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ABSTRACT 16 
 17 
To survive, insects must effectively navigate odors plumes to their source. In natural plumes, 18 
turbulent winds break up smooth odor regions into disconnected patches, so navigators encounter 19 
brief bursts of odor interrupted by bouts of clean air.  The timing of these encounters plays a 20 
critical role in navigation, determining the direction, rate, and magnitude of insects’ orientation 21 
and speed dynamics. Still, disambiguating the specific role of odor timing from other cues, such 22 
as spatial structure, is challenging due to natural correlations between plumes’ temporal and 23 
spatial features. Here, we use optogenetics to isolate temporal features of odor signals, examining 24 
how the frequency and duration of odor encounters shape the navigational decisions of freely-25 
walking Drosophila. We find that fly angular velocity depends on signal frequency and 26 
intermittency – fraction of time signal can be detected – but not directly on durations. Rather than 27 
switching strategies when signal statistics change, flies smoothly transition between signal 28 
regimes, by combining an odor offset response with a frequency-dependent novelty-like 29 
response. In the latter, flies are more likely to turn in response to each odor hit only when the hits 30 
are sparse. Finally, the upwind bias of individual turns relies on a filtering scheme with two distinct 31 
timescales, allowing rapid and sustained responses in a variety of signal statistics. A quantitative 32 
model incorporating these ingredients recapitulates fly orientation dynamics across a wide range 33 
of environments. 34 
 35 
INTRODUCTION 36 
 37 
Olfactory navigation is an incredibly challenging task, owing to the complexity and variability of 38 
natural odor scenes. The distribution of odors in nature depends sensitively on the physical 39 
properties of the environment, such as airflow and proximity to surfaces and boundaries, creating 40 
a diversity of signals varying in their spatial and temporal statistics (Baker et al., 2018; Connor et 41 
al., 2018; Reddy et al., 2022). Animals such as insects must extract relevant odor information 42 
from these complex landscapes, and use it to inform rapid behavioral decisions to progress 43 
toward the odor source.  44 
 45 
In diffusion-dominating odor environments such as near food-laden surfaces, animals can locate 46 
odor sources by sampling concentration gradients temporally (Gepner et al., 2015; Gomez-Marin 47 
et al., 2011; Hernandez-Nunez et al., 2015; Schulze et al., 2015) and spatially (Borst and 48 
Heisenberg, 1982; Gaudry et al., 2013). In stronger airflows, further away from boundaries, and 49 
above rough terrain such as rocks or trees, complex airflows break up smooth odor regions into 50 
discrete packets and filaments swept along by the wind (Cardé and Willis, 2008; Celani et al., 51 
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2014; Connor et al., 2018; Crimaldi and Koseff, 2001; Murlis et al., 1992; Murlis et al., 2000; Riffell 52 
et al., 2008; Yee et al., 1993). As a result, animals experience discrete encounters with odor 53 
packets separated by blanks (moments when odor concentration is below detection threshold). 54 
The durations of these encounters can span a wide range of timescales (Celani et al., 2014). 55 
Under such conditions, insects navigate by orienting upwind within the odor and moving 56 
crosswind or downwind when the odor is lost, in an attempt to regain the plume (Kennedy and 57 
Marsh, 1974). Similar behaviors (with some variations between species) are observed in 58 
laboratory experiments where walking and flying moths (Baker and Haynes, 1989; Baker and 59 
Vickers, 1997; Cardé and Willis, 2008; Haynes and Baker, 1989; Kanzaki et al., 1992; Kennedy 60 
and Marsh, 1974; Mafra-Neto and Cardé, 1994; Vickers and Baker, 1994) and fruit flies (Alvarez-61 
Salvado et al., 2018; Budick and Dickinson, 2006; Demir et al., 2020; van Breugel and Dickinson, 62 
2014) are made to navigate straight odor ribbons. We recently discovered that flies can also detect 63 
the direction of motion of odor signals, by resolving inter-antennal concentrations differences over 64 
time. Odor motion provides a directional cue complementary to the wind, and is especially useful 65 
