in leafy greens and 

beef given the current training data. 

 

High variability on the top predictive features. There is a notable lack of feature 

importance order across the prediction models. Figure 3B shows the feature ranks, 

where the features are ordered by their average rank across predictions. The average 

rank is in the mid-range for both the WH and DH process, suggesting that no feature has 

a consistent importance across all the predictions. Figure 3C shows performance by 

feature-size plots for vitamin B6 and potassium (WH) and vitamin B6 and zinc (DH) and 

the feature names are listed in the caption. The common observation is that the top 

ranked feature is the micronutrient itself in the raw food, as expected, but all other input 

features are specific to every prediction. The complete coverage of best features and 

feature ranks is in the Supplementary materials. 
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Figure 4: Results. (A): Box plot of R2 for predictions by food category. For the plant-

based foods the box plot shows all 14 predictions. Leafy green vegetables have the best 

performance and Cereals the worst. For the animal-based foods, only 5 predictions are 

considered since they have the most reliable data as mentioned in Results. Beef has the 

best performance and veal is the worst (B): Box plot of feature ranks for the input features, 

where rank 1 is highest. Features are arranged in ascending order of average rank. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509827doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509827
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

Average ranks for both plant-based foods (and WH process) and animal-based foods 

(and DH process) are in the mid-range. No feature has a consistent high rank cross all 

the predictions. (C): Plots of performance-vs -#feature depict very different trends for 

prediction models, vitamin B6 and potassium are shown as examples for the WH process 

and vitamin B6 and zinc for the DH process. The best features for vitamin B6 (WH) are 

vitamin B6, zinc, vitamin C. Best Features for potassium (WH) are potassium, vitamin B9 

(folate), water, magnesium, vitamin A, saturated fats, vitamin B5 (pantothenic acid), 

vitamin B1(thiamine), iron, poly unsaturated fats, selenium, vitamin B3 (niacin), vitamin 

B6 and zinc. Best Features for vitamin B6 (DH) are vitamin B6, magnesium, calcium, 

vitamin B2 (riboflavin), calcium, total fats, vit C and carbohydrates. Best features for zinc 

are zinc, phosphorus, calcium, potassium and total protein. The combined interpretation 

of B and C suggests that feature selection results differ for every nutrient prediction.  

 

DISCUSSION 

In recent years the body of food composition data on preprocessing and postprocessing 

has grown, and so have simultaneously the expectations and vision [36] for big data in 

prediction tasks related to processing effects on food. But these expectations have yet to 

match the currently available computational capability and it is unknown whether the 

available data is sufficient for predictive capability and where the gaps might be. The 

results prove the potential of this existing data for predictive models and even show the 

categories that are more predictable namely leafy green vegetables in plant-based foods 

and beef in animal-based foods. A significant drawback in the data was the standard data 
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convention of composition per 100grams of foods for raw and cooked foods which 

obscured the actual change and we remedied (but not reversed) this by the scaling 

method.  

 

In the introduction we pointed out the discrepancies between the simpler prevalent 

methods and our ML models. Now, we elaborate on the discrepancies in perspective of 

our results, where the data scaling methods and ML model achieve an overwhelming 

improvement over the baseline. The scatter plots for vitamin B9(folate) and magnesium 

show that the baseline method overestimates the composition, which implies that the 

baseline RF is much greater than the RF inherent in the true data. RF represents the rate 

of loss which is influenced by process-related factors like processing times, surface area 

of vegetable exposed to processing conditions. Ideally for a fair comparison, these factors 

should be known for the baseline and matched to the data at hand.  This can easily be 

addressed by recording additional meta-data. However, the more challenging 

discrepancy was that the baseline is a simple linear method, while the prediction model 

is a much more complex multiparametric non-linear ML model. Inevitably more 

sophisticated methods will emerge whether machine learning, mechanistic or a hybrid, 

and a suitable state-of-the-art baseline method will be available for comparison. 

 

Our results show that methods of data analysis and predictive ML are valuable tools to 

assist in experimental design for food composition analysis, since the data generation 

process is time consuming and expensive. Specifically, we suggest how our methods 

justify decisions such as; the selection of food samples, recording of structured 
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metadata/provenance, checking for data quality, and determining the composition feature 

set. The provenance of the data was incomplete in at least two different aspects. The 

composition data was calculated for some foods, and there was no explanation for the 

calculation method and no mention of the reference food /data used in the calculation 

method. It is unclear whether the samples for the raw and cooked food were related. 

