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Abstract

In molecular dynamics simulations we can often increase the time step by imposing
constraints on internal degrees of freedom, such as bond lengths and bond angles. This
allows us to extend the length of the time interval and therefore the range of physical
phenomena that we can afford to simulate. In this article we analyse the impact of the
accuracy of the constraint solver. We present ILVES-PC, an algorithm for imposing
constraints on proteins accurately and efficiently.

ILVES-PC solves the same system of differential algebraic equations as the celebrated
SHAKE algorithm, but uses Newton’s method for solving the nonlinear constraint
equations. It solves the necessary linear systems of equations using a specialised linear
solver that utilises the molecular structure. ILVES-PC can rapidly solve the nonlinear
constraint equations to nearly the limit of machine precision. This eliminates the
spurious forces introduced to simulations through the very common use of inaccurate
approximations. The run-time of ILVES-PC is proportional to the number of constraints.

We have integrated ILVES-PC into GROMACS and simulated proteins of different
sizes. Compared with SHAKE, we have achieved speedups of up to 4.9× in single-threaded
executions and up to 76× in shared-memory multi-threaded executions. Moreover, we
find that ILVES-PC is more accurate than the P-LINCS algorithm. Our work is a
proof-of-concept of the utility of software designed specifically for the simulation of
polymers.

Author summary

Molecular dynamics simulates the time evolution of molecular systems. It has become
a tool of extraordinary importance for e.g. understanding biological processes and
designing drugs and catalysts. This article presents an algorithm for computing the
forces needed to impose constraints in molecular dynamics, i.e., the constraint forces;
moreover, it analyses the effect of the accuracy of the constraint solver. Presently, it
is customary to calculate the constraint forces with a relative error that that is not
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tiny. This is due to the high computational cost associated with the available software.
Accurate calculations are possible, but they are very time-consuming. The algorithm
that we present solves this problem: it computes the constraint forces accurately and
efficiently. Our work will improve the accuracy and reliability of molecular dynamics
simulations beyond the present state-of-the-art. The results that we present are also
a proof-of-concept that special-purpose code can increase the performance of software
for the simulation of polymers. The algorithm is implemented into a popular molecular
simulation package, and is now available for the research community.

1 Introduction 1

Molecular simulation is a powerful research tool for scientific and technological purposes. 2

It is applied to a wide range of problems in chemistry and biology, such as the development 3

of novel materials [1] or biomedicines, e.g., for fighting cancer [2] and infectious diseases, 4

like the SARS-CoV-2 [3, 4]. One of the most widely used techniques for molecular 5

simulations is molecular dynamics (MD) [5, 6], which calculates the time evolution of 6

molecular systems subject to the Newton’s equations, thus enabling the calculation of a 7

variety of quantities whose measurement in laboratories is frequently either difficult or 8

unfeasible. The impact of molecular simulation is expected to increase greatly due to 9

the continuous improvement of available computational capabilities [7] and calculation 10

methods [8]. Among the former, we highlight the successive generations of the Anton 11

supercomputers [9]; among the latter, the solution of the protein folding problem by 12

AlphaFold [10]. The availability of 3D structures of proteins provided by AlphaFold 13

will probably boost their simulations, e.g., for analysing their capabilities as catalysts 14

or medicines or for a more accurate interpretation of the effect of mutations on the 15

phenotype [11]. The availability of accurate and efficient methods for such simulations 16

does hereby acquire a novel boost. 17

2 Background and Motivation 18

2.1 Notation 19

All vectors are written using bold lowercase letters. All vectors are column vectors by 20

default. When we need a row vector, then we shall explicitly transpose a column vector. 21

The Euclidean norm of a vector x = (x1, x2, . . . , xn)
T ∈ Rn is written as ∥x∥ and is the 22

nonnegative number ∥x∥ given by ∥x∥2 =
∑n

j=1 x
2
j . All matrices are written using bold 23

uppercase letters. If the function f = (f1, f2, . . . , fn)
T : Rn → Rn is differentiable, then 24

the Jacobian F (x) of f at the point x ∈ Rn is the matrix A = [aij ] ∈ Rn×n given by 25

aij =
∂fi
∂xj

(x). (1)

We shall now define the notation used to describe a system of m atoms. Let mi > 0 26

denote mass of the ith atom and letmi ∈ R3 and the diagonal mass matrixM ∈ R3m×3m
27

be given by 28

mi = (mi,mi,mi)
T ; M = diag(mT

1 ,m
T
2 , . . . ,m

T
n ) . (2)

In addition, let qi,vi,fi ∈ R3 denote the position of, the velocity of, and the force acting 29

on the ith atom, and let q ∈ R3m, v ∈ R3m, and f ∈ R3m be given by 30

q = (qT
1 , q

T
2 , . . . , q

T
m)T ; v = (vT

1 ,v
T
2 , . . . ,v

T
m)T ; f = (fT

1 ,fT
2 , . . . ,fT

m)T . (3)

31
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2.2 Fundamentals of constrained molecular dynamics 32

By Newton’s second law, the equations of motion of a system of m atoms are

q′(t) = v(t), (4)

Mv′(t) = f(t) , (5)

where the prime indicates differentiation with respect to the time t. In nature, the 33

motion of atoms is continuous in time; however a computer simulation customarily 34

uses a sequence of discrete time steps. The standard algorithm for this problem is 35

the velocity Verlet-algorithm [12]. It is well-known that certain motions such as bond 36

stretching, bond bending, and torsional vibrations are all periodic with characteristic 37

frequencies that depend on the atoms involved [13]. It is generally accepted that in 38

order to accurately resolve periodic motion one needs at least five time steps per period. 39

Hence the fastest vibration imposes a limitation on the maximum time step that can 40

be used and this limits the length of the time interval one can afford to simulate. In 41

order to simulate phenomena with a longer duration it is customary to constrain the 42

fastest degrees of freedom. Let n denote the number of constraints. Mathematically, the 43

problem consists of solving the following system of differential algebraic equations 44

q′(t) = v(t) ,

Mv′(t) = f(t)−G(q(t))Tλ(t) ,

g(q(t)) = 0 .