in turbulent plume navigation (Kadakia et al., accepted). In sum, despite variations between 66 
species and locomotive regimes, the general picture of insect odor navigation is that the wind 67 
(along with recently-discovered odor motion) indicate the direction in which to reorient, while the 68 
timing of odor encounters indicate when to reorient.  69 
 70 
Careful analyses of moth turning responses following odor encounters have implicated the 71 
frequency of odor encounters as a key driver of upwind progress (Kanzaki et al., 1992; Mafra-72 
Neto and Cardé, 1994; Vickers and Baker, 1994). Frequency-driven turning is also observed in 73 
walking flies navigating complex odor plumes when odor encounters are brief (~100 ms) and 74 
frequent (Demir et al., 2020). Conversely, flies experiencing longer and sparser odor encounters 75 
progress upwind by integrating the odor concentration over time – thus responding to odor 76 
intermittency or duration (Alvarez-Salvado et al., 2018; Bell and Wilson, 2016; Steck et al., 2012), 77 
rather than encounter onset time or frequency. Thus, insects are clearly able to sense and process 78 
various temporal features of the odor signal during plume navigation; moreover, this broad and 79 
versatile sensing capability has been shown theoretically to enable efficient source localization 80 
across a diversity of plume structures (Boie et al., 2018; Jayaram et al., 2022; Rigolli et al., 2022). 81 
Still, how these multiple features are precisely weighted within a single navigation strategy, and 82 
whether the strategy itself modulates as signal statistics change, remains unclear.  83 
 84 
In this study, we address these questions using an optogenetic assay developed in previous 85 
studies (Demir et al., 2020; Kadakia et al., accepted). We present spatially uniform but temporally-86 
structured fictive odor stimuli to freely-walking blind Drosophila melanogaster in a steady laminar 87 
flow. In addition to decoupling odor signal from wind, the spatially uniform stimulus removes both 88 
the effect of behavioral feedback on the received odor signal, and any bilateral differences 89 
between antennae in timing or intensity from the odor encounters (Borst and Heisenberg, 1982; 90 
Gaudry et al., 2013; Kadakia et al., accepted). Thus, flies must navigate using the temporal 91 
features of the odor signals and the fixed wind direction alone.  92 
 93 
Our main findings are the following. i) Fly angular velocity is controlled by the frequency and 94 
intermittency of odor encounters, but not their duration. ii) Flies demonstrated “novelty detection” 95 
in turn rate and turn speed: they responded more strongly to signal onset when the prior period 96 
without stimulus was longer than ~2 seconds. As in previous studies (Alvarez-Salvado et al., 97 
2018) we also observed an “offset response” in turning behavior, which peaks both at the end of 98 
a long odor encounter or a block of many encounters at high frequency or high intermittency. 99 
Importantly these two features combine to smoothly transition the behavioral response of the flies 100 
between low and high frequency regimes. iii) The upwind bias of turns (likelihood to orient upwind 101 
when turning) was independently modulated by frequency and intermittency of the signal. This 102 
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dependency resulted from a rapid increase in upwind bias at the onset of odor pulses, followed 103 
by a slower decay at the offset, and allowed for strong upwind responses across a wide range of 104 
temporally diverse odor environments. We incorporated these findings into a model combining 105 
novelty and offset responses together with a two-timescale integrator. This versatile but 106 
parsimonious model could recapitulate turn rate, turn speed, and upwind bias across the full 107 
spectrum of temporally diverse environments, thus unifying results from previous studies into one 108 
framework (Alvarez-Salvado et al., 2018; Demir et al., 2020; Jayaram et al., 2022). 109 
 110 
RESULTS 111 
 112 
An optogenetic setup to examine the olfactory response of free-walking flies to the 113 
temporal features of odor signals  114 
 115 
To investigate how fly navigation decisions depend directly on the temporal features of odor 116 