Additionally, ontologies or structured vocabularies are a valuable resource when creating 

a format or structure for the dataset. Regarding data quality, we have described the 

anomalous condition in the Results. This is an example of a basic data sanity check, and 

especially in the context of a prediction hypotheses. Predictive performance depends on 

both the sample size as well as the entropy of the dataset, and one can use the predictive 

performance of the model as a guide for the sampling size for gathering new experimental 

data. There was only a single representative instance for each food and factors like 

geography, method of agriculture etc. are known to significantly impact the composition. 

Our results on prediction performance by category could justify the need for greater 

sampling. Regarding the feature space per sample, we suggest including process 

parameters and features known to influence nutrient loss such as pH.  

 

Finally, representation of the composition per 100g of food, further obscured the data. We 

mitigated this issue by applying the data scaling methods, however our observation show 

that this is not a complete resolution and new standards for data representation are 

required.  The results from applying the scaling methods on the composition data, has 

two unrelated interpretations; the effect on the size of non-anomalous food-pairs (Figure 

3) and the effect on model performance trained on this data (Supplementary materials). 
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As seen in Figure 3, there is no significant effect (p-value =0.06) for the plant-based foods 

where the data representation causes a dilution bias, and the anomaly could instead be 

due to different food samples used for the raw and cooked analysis. Whereas there is a 

significant effect (p-value <0.01) on animal-based foods where the anomaly is due to a 

concentration bias. Regarding the prediction performance, a few additional components 

used in the PINS method had good results besides the hypotheses. For plant-based 

foods, the performance for SCS data was the best, followed by carbohydrate PINS data. 

For animal-based foods, the performance by PINS-proteins data was the better than for 

zinc, iron and cholesterol. However, the results for PINS-carbohydrate and PINS-protein 

are likely due to the methods used for generating this data. This analysis presents several 

questions for future inquiry and experimental validation, though the most important might 

be to ascertain a process-invariant nutrient and under which conditions and the 

biochemical/mechanistic explanation. This information might help for data 

transformations of existing data, but new data representation standards need to be 

considered and applied to future data generation efforts. 

 

Food composition data is poised to grow in size and quality [37] [38] [39], and such 

predictive modelling applications can assist consumers in making reliable dietary 

decisions. For example, to choose food ingredients and cooking methods by getting 

answers to queries like- “How do boiling/streaming affect the nutrient profile of Vegetable 

X compared to roasting or frying”. Personalized health models must consider additional 

factors like bioavailability and individual physiological response, however dietary 

composition is an essential step towards that goal. 
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TABLES 

Table 1. Comparing models trained on different data variants. The prediction performance 

results for the models trained on data variants specified in the Methods are shown in this table. 

The metric for model performances is RMSE – Root mean squared error. A complete coverage of 

all performance for all PINS data is in Supplementary materials.  Data Variants: Unscaled is 

the original data. SCS – Solid content scaling. PINS – Process Invariant Nutrient scaling and the 

specific nutrients is in parenthesis. 

 

OUTPUT 

WETHEAT DRYHEAT 

Unscaled SCS  Unscaled SCS  PINS ( Zinc) PINS(Iron) PINS(Cholesterol) 

Thiamine 0.04 0.03 0.03 0.02 0.01 0.01 0.01 

Riboflavin 0.05 0.04 0.05 0.03 0.02 0.02 0.02 
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Niacin 0.48 0.25 0.87 0.38 0.46 0.60 0.45 

B6 0.05 0.04 0.09 0.04 0.07 0.05 0.06 

Folate 22.37 20.53 4.38 8.39 6.46 3.74 1.72 

VitC 13.28 8.28 NA 

VitA 83.21 23.85 3.37 1.7 1.25 2.81 1.5 

Calcium 22.17 25.76 4.33 3.4 2.41 1.36 1.81 

Iron 0.6 0.45 0.33 0.3 0.14 0.00 0.16 

Magnesium 11.19 8.83 5.05 2.4 2.19 2.22 2.33 

Phosphorus 24.1 22.19 24.16 21.8 15.60 15.67 21.41 

Potassium 101.9 72.13 48.87 42.3 27.49 30.95 32.23 

Sodium 17.4 13.44 13.26 8.7 6.80 7.35 9.36 

Zinc 0.2 0.2 0.67 0.3 0.00 0.38 0.29 

AVERAGE 21.22 14 8.11 6.9 5.24 5.43 5.49 

 

Table 2. Results of prediction models compared to baselines. The prediction scores 

(RMSE and R2 ) are the average of 50 runs, due to the inherent randomness in the 

models.  [A] (RMSE) of best prediction models, compared to baseline (USDA’s RF guide 

Version 6) model and naïve model (output content=input content). The better of the 

prediction or baseline score is highlighted. The rel% column is calculated as : (baseline-

predicted)/baseline*100 1B. Additional baseline model for vitamin C (ascorbic acid) and 

vitamin B9 (folate) using RF values from experiments on selected foods. 1C. The metric 

R2 (coefficient of determination) is scale invariant (as opposed to the RMSE) for ease in 

comparison across all predictions. The corresponding box plot is in Figure 3. 