(6)

with respect to q, v, and λ. Here g : R3m → Rn is the constraint function, i.e., 45

g = (g1, g2, . . . , gn)
T , (7)

where gi : R3m → R is the ith constraint function and G(q) ∈ Rn×3m is the Jacobian of 46

g at the point q. The vector −G(q(t))Tλ(t) is the constraint force. 47

2.3 Constrained MD solvers 48

Numerous algorithms for constrained molecular dynamics have been proposed [14–23].
Their main objective has been the reduction of the time-to-solution of the constraint
equations. The most popular algorithms are SHAKE [24] and (P-)LINCS [25]. The
SHAKE algorithm solves the system of differential algebraic equations (6) using a pair of
staggered uniform grids with fixed time step h > 0. SHAKE’s equations take the form:

vk+1/2 = vk−1/2 + hM−1
(
f(qk)−G(qk)

Tλk

)
, (8)

qk+1 = qk + hvk+1/2 , (9)

g(qk+1) = 0 . (10)

Here qk ≈ q(tk) and vk+ 1
2
≈ v(tk+ 1

2
), where tk = kh and tk+ 1

2
= (k + 1/2)h. Equation 49

(10) is a nonlinear equation for the unknown Lagrange multiplier λk, namely 50

g(ϕk(λ)) = 0 , (11)

where ϕk is the function given by 51

ϕk(λ) = qk + h(vn− 1
2
+ hM−1(f(qk)−G(qk)

Tλ)). (12)

It is known that SHAKE is second order accurate in the time step [12]. The original 52

SHAKE algorithm solved the constraint equations using the nonlinear Gauss-Seidel 53
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method, which converges locally and linearly subject to certain mild conditions (see [26] 54

and the references therein). The LINCS and P-LINCS algorithms use a truncated 55

Neumann-series to approximate the solution of the relevant linear systems. The Neumann- 56

series converges linearly at best and there are physically relevant cases for which it does 57

not converge at all [25, 27, 28]. Therefore, solving the constraints to the limit of machine 58

precision is time-consuming. Indeed, as we shall demonstrate, the time spent by SHAKE 59

can easily exceed 50% of the total execution time in realistic simulations; other research 60

works also indicate severe performance drops (23%) when LINCS is accurately solved [78]. 61

Thus, it would be useful to have software that solves the constraint equations accurately 62

and rapidly. To this end, we have developed and implemented an algorithm called 63

ILVES [29, 30] that avoids coarse-grain approximations and calculates the constraint 64

forces accurately. We expect that avoiding coarse approximations will also produce 65

a solver that is capable of finding solutions when the atomic displacements are more 66

abrupt, e.g., during simulations run at high temperatures or with large time steps (like 67

those used in Brownian dynamics [31] calculations), or when constraints on bond angles 68

are also imposed. For instance, in Ref. [28] it was shown that 7200 distinct simulations 69

all produced matrices for which the expansion used by LINCS does not converge and 70

SHAKE had to be used instead. However, the SHAKE algorithm is commonly described 71

as inherently serial [32], which makes it inefficient for the –presently ubiquitous– parallel 72

computations. Since the parallel algorithm ILVES-PC solves the exact same equations as 73

the sequential algorithm SHAKE, we expect that ILVES-PC will be able to solve more 74

problems than LINCS. To sum up, ILVES combines the features of efficiency, parallelism, 75

accuracy, and reliability. 76

We emphasize that several authors have already applied Newton’s method for solving 77

nonlinear equations in the context of constrained molecular dynamics. M-SHAKE [20] 78

treats the linear systems as dense and solves them using Gaussian elimination. This 79

approach is limited to small molecules because the time complexity for computing an 80

LU factorization of a dense matrix of dimension n is O(n3). MILC-SHAKE [17] utilizes 81

the linear structure of alkanes to achieve a time complexity of O(n) by computing an 82

LU factorization of a tridiagonal matrix rather than a fully dense matrix. The authors 83

of the papers [21, 33] all approximate the relevant matrices using a matrices that are 84

symmetric positive semi-definite and apply the conjugate gradient (CG) algorithm to 85

solve these systems. The main advantages of this approach are twofold: the simplicity 86

of the parallelisation of the CG algorithm, and the solution can be accelerated using 87

a preconditioner. The disadvantage of this approach is the difficulty of finding a 88

preconditioner whose quality can be guaranteed mathematically. 89

We shall now describe how Newton’s method can be applied in the context of 90

molecular dynamics with constraints. We begin by stating the method in the case of a 91

general nonlinear equation. Let f : Rn → Rn be a differential function and consider the 92

problem of solving 93

f(x) = 0 (13)

with respect to x ∈ Rn. If the Jacobian F of f is nonsingular, then Newton’s method is 94

defined and takes the form 95

xl+1 = xl − F (xl)
−1f(xl) , (14)

where the initial value x0 must be chosen by the user. In general, we expect that 96

Newton’s method will converge locally to a zero of f and that the convergence will be 97

quadratic. In practice, we should never explicitly invert the matrix F (xl), instead we 98

should compute the correction F (xl)
−1f(xl) by solving the linear system 99

F (xl)zl = f(xl) (15)
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with respect to zl. We emphasize this point by restating Newton’s method as the
iteration

F (xl)zl = f(xl), (16)

xl+1 = xl − zl. (17)

We now return to the nonlinear constraint equation (10). To this end, we introduce the 100

matrix function A : R3m × R3m → Rn×n given by 101

A(x,y) = −h2G(x)M−1G(y)T . (18)

Then Newton’s method for the Lagrange multiplier λk is given by

A(ϕk(λk,l), qk)zk,l = g(ϕ(λk,l)) (19)

λk,l+1 = λk,l − zk,l , (20)

where the initial value λk,0 must be chosen by the user. The simple choice of λk,0 = 0 102

is the de-facto standard choice. 103

We mention in passing that the matrix A(x,y) is structurally symmetric and that 104

the matrix A(ϕk(λk,l), qk) is close to the symmetric matrix A(qk, qk), simply because 105

ϕk(λ) = qk +O(h), h → 0, h > 0. (21)

This is the observation that was utilized by the authors of the papers [21,33]. 106

2.4 Bond constraints 107

We now limit the discussion to general bond-length constraints. Note that constraints 108

on bond angles are commonly enforced by constraining distances between two atoms. 109

ILVES’ design is expected to provide accurate solutions when imposing any kind of 110

constraints, either on bond lengths, bond angles or dihedral angles, due to the fact that 111

the coordinate matrix A is banded (regardless of the kind of the constrained degrees 112

of freedom) in biological molecules. Constraining degrees of freedom other than bond 113

lengths using flexible constraints [34] may be an appropriate method to increase the 114

time step of the simulation. 115

Our objective is to present a formula for the entries of the matrix A(x,y). Let the 116

ith bond have length σi > 0 and let ai and bi denote the indices of the two bonded 117

atoms. Then the ith constraint can be written as 118

gi(q) = 0 (22)

where 119

gi(q) =
1

2

(
σ2
i − ∥qai

− qbi∥2
)
. (23)

A direct calculation establishes that 120

∂gi
∂qc

= (qai
− qbi) (δbi,c − δai,c) . (24)

Here δi is Kronecker’s delta, i.e, 121

δij =

{
1 i = j ,

0 i ̸= j .
(25)

In particular, we observe that 122

∂gi
∂qc

= 0, c ̸∈ {ai, bi} . (26)

Now let i and j denote the indices of two bonds. There are exactly 3 distinct possibilities: 123
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1. The two bonds have no atoms in common. 124

2. The two bonds share a single atom. 125

3. The two bonds are identical, i.e., i = j. 126

Let bond i link atoms ai and bi and let bond j link atoms aj and bj . The (i, j)th entry 127

of the matrix A(x,y) is given by the weighted inner-product 128

aij = (xT
ai

− xT
bi)(yaj

− ybj )wij , (27)

where the weight wij is given by 129

wij =


0 {ai, bi} ∩ {aj , bj} = ∅,
1
mc

(δai,aj
+ δbi,bj − δai,bj − δbi,aj

) {ai, bi} ∩ {aj , bj} = {c} ,
1

mai
+ 1

mbi
{ai, bi} ∩ {aj , bj} = {ai, bi} .

(28)

When the matrix A(x,y) represents bond constraints for a real molecule, then it is 130

necessarily quite sparse. Consider the row corresponding to the bond between a pair of 131

atoms with valence r1 and r2. For this row of the matrix A(x,y), there can be at most 132

r1 + r2 − 1 nonzero entries, regardless of the overall size of the molecule. 133

The bond lengths σi are normally constant [35] during MD simulations and their 134

values are set by the force fields used. 135

2.5 The importance of solving constraints accurately 136

Presently, MD simulations usually accept a large relative error when solving the constraint 137

equations. The default value of GROMACS [36] for the maximum allowed relative error 138

for satisfying any constraint with the SHAKE algorithm (shake tol) is τ = 10−4. 139

Other MD packages, like Amber [37], are a bit more demanding (τ = 10−5) [38]. 140

Notwithstanding, tighter satisfaction of the constraints is sometimes imposed, frequently 141

in simulations performed in the NVE (microcanonical) ensemble [28, 38–48], though also 142

in simulations with a thermostat [28,49–54] (NVT, NPT). For example, in references [28, 143

38–54] the authors set a tolerance τ (shake tol) for the constraints between 10−7 and 144

10−10 (except Ref. [41], which uses τ = 10−12). 145

Imposing constraints introduces a source of drift in the energy of the analysed 146

system [40,41], with the size of the drift increasing with the errors in the satisfaction of 147

constraints. One of the principal reasons for performing accurate constraint calculations 148

is to reduce this drift. This is especially important in simulations in the NVE ensemble, 149

where the conservation of the energy is an explicit requisite. Accurate constraints may 150

be also imposed to accurately calculate sought quantities [55,56] or to avoid undesired 151

effects –like spurious phase transitions [39]–; authors have also reported that improving 152

simulation accuracy eliminated the flying ice cube effect [52]. 153

When conducting simulations using a thermostat, say, in NVT or NPT ensembles, it 154

is not customary to solve the constraint equations accurately, but this is not necessarily 155

the correct approach. Certainly, the energy is not conserved for canonical or NPT 156

ensembles, but there exists a conserved quantity (sometimes called conserved energy) 157

which is analogous to the conserved energy of the microcanonical (NVE) ensemble. The 158

derivation of the equations of the thermostat (e.g. Nosé-Hoover [57,58], V-rescale [59]) 159

implies that the conserved quantity is indeed conserved; otherwise, the thermostat 160

equations that are assumed to hold do indeed not hold. There is no reason to believe 161

that the conserved quantity will be conserved if the constraint equations are not solved 162

to the limit of machine precision. 163
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A small drift of the energy does not necessarily indicate that the MD simulation 164

is accurate and reliable. Since different sources of inaccuracy can generate drifts with 165

different signs, large errors in the dynamics can be masked by small drifts resulting 166

from contributions that almost cancel each other. Generally speaking, a large drift of 167

the energy is likely indicating that the dynamics is distorted and the simulation is not 168

reliable, but the converse is not true (a small drift does not necessarily imply that the 169

dynamics is not distorted) [60, 61]. An accurate MD should try to reduce all the sources 170

of errors in the dynamics, hence solve constraints to the maximum affordable accuracy. 171

Otherwise, the calculated quantities will not be reliable. Moreover, small drifts may be 172

misleading, hinting that the simulation is accurate, when it is not. 173

It is important to appreciate the consequences of solving the constraint equations 174

inaccurately. Let λ̂k denote the computed value of the Lagrange multiplier λk; then the 175

computed value of vk+1/2 cannot be more accurate than 176

v̂k+1/2 = vk−1/2 + hM−1
(
f(qk)−G(qk)

T λ̂k

)
, (29)

in which case the exact value vk+1/2 satisfies 177

vk+1/2 = v̂k+1/2 − hM−1G(qk)
T (λk − λ̂k) . (30)

From the equations above we conclude that errors in the calculation of the Lagrange 178

multipliers λn are mathematical equivalent to the actions of an external force, i.e, the 179

term −G(qk)
T (λk − λ̂k). Due to its random nature, this force does not need to be a 180

conservative force. Hence, if the objective is to simulate an isolated system, it is critical 181

that we solve the constraint equations accurately. 182

The distortions of the bond lengths that arise from solving of the constraint equations 183

inaccurately have non-zero average, i.e., the noise is not white, and are highly correlated 184

with their previous values (see results and discussion below and in the S1 File). This 185

is equivalent to using bond lengths which differ from the ones specified by the force 186

fields (whose calibration is highly optimised to accurately describe chemical phenomena), 187

and to using different bond lengths at different times during the simulation. Due to 188

the accumulation of errors throughout many time steps and to the chaotic nature of 189

simulations, the introduced spurious force may distort the dynamics in unpredicted 190

manners, thus reducing the reliability of the calculated quantities. In contrast, if 191

constraints are satisfied allowing a maximum relative error of e.g. 10−10 instead of 192

the customary 10−4, then the scale of the distortions drops by a factor of 106, see 193

equation (30) and the surrounding paragraph. This significantly reduces the expected 194

impact of spurious forces. 195

The points stated above indicate that an accurate satisfaction of the constraints 196

is necessary for an appropriate simulation, where the ensemble is respected and the 197

disruptions of the system’s dynamics are reduced. 198

3 ILVES-PC: ILVES for peptide chains 199

3.1 Fundamentals 200

The only difference between ILVES and SHAKE is how we solve the nonlinear constraint 201

equations; ILVES solves the same system of differential algebraic equations as SHAKE. 202