Outputs  Wet heat (Steaming, Boiling)  Dry Heat (Broiling, Grilling, Roasting) 

Avg+-Stdev  RMSE Avg+-Stdev  RMSE 

True Data Predicted Baseline RF100 Rel % True Data Predicted Baseline RF100 Rel% 

B1(Thiamine) 0.11+- 0.08 0.03 0.070 0.15 52.69 0.07+-0.04 0.01 0.02 0.04 14.69 

B2(Riboflavin) 0.08+-0.07 0.04 0.060 0.08 34.92 0.22+-0.1 0.02 0.03 0.04 28.03 
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B3(Niacin) 0.73+-0.54 0.25 0.550 0.82 54.38 4.52 +-1.2 0.45 0.53 1.19 15.04 

B6 0.12+-0.11 0.04 0.060 0.09 25.84 0.29+-0.14 0.06 0.11 0.12 48.81 

B9(Folate) 49.42+-48.81 20.53 51.480 157.77 60.12 10.99+-4.77 1.72 2.16 5.00 20.35 

C 18.06+-21.96 8.28 7.540 18.35 -9.85  Not a significant source 

A 76.39+-118.23 23.85 35.750 40.87 33.28 3.83+-4.62 1.50 1.58 2.99 4.97 

Calcium 43.68+-53.85 25.76 24.140 31.39 -6.71 9.47+-4.57 1.81 3.13 3.61 42.17 

Iron 1.25+-0.97 0.45 0.940 1.37 52.29 1.74+-0.72 0.16 0.24 0.26 31.85 

Magnesium 34.71+-22.1 8.83 25.630 38.41 65.56 17.96+-2.95 2.33 3.33 6.05 30.03 

Phosphorus 75.89+-53.42 22.19 58.910 75.99 62.33 159.44+-24.64 21.41 17.59 34.89 -21.71 

Potassium 268.57+-164.47 72.13 128.310 242.41 43.78 325.13+-86.05 32.23 30.14 66.83 -6.97 

Sodium 15.63+-28.14 13.44 42.860 98.40 68.64 51.84+-11.34 9.36 8.03 16.64 -16.66 

Zinc 0.62+-0.47 0.20 0.530 0.67 62.13 3.78+-1.67 0.29 0.53 0.52 45.38 

 

Nutrient Prediction model Baseline (USDA RF table) Baseline (RF from experiments) 

Vitamin C 10.50 11.25 13.31 

Folate 25.84 40.65 97.22 

 

 

Outputs 

Metric :R2 

Wet heat (Steaming, Boiling) Dry Heat (Broiling, Grilling, Roasting) 

Predicted Baseline RF100 Predicted Baseline RF100 

B1(Thiamine) 0.80 0.26 -2.60 0.50 0.53 0.22 

B2(Riboflavin) 0.65 0.52 0.01 0.77 0.80 0.80 

B3(Niacin) 0.73 -0.04 -1.30 0.80 0.80 0.91 

B6 0.65 0.76 0.37 0.58 0.38 0.66 

B9(Folate) 0.77 -0.12 -9.51 0.42 0.80 -1.09 

VitC 0.76 0.83 0.29 Not a significant source 

VitA 0.95 0.91 0.87 0.59 0.86 0.98 

Calcium 0.75 0.80 0.66 0.73 0.53 0.73 
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Iron 0.70 0.05 -1.02 0.76 0.80 0.30 

Magnesium 0.82 -0.35 -2.04 0.13 -0.39 0.07 

Phosphorus 0.78 -0.22 -1.04 -0.42 0.35 0.64 

Potassium 0.71 0.39 -1.19 0.23 0.44 0.75 

Sodium 0.64 -1.34 -11.47 -0.09 0.44 0.49 

Zinc 0.79 -0.25 -1.03 0.89 0.90 0.97 

 

 

Table 3. Various metrics (R2 ,RMSE,PCC) by category for plant-based foods.  
Cereals do not have data for vitamin A and  C predictions. Abbreviations are used for the 

predicted nutrient, Ca:Calcium, Fe:Iron, Mg:Magnesium, Ph:Phosphorus, K:Potassium, 

Na:Sodium, Zn:Zinc. The remainder are vitamins. 