ILVES uses Newton’s method to solve the nonlinear equations; the involved linear 203

(linearised) systems (19) are solved using a direct solver (Gauss-Jordan elimination), 204

which has linear (O(n), being n the number of constraints) scaling due to the sparsity 205

of matrix A. Such sparsity arises from the fact that one atom cannot be covalently 206

bonded to many others. This guarantees the sparsity of A for biological molecules, and 207
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hence makes the ILVES algorithm suitable for constraining all kinds of internal degrees 208

of freedom, including bond and dihedral angles. The A matrix of relevant bio-polymers 209

can be defined so that it is banded (or nearly banded, with a few nonzero entries outside 210

the band), which enables a special efficiency when solving the system [62]. ILVES-PC 211

relies on a code (compiled code [30]) which is specifically designed to be efficient for 212

known structures, such as the amino acid residues that make up peptides and proteins. 213

3.2 Implementation 214

The implementation of the ILVES algorithm presented in this document, called ILVES- 215

PC, is specifically designed to compute the constraint forces for proteins. Developing 216

code for given types of molecules is the extension to software of a concept which has 217

already proven to be very successful with hardware. The Anton supercomputers were 218

conceived to perform MD simulations of proteins and other biological molecules [9]. 219

Their specific design greatly enhances their performance for these systems compared with 220

general-purpose computers. The algorithm we present in this article also utilises specific 221

features of widely simulated systems in order to increase the performance compared with 222

general-purpose algorithms. 223

Peptide chains (peptides and proteins) are polymers of variable length formed by 224

repeating blocks of atoms. They are a subset of biological polymers (also including e.g. 225

nucleic acids and polysaccharides), which are just a subset of chemical polymers (which 226

could benefit from the approach presented in this article). Each of the building blocks 227

of a peptide chain (residues) has a given connectivity pattern, which is found essentially 228

unchanged in biological molecules (occasionally further atoms can be attached to the 229

protein, e.g. in glycoproteins, or the protein structure can get modified, e.g. at the 230

chromophore of the Green Fluorescent Protein; in addition, hydrogen atoms in carbon 231

rings of side chains can lie in alternative positions). However, 20 given –proteinogenic– 232

amino acid connectivities largely dominate the structure of peptides and proteins. 233

We can make an abstraction of a peptide chain as a graph G = (V,E). The vertices 234

V = {1, 2, 3 . . . , n} represent the atoms and the edges E ⊆ V × V represent the bonds. 235

Specifically, we have (a, b) ∈ E if and only atoms a and b are bonded. The graph is 236

undirected because (a, b) ∈ E if and only (b, a) ∈ E. From G we can build a new graph 237

L(G) where each vertex represents a bond and two bonds are connected if and only if 238

they share an atom. The graph L(G) is known as the line-graph of G. 239

The coefficient matrix of the linear system solved by ILVES-PC, i.e., the matrix A 240

of equation (19), has the same structure as the adjacency matrix of the bond-graph 241

of the peptide chain. Since the peptide chain is composed of less than 30 different 242

building blocks, the main features of the matrix A can be described using less than 30 243

different submatrices. These matrices correspond to the proteinogenic amino acids, some 244

of them having slightly different configurations due to different locations of hydrogen 245

atoms. In truth, we need a few more subroutines to account for, say, the beginning and 246

the end of the chain. We have written subroutines for solving the linear subsystems 247

corresponding to each of these submatrices. To solve the entire linear system, we iterate 248

over the subsystems of the linear system, calling the required subroutine. We ensure 249

that submatrices corresponding to identical amino acids have the same structure by 250

always numbering the bonds of each amino acid in the same order. This allows us 251

to generate loop-free subroutines that store the relevant data contiguously in memory 252

and do direct memory access instead of relying on the auxiliary data structures and 253

the indirect memory access patterns that are so typical of direct solvers for sparse 254

linear systems. These ideas are all further adaptations of the compiled code approach 255

utilised in [30]. By choosing the bond numbering of each amino acid we can reduce the 256

fill-in during the factorization of the matrix. Fill-in are entries that are exactly zero 257

in the original matrix, but become non-zero during the factorization process. We can 258
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(e)

Fig 1. Steps to apply Gauss-Jordan elimination to a banded matrix in parallel using three
threads via the Schur complement method. The entries of the matrix are represented
with and x and the fill-ins with an f . The magenta, purple and yellow entries are private
to threads, while blue entries are shared between threads.

work with peptide chains with any bond numbering. Before simulating a new protein 259

for the very first time, we first explore the topology to identify the individual amino 260

acid residues. Then, we renumber the bonds to match the numbering required by our 261

specific implementation. The structural information can be saved and recycled if further 262

simulations are required. 263

ILVES-PC exploits modern processors’ computational resources by assigning a subset 264

of amino acids of a peptide chain to different hardware threads. We ensure that each 265

thread is assigned a similar number of matrix elements. To concurrently apply Gauss- 266

Jordan elimination to the submatrices corresponding to different amino acids, we rely 267

on the Schur complement method [63]. 268

Consider the example presented in Fig 1. We want to make the elimination at the 269

banded coordinate matrix of (a) –which exemplifies A– using three threads (magenta, 270

purple, and yellow). First (b), each of the threads works with its own private submatrix, 271

trying to fill the lower left-hand (subdiagonal) corner with zeros and the diagonal with 272

ones. The threads also update the shared (blue) rows using mutual exclusion (mutex) 273

locks. They repeat this step (c) in the upper-hand corner of their submatrix. These two 274

steps may produce fill-ins. Then, the master thread processes the submatrix comprised of 275

the shared (blue) rows (d), while the other two threads wait until this step is completed. 276

Finally (e), all threads work in parallel to clean the fill-ins produced in steps (b) and (c). 277

In the case of ILVES-PC, the thread private data corresponds to constraints within a 278

given amino acid, while the shared rows correspond to the constraint that connects two 279

amino acids (which corresponds to a peptide bond). 280

While a general-purpose implementation of ILVES would almost certainly rely mainly 281

on coarse-grain synchronization mechanisms such as thread barriers, the precise knowl- 282

edge of the structure of the linear system corresponding to proteins allows us to use very 283

fine-grain synchronization mechanisms. We use lightweight mutex locks to protect the 284

shared rows of the linear system from data races, so that each mutex involves only a 285

pair of threads. Similarly, during the update phase at the end of each Newton step, the 286

positions and velocities of each atom are protected by individual mutex locks. 287

4 Materials and methods 288

We have integrated ILVES-PC into the popular GROMACS molecular simulation pack- 289

age [36]. Our solver can be used as an alternative to SHAKE and P-LINCS when 290

solving the bond constraints of proteins (only consisting of amino acid residues) without 291

disulfide bonds [64]. In addition we have extended the code of P-LINCS to accept a 292

tolerance τ > 0 for the satisfaction constraints on all bonds (all-bonds), as in SHAKE 293

and ILVES-PC, so that the three solvers can be compared on an equal footing. All the 294
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tested algorithms iterate until 295

∀i ∈ {1, 2, . . . , n} :
1

2

∣∣∣∣∥qai − qbi∥2 − σ2
i

σ2
i

∣∣∣∣ < τ. (31)

where the ith bond is between atoms ai and bi. It is straightforward to verify that 296

1

2

(
∥qai − qbi∥2 − σ2

i

σ2
i

)
≈ ∥qai − qbi∥ − σi

σi
(32)

is a good approximation when the ith constraint equation is almost satisfied, i.e., when 297

∥qai
− qbi∥ ≈ σi is a good approximation. It follows that τ is a good approximation of 298

an upper bound for the largest relative error for the bond lengths. 299

As already mentioned, P-LINCS uses a truncated Neumann series to approximate 300

the solution; then P-LINCS applies an iterative correction phase. The accuracy of the 301

expansion is determined by its order (lincs order), and the accuracy of the correction 302

phase is determined by the number of iterations (lincs iter). Both the order of the 303

expansion and the number of iterations of the correction phase are set at GROMACS’ 304

startup and do not change throughout a given simulation. With our modification, 305

P-LINCS keeps iterating in the correcting phase until all constraints are solved with 306

the specified tolerance (shake tol). We found that the additional calculations due to 307

this modification (i.e. the calculations to check the degree of constraint satisfaction) 308

typically increase P-LINCS’ execution time by 4% to 9%. 309

4.1 Experimental setup 310

For the experiments carried out in this work we have used our modified version of 311

GROMACS 2020.1 in double precision (-DGMX DOUBLE=on) compiled using GCC-10.1.0. 312

All simulations were performed on a computer with two Intel Xeon Platinum 8160 CPUs. 313

Each processors has 24 physical cores. The main characteristics of our computer are 314

presented in Table 1. We have used a GROMACS OpenMP version for multi-thread 315

executions. 316

Table 1. Main features of our computer.

Processor 2 × Intel Xeon Platinum 8160
Cores 2 × 24
AVX-512 FMA units 2 (per core)

L1 cache (I, D) 8-way 32 KiB (per core)
L2 cache 16-way 1024 KiB (per core)
LLC 11-way 33 MiB (shared)

Main Memory 96 GiB DDR4 (12 × 8 GB 2667 MHz DIMM), 6 channels

OS SUSE Linux Enterprise Server 12 SP2, kernel 4.4.120-92.70-default

4.2 Simulations 317

Four proteins have been simulated in this study, namely, ubiquitin, COVID-19 main 318

protease, human SSU processome and barnase. A summary of their features can be 319

found in Table 2. In order to assess the performance of the protein-specific constraint 320

solver (ILVES-PC) presented in this article, simulations of the first three proteins were 321

performed. They cover a wide range of protein sizes: 76 to 2722 amino acid residues; 322

SSU processome is unusually large, and was mainly chosen for testing parallel scalability. 323
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Table 2. Proteins simulated in this article. The number of amino acid
residues, atoms and constraints (all-bonds), the PDB codes and articles of
reference are included.

Name # resid. # atoms # constr. Code Reference

Ubiquitin 76 1231 1237 1UBQ [65]
COVID-19 304 4645 4981 5R7Y [66]
main protease
Human SSU 2722 40802 41209 7MQA [67]
processome bundle 3

chain F
Barnase 110 1700 1721 1A2P [68]

The atomic coordinates of these proteins were taken from the RCSB Protein Data Bank 324

(www.rcsb.org, see the PDB codes in Table 2). 325

Our modified version of GROMACS was used to run and analyse the simulations, 326

which were set up with the CHARMM36 force field including CGenFF version 4.1 327

(last update on March 28, 2019) [69]. The ionizable residues of selected proteins were 328

protonated in all the cases as default (pH 7) in GROMACS, and after adding explicitly 329

TIP3P water molecules [70], chloride or sodium counterions were added to neutralize the 330

systems. A truncated dodecahedral was chosen as the simulation box, and the minimum 331

distance between the protein and the box edge was set to 1 nm. Periodic boundary 332

conditions (PBC) were imposed. A minimization phase of the solvated systems was 333

performed (maximum of 20000 steps) with the steepest descent algorithm [71]. One 334

(for the evaluation of performance with ubiquitin, COVID-19 main protease and human 335

SSU processome) or three (for the evaluation of accuracy with barnase and ubiquitin) 336

simulation replicas were launched under each setting, enabling the averaging of results 337

in the latter case. Systems were gradually heated through a heating ladder that allowed 338

to increase the temperature tier by tier in a number of NVT steps (50 K every 50 339

ns; 1 fs time step) until reaching the target temperature (either 298 or 400 K [72]). 340

Three consecutive steps for system equilibration followed. The first one (NVT) ran 341

for 100 ps with restraints imposed on the heavy atoms (protein and water) and the 342

V-rescale thermostat [59] used to keep the targeted temperature (coupling strength 343

parameter τT = 0.1 ps). The second equilibration step (NPT) ran for 100 ps (2 fs time 344

step) without any restraint, with the V-rescale thermostat (τT = 0.1 ps) [59] and the 345

Berendsen barostat used to set the pressure to 1 atm (coupling strength parameter 346