Out
put 

Leafy Greens Roots Vegetables Legumes Cereals 

RMSE R2 PCC RMSE R2 PCC RMSE R2 PCC RMSE R2 PCC RMSE R2 PCC 

Ca 23.97 0.82 0.90 7.54 0.90 0.95 73.06 0.41 0.98 21.88 0.55 0.88 7.57 0.50 0.92 

Fe 0.29 0.82 0.90 0.24 0.56 0.75 0.15 0.76 0.86 0.69 0.49 0.71 0.39 0.52 0.77 

Mg 8.95 0.80 0.89 4.65 0.83 0.96 5.12 0.85 0.93 10.72 0.70 0.84 11.03 0.58 0.81 

Ph 11.37 0.66 0.83 10.33 0.82 0.89 24.90 0.44 0.58 26.92 0.65 0.85 27.41 0.48 0.79 

K 76.50 0.70 0.84 71.64 0.88 0.94 68.81 -.12 0.72 73.35 0.49 0.79 58.98 -0.19 0.27 

Na 23.85 0.68 0.80 9.90 0.81 0.91 4.92 0.50 0.98 9.02 0.11 0.88 19.06 0.78 0.92 

Zn 0.10 0.72 0.86 0.09 -0.23 0.59 0.08 0.96 0.97 0.32 0.48 0.70 0.23 0.68 0.83 

A 36.24 0.93 0.97 19.73 0.65 0.96 21.48 0.91 0.98 11.66 0.45 0.76 NA NA NA 

C 11.97 0.65 0.84 6.65 0.85 0.94 7.05 0.88 0.96 3.71 0.77 0.94 NA NA NA 

B1 0.02 0.84 0.92 0.01 0.92 0.99 0.01 0.85 0.92 0.05 0.64 0.80 0.04 0.66 0.85 

B2 0.06 0.64 0.81 0.04 0.28 0.67 0.03 0.76 0.88 0.02 0.65 0.85 0.04 0.61 0.79 

B3 0.16 0.76 0.93 0.12 0.82 0.92 0.27 0.69 0.82 0.19 0.64 0.85 0.49 0.69 0.85 

B6 0.06 0.90 0.95 0.03 0.79 0.95 0.04 0.63 0.86 0.04 0.56 0.70 0.03 0.54 0.79 

B9 20.90 0.63 0.80 7.18 0.82 0.97 4.90 0.89 0.95 29.38 0.68 0.83 19.88 0.43 0.91 

 

Various metrics (R2 ,RMSE,PCC) by category for animal-based foods 

Output Beef Lamb Chicken Veal 

RMSE R2 PCC RMSE R2 PCC RMSE R2 PCC RMSE R2 PCC 

Ca 1.85 0.76 0.88 1.93 0.87 0.83 2.27 0.04 0.59 3.52 0.68 0.78 

Fe 0.13 0.89 0.95 0.16 0.25 0.67 0.08 0.84 0.95 0.22 -1.63 0.34 
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Mg 2.68 0.03 0.48 1.50 0.31 0.57 2.22 0.43 0.67 4.48 0.10 0.37 

Ph 18.31 0.32 0.70 19.91 -0.44 0.48 25.51 -0.06 0.73 46.28 -1.86 -0.12 

K 33.23 0.19 0.60 32.69 0.31 0.63 32.81 0.15 0.88 37.47 0.25 0.91 

Na 9.50 0.25 0.65 7.15 -0.27 0.35 13.65 -0.51 0.46 14.97 -1.00 0.33 

Zn 0.38 0.95 0.98 0.24 0.91 0.96 0.15 0.80 1.00 0.17 0.93 0.99 

A 1.24 0.39 0.90 1.67 0.80 0.91 3.67 0.73 0.86    

B1 0.01 0.60 0.80 0.01 0.73 0.87 0.01 0.62 0.92 0.02 -0.29 0.56 

B2 0.02 0.95 0.98 0.01 0.94 0.97 0.03 -0.10 0.94 0.06 -0.06 0.47 

B3 0.47 0.79 0.89 0.40 0.70 0.84 0.85 0.82 0.95 0.41 0.92 0.97 

B6 0.05 0.78 0.88 0.04 0.89 0.95 0.02 0.83 0.95 0.15 -1.24 0.47 

B9 0.99 -0.63 0.54 1.74 0.67 0.83 0.91 -2.81 -0.64 2.62 -2.82 0.91 
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