τp = 2.0 ps) [73]. The third equilibration step (NPT) ran for 200 ps (2 fs time step) 347

using the V-rescale thermostat (τT = 0.1 ps) and the Parrinello-Rahman barostat [74] (1 348

atm; τp = 2.0 ps). The configuration reached after these steps was the starting point 349

for different production runs carried out in either the NPT or NVE thermodynamic 350

ensembles. 351

For calculations of performance (NPT) and accuracy (NPT or NVE), the thermostat, 352

barostat and the rest of parameters were set up in the production phase as done in the 353

third equilibration step, except for the NVE simulations (used only for ubiquitin and 354

barnase), where neither thermostat nor barostat were used. Production runs launched 355

for calculation of performance consisted in 50k steps (2 fs time step for ubiquitin and 356

COVID-19 main protease) or 10k steps (2 fs time step for human SSU-processome). On 357

the other hand, production runs for calculation of the simulations accuracy (energy drift 358

analysis of barnase and ubiquitin) consisted of half a million (5 · 105) steps (2 fs time 359

step, for a total simulation time of 10 ns). A record of the conserved energy values (in 360

NPT simulations) or of the total energy (in NVE simulations) at every 1000 steps (0.2 361
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ps) was obtained. These numbers were used to calculate the energy drift. 362

As general parameters of the simulations the Verlet cutoff-scheme algorithm [75,76] 363

was used for van der Waals interactions and the PME method [77] for electrostatic 364

interactions, both with a radius cutoff of 1.2 nm as recommended by the authors of 365

the CHARMM36 force field [69]. A radius cutoff of 1.0 nm was also set in simulations 366

used for performance calculations. Velocities correction due to the thermostat were done 367

every 10 timesteps (default values of GROMACS). 368

For the tests performed to assess simulation performance, tolerance values (τ) of 10−4, 369

10−6, 10−8, 10−10 and 10−12 have been used to constraint all bonds. The constraint 370

algorithms tested include SHAKE, the modified version of P-LINCS and ILVES-PC. 371

In the case of P-LINCS also the lincs order parameter has been tested and values 372

of 4 and 8 are combined with the tolerance values listed above. In simulations carried 373

out to analyse the accuracy the SHAKE algorithm was tested with constraints both on 374

all-bonds and on bonds connecting with hydrogen atoms (H-bonds; results obtained with 375

these constraints appear in Fig 1 of the S1 File). Tolerance (τ) values of 3.1423 · 10−4, 376

10−4, 3.1423 · 10−5, 10−5, 10−6, 10−7, 10−8, and 10−10 have been tested. 377

The analysis of the energy drift has been done by taking also into account the 378

Verlet buffer size for the pair-list neighboring search. The pair-list neighboring search is 379

considered one of the two most important sources of energy drift in MD simulations (the 380

other one being that related to the constraints algorithm). The GROMACS parameter 381

used to establish the Verlet buffer size (Verlet-buffer-tolerance) was set here to 382

5 · 10−5 kJ/(mol · ps) to permit a lower level of drift than that allowed for GROMACS’ 383

default value (5 · 10−3 kJ/(mol · ps)). This way, it is possible to display the drift effect 384

due to constraints more clearly. Data presented at the Fig 1 of the S1 File also include 385

results obtained for a Verlet-buffer-tolerance of 5 · 10−3 kJ/(mol · ps). 386

5 Results and discussion 387

In this section, results of the test calculations are summarised. In the first subsection, 388

an analysis of the reliability of the simulation as a function of the accuracy in satisfying 389

constraints is presented, whereas an analysis of the efficiency (performance) of the 390

calculations is displayed in the second subsection. 391

5.1 Physics 392

One of our goals is to understand the connection between the energy drift in MD 393

simulations of proteins and the tolerance τ of the constraint algorithm (see equation (31) 394

for the definition of τ). For this purpose, we have simulated ubiquitin and barnase in 395

the NVE and NPT ensembles (with a V-rescale thermostat in the latter), using SHAKE 396

to impose constraints. We choose SHAKE because the slow and steady convergence of 397

this algorithm ensures that the largest relative error for the bond lengths is essentially 398

equal to the tolerance τ of the constraint algorithm. The time evolution of the energy 399

followed regular straight lines in large enough time scales; hence we calculated the drift 400

as the slope of the energy-vs-time relationship [60] divided by the number of degrees of 401

freedom of the system Ndf . We defined the latter as: Nidf = 3m− n− 6, where m is the 402

number of atoms in the protein, n is the number of imposed constraints, and the −6 403

term accounts for rotations and translations. In the NPT simulations the temperature 404

was set to 298 and to 400 K (this latter only for barnase), whereas the pressure was 405

set to 1 atmosphere. To convert Joule per mol to units of kBT we have divided by 406

2477.7 if T=298 K (it includes the NVE simulations, where no T is imposed during the 407

production stage, but 298 K was initially set), and divided by 3325.8 if T=400 K. The 408

time step used for all the simulations was 2 fs. 409
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Fig 2. Drifts of the conserved energy of the thermostat (NPT ensemble) and of the
energy (NVE ensemble) per degree of freedom as a function of the tolerance in satisfying
the constraints. Top: barnase in the NPT ensemble at T=298 K (left) and T=400 K
(right); Bottom: ubiquitin in the NPT ensemble at T=298 K (left) and barnase in the
NVE ensemble (right).

The results of the drift calculations are presented in Fig 2 [79]. It is observed that 410

the energy drift decays rapidly as the tolerance τ is reduced. The results presented in 411

Fig 2 are consistent with the literature, where τ = 10−7 is used to reduce the energy 412

drift [47–49] to acceptable levels. Fig 2 suggests that one should choose a constraint 413

tolerance τ which is at least as small at τ = 10−6. 414

As a further evidence of the importance of using small values of τ , in Fig 3 it is 415

observed that higher tolerances in NVE simulations led to significant drift of the initial 416

temperature set for the simulations. Conversely, if we use τ ≤ 10−6 the temperature is 417

approximately preserved over the analysed time range. Other authors have also found 418

that the low accuracy in solving the constraints gives rise to inaccurate temperatures, 419

and that the default parameters of LINCS lead to non-converged results [78]. 420

The non-negligible drifts presented in Fig 2 suggest that the mechanics of the whole 421

molecule have distorted. Here, the dynamics has been examined on a finer level by 422

measuring the actual bond lengths, whose value is expected to be frozen since constraints 423

on all bonds are imposed, as a function of time. Our primary goal is to answer the 424

questions: Do the distortions of the bond lengths have zero average? Are the distortions 425

of the bond lengths time-correlated? 426

To delve into these questions, an analysis of bond length error (actual vs. expected 427

value) has been performed for all the constrained bonds in our simulations. Plots at the 428

top and center panels of Fig 4 are displayed as an example and correspond to 2000 time 429

steps (1 time step = 2 fs) from an NPT production trajectory of ubiquitin run with 430

the SHAKE constraint solver with tolerances of τ = 10−4 and τ = 10−10, respectively. 431

These plots include the average (d̄), maximum (dMax) and minimum (dmin) bond length 432

errors over time obtained for all the constrained bonds. These parameters are defined as: 433
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Fig 3. Temperature evolution over time of barnase in the NVE ensemble using different
tolerances in satisfying the constraints.

d̄(t) := n−1
n∑

i=1

di(q(t)) ; dMax(t) := max di(q(t)) ; dmin(t) := min di(q(t)) (33)

where di is the relative error for the ith bond length, i.e., 434

di(q) :=
∥qai

− qbi∥ − σi

σi
(34)

and n is the number of constraints. 435

The maximum and minimum values, dMax and dmin (yellow and red lines, respectively), 436

are approximately the established value for the tolerance of SHAKE, which indicates 437

that the solver usually does not provide solutions much more accurate than that required 438

for the user [80]. The average d̄(t) (blue line) is positive along the time, which implies 439

that the bond lengths are, on average, longer than expected. Qualitatively, the patterns 440

of the error plots persist if the tolerance of the constraint solver is changed, e.g. to 441

τ = 10−10 (central panel in Fig 4). However, as expected, the size of the distortions is six 442

orders of magnitude lower than those obtained for τ = 10−4 (top panel in Fig 4). This 443

element confirms that a tighter tolerance for satisfying the constraints largely reduces 444

the bond length distortions in the simulated system. 445

The bond length distortions presented in the plots at the top and central panels of 446

Fig 4 show a Pearson correlation with their immediately previous value of 0.41± 0.12 447

(average ± SD, see Fig 15 of the S1 File). 448

Similar plots have been obtained for one of the simulations of ubiquitin run with the 449

P-LINCS solver (lincs order=4, lincs iter=2, and the rest of parameters identical 450

to those used in the simulation presented in Fig 4) and presented in Fig 5 of the SI 451

File. The normalised bond length error plot presenting the largest values among all 452

the constrained bonds is depicted in the top panel of SI Fig 5. The average distortion 453

(bottom panel) obtained over time for all the constrained bonds (blue line) with P-LINCS 454

mounts to 2.17 · 10−5, a lower value than that obtained for ubiquitin simulated with 455

SHAKE (2.67 · 10−5). An interesting element one can point out from this analysis is 456

that the bond length error profiles obtained with SHAKE present much sharper and 457

chaotic peaks than those obtained with P-LINCS. As a result of this, a higher temporal 458

correlation between the normalised errors and their previous value is observed with 459

P-LINCS. 460

The bottom panel of Fig 4 shows a representative normalised bond length error 461

profile for a given constrained bond. The most important feature one can notice there is 462

that the error is almost exclusively positive. This the most recurrent trend in all the 463
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bonds, see Figs 7 to 14 of the S1 File. Some other examples of this plot –grouped per 464

bonds of the same nature– are presented in Figs 7 to 14 of the S1 File, and additional 465

details thereof are pointed out there. 466
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Fig 4. Normalised error over time for the bond lengths in MD runs of ubiquitin with
SHAKE. The top and central panels show the average, maximum and minimum values of
the normalised error for all the constrained bonds (all-bonds). The top panel corresponds
to the tolerance of τ = 10−4 while the central one corresponds to τ = 10−10. The bottom
panel shows a representative normalised error profile obtained for a constrained bond.

5.2 Performance 467

We have evaluated the performance of the state-of-the-art constraint solvers (SHAKE and 468

P-LINCS) and of the Newton method-based solver presented in this article (ILVES-PC), 469

imposing constraints on all bond lengths. The modified version of P-LINCS (which stops 470

iterating when the largest relative error for the bond lengths is less than the specified 471

tolerance τ) was used, and two values of its matrix expansion parameter (lincs order) 472

were assessed: 4 (the default) and 8 (a commonly used value). Results obtained for these 473

tests are labeled in the figures as P-LINCS-O4 and P-LINCS-O8, respectively. Other 474

input parameters of the simulations were kept at their default values in GROMACS. 475

Simulations were carried out for ubiquitin, COVID-19 main protease and human SSU 476

processome in the NPT ensemble (298 K and 1 atm). The results are presented in 477

Figs 5, 6, 7, and 8. 478

Fig 5 presents the total (parallel, wall-clock) execution time. Stacked bars show the 479

fraction of the time which is spent solving the constraints imposed on the protein (not 480

on the solvent) in the production phase of the simulations and the rest of the execution 481

time (gray background) [79]. The text labels (UBIQ, COVID and SSU-PR) along the x- 482
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axis of Fig. 5 represent the three analysed proteins (ubiquitin, COVID-19 main protease 483

and the –atypically large– human SSU processome, respectively). The numerical labels 484

along the x-axis represent the largest acceptable relative error for a constraint in each 485

simulations, i.e., τ = 10−4, 10−6, . . . , 10−12. 486
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Fig 5. Normalized execution times for different accuracy limits (tolerances) and three
different proteins. The height of the thick grey bars represents the execution time of
GROMACS excluding the constraints computations. The height of the magenta, blue,
purple, and yellow bars represent the time required by the different constraint solvers.
Top: parallel execution with 24 threads; bottom: ibid. with 48 threads. Note that
the y-axis starts at y = 0.4 rather than y = 0. This has been done to emphasize the
differences between the constraint solvers.

The value τ = 10−4 is the GROMACS default value; we omit larger values of τ because, 487

as presented in the previous section, they produce result that do not converge [81]. We 488

found that τ = 10−12 is near the lowest relative error that can be consistently achieved 489

during our simulations. This should not be perceived as general result as this value 490

depends on the specific equations being solved and the floating point number system 491

used. 492

The results presented in Fig 5 indicate that the performance of SHAKE, whose 493

implementations are most commonly serial –in contrast to P-LINCS and ILVES-PC–, is 494

the worst among the analysed solvers. This implies that SHAKE requires higher ratios of 495

the total execution time, which is aggravated by increasing the number of threads. This 496

is a natural consequence of Amdahl’s Law [7], that is, the performance improvement 497

obtained by parallel execution is limited by the sequential fraction of the application. 498

This problem is likely to be exacerbated by the continuous increase in the number of 499

cores in the processors. ILVES-PC performs better than the state-of-the-art in nearly all 500

the analysed cases, and its relative advantage increases as higher accuracy is demanded. 501

Moreover, since the computation time is similar for high accuracy (e.g. τ = 10−12) and 502

low accuracy (e.g. τ = 10−4), accurate calculations become affordable using ILVES-PC. 503
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Fig 6. Single-thread speedup over the SHAKE algorithm of ILVES-PC and P-LINCS
for different tolerances and test cases.

1 6 12 24 48
# Threads

0

5

10

15

20

25

30

35

Sp
ee

du
p 

ov
er

 S
HA

KE

Tolerance = 10 4

1 6 12 24 48
# Threads

0

10

20

30

40

50

60

Sp
ee

du
p 

ov
er

 S
HA

KE

Tolerance = 10 8

1 6 12 24 48
# Threads

0

10

20

30

40

50

60

70

80

Sp
ee

du
p 

ov
er

 S
HA

KE

Tolerance = 10 12

Ubiquitin COVID SSU-Processome
P-LINCS-O4 P-LINCS-O8 ILVES-PC
Ubiquitin COVID SSU-Processome
P-LINCS-O4 P-LINCS-O8 ILVES-PC

Fig 7. Multi-threaded speedup of ILVES-PC and P-LINCS over the SHAKE algorithm
for different tolerances and test cases. Note the different y-axis scale of each plot.

It is entirely possible to view Fig 5 and conclude that it is a waste of time to improve 504

the quality of parallel constraint solvers. After all, the majority of the execution time is 505

spent outside the constraint solver, so why should we bother improving the constraint 506

solver? This line of reasoning ignores two key points: 507

1. It is easy to question the conclusions drawn from inaccurate simulations that show 508

a significant violation of the fundamental principle of conservation of energy. High 509

accuracy is costly unless the constraint solver is parallel. 510

2. The efficient use of large computers require algorithms that scale well. It is wasteful 511

to assigning 48 cores to a problem if the speedup is only 4. This precludes the use 512

of algorithms that scale poorly. 513

Fig 6 shows the single-threaded speedup of P-LINCS and ILVES-PC compared with 514

SHAKE [79]. Both P-LINCS and ILVES-PC show a speedup of approximately 1.30 over 515

SHAKE using the GROMACS default tolerance (τ = 10−4). While P-LINCS preserves a 516

speedup over SHAKE of between 1.25 and 1.5 for the whole range of tolerances, ILVES- 517

PC’s speedup with respect to both SHAKE and P-LINCS increases as the tolerance τ 518

decreases, achieving an average speedup over SHAKE of 4.2 at the smallest value of τ . 519

We have also executed P-LINCS and ILVES-PC using different thread counts. Fig 7 520

presents the multi-threaded speedup of P-LINCS and ILVES-PC over SHAKE for three 521

different tolerances. The parallel speedups over SHAKE of both P-LINCS and ILVES are 522

similar for all thread counts using GROMACS’ default tolerance (τ = 10−4), achieving 523
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Fig 8. Speedup over serial execution of P-LINCS and ILVES-PC for different test cases
and numbers of threads.

maximum speedups over SHAKE of 4×, 10×, and 34× for the three executed test 524

cases. As we decrease the tolerance, ILVES-PC speedups over SHAKE dramatically 525

increase while P-LINCS shows similar speedups for the whole range of tolerances. At the 526

minimum tolerance (τ = 10−12), ILVES-PC achieves maximum speedups over SHAKE 527

of 13×, 28×, and 76× for the three analyzed proteins. This is not surprising. ILVES-PC 528

is based on Newton’s method which normally has quadratic convergence, while there is 529

no reason to expect more than linear convergence from P-LINCS. 530

Fig 8 shows the parallel scalability of P-LINCS and ILVES using different numbers 531

of threads setting the tolerance to τ = 10−12 [79]. Nearly identical results were obtained 532

for the whole range of tolerances. The scalability of both solvers is similar for all three 533

test cases. ILVES-PC performs slightly better than P-LINCS for the two representative 534

proteins. P-LINCS and ILVES-PC require regular synchronization between threads, and 535

the size of their parallel tasks depends on the number of bonds of the molecule. Hence 536

the size of the test case is important for scalability. If the molecule is sufficiently small 537

and the number of cores is sufficiently large, then the parallel overhead will dominate 538

and no solver can be efficient. Conversely, if the molecule is sufficiently large compared 539

with the number of cores, then good parallel performance is not theoretically impossible. 540

6 Conclusions and future work 541

The constraint solver introduced in this article demonstrates that it is possible to 542

conduct efficient parallel simulations of polymers by utilising the chemical structure. 543

We have also presented arguments supporting that constraint equations must be solved 544

accurately, including the fact that the default configuration of popular MD packages 545

leads to situations where the constraint solver does not lead to converged results. 546

The introduced algorithm is well-suited for accurate calculations. It is faster than 547

state-of-the-art constraint algorithms for most of the analysed cases and equally fast for 548

all other cases. The use of Newton’s method ensures that we can reach high accuracy with 549

a small increase in the computational effort compared with low accuracy simulations. 550

Future stages of this project include tackling the case of imposing constraints on 551

H-bonds, the use of inexact Newton methods –such as symmetric approximations of the 552

Jacobian– in order to achieve higher computational efficiency, the extension of ILVES to 553

nucleic acids (ILVES-NA), MPI parallelization, SIMD vectorization as well as a general 554

version of ILVES which can calculate constraints in every molecule. 555
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80. This can become clearer with an example. Suppose the tolerance is τ = 10−4 and
the current error is 10−3. If we do one Newton step then we expect to new error
to be 10−6 because of the quadratic convergence. We terminate with an error that
is much smaller than the tolerance. Had we use a method with linear convergence,
then increase in accuracy would have been much smaller, so when we terminate
we are not that far below the threshold.

81. Here (as well as in some other statements throughout this article) the word
converged indicates that a tighter constraint tolerance leads to values of quantities
from the simulation which strongly –in a non-negligible manner– differ from the
corresponding values obtained using a loose tolerance. Hence non-converged does
not mean that the iterative algorithm (e.g. SHAKE) was unable to find a solution
to the equations.

82. Ruymgaart AP, Elber R. Revisiting Molecular Dynamics on a CPU/GPU system:
Water kernel and SHAKE parallelization. Journal of Chemical Theory and
Computation. 2012;8(11):4624–4636.

Supporting Information

S1File. Supporting Information of Accurate and efficient constrained molecular dynamics
of polymers through Newton’s method and special purpose code.
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