signals, we created an optogenetic stimulus (henceforth referred to as a ‘fictive’ plume) that had 117 
only a temporal component yet drove clear navigational responses. Using the wind tunnel walking 118 
assay previously described (Demir et al., 2020) (Figure 1A), we presented a temporally variable 119 
but spatially uniform optogenetic odor stimulus (Figure 1B) to freely-walking blind flies that 120 
expressed Chrimson in their olfactory sensory neurons (OSNs) (w;+;Orco-GAL4, w;gmr-hid;UAS-121 
20XChrimson), from here referred to as Orco>Chr mutants. The stimulus was presented in a 15s 122 
ON block, where the entire arena was illuminated with a uniform red light stimulus (same intensity 123 
as in (Kadakia et al., accepted)) and flashed regularly at a frequency of 2 Hz and duration of 0.05s 124 
(consistent with naturalistic complex plumes (Demir et al., 2020; Kadakia et al., accepted)), 125 
followed by a 15s OFF block with no stimulus. A steady unidirectional laminar wind was used as 126 
a directional cue for flies to follow. Wind speed was 150 mm/s, matching the wind speed in (Demir 127 
et al., 2020).  128 
 129 
In our previous study – which used an identical behavioral setup and genotype – we showed that 130 
optogenetically-active flies navigated straight ribbons and complex plumes similarly to real odors 131 
(Kadakia et al., accepted). Moreover, light-driven ORN firing responses were well-maintained 132 
within their expected physiological range (Kadakia et al., accepted). Here, to further confirm that 133 
our optogenetic stimulus drove responses similar to wildtype flies encountering a real odor plume, 134 
we examined fly orientation during stimulus presentation. We compared to previous studies in 135 
which wildtype Canton-S (CS) flies navigated two real odors: ethyl acetate (EA) and smoke (Demir 136 
et al., 2020). Indeed, flies responding to the optogenetic stimulus showed qualitatively similar 137 
navigational trends as flies experiencing real odor plumes, directing their orientation upwind (i.e. 138 
towards the fictive odor source) to a very similar degree (Figure 1C).  139 
 140 
To confirm that Orco>Chr mutants were orienting upwind due to the fictive plume stimuli and not 141 
some other confounding factor, such as ambient lighting in the experimental arena, we obtained 142 
the mean orientation of all trajectories during the ON block (3-12 s) for each environment (CS in 143 
EA, CS in smoke, Orco>Chr in fictive plume), along with the parental controls of the 144 
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optogenetically active line (w;+;Orco-GAL4, w;gmr-hid;20XUAS-Chrimson). Orco>Chr mutant 145 
responses were additionally measured in the absence of all-trans-retinal (ATR). We compared 146 
the mean orientation in these environments to the mean of uniformly distributed headings (which 147 

Figure 1: Optogenetic stimulation with high frequency fictive odor pulses drives similar navigation behaviors 
as real odor plumes. A. Top and side view of the fly walking assay. Red light (same intensity as in (Kadakia et al., 
accepted)) is projected from above as fictive odor stimuli, uniformly illuminating the entire arena with high temporal (< 
6 ms) precision. Wind speed is 150 mm/s like in (Demir et al., 2020). B. Four sequential ON and OFF blocks are 
presented to flies (15 s per block). During the ON block, flashes of red light  are presented with a given duration and 
frequency. No flashes are presented during the OFF block. C. Orientation of flies during the ON and OFF block, for 
odor plumes of ethyl acetate (EA; left column, orange) and smoke (middle column, blue) with turbulent wind (data 
from Demir et al. 2020) and fictive odor plume presentation at 2 Hz, 0.1 s (right column, red) with laminar wind. Black: 
mean response over all trajectories. Grey shade indicates SEM. Only walking flies (ground speed > 2 mm/s) were 
included. Canton-S flies were used for both smoke (114-282 trajectories per frame) and EA (243-582 trajectories per 
frame) plume presentation. w;gmr-hid/+;Orco-GAL4/UAS-20XChrimson mutants (60-99 trajectories per frame) were 
used for fictive odor plume presentation. We reflected flies orientation greater than 180° orientations were always 
between 0° (directly downwind) and 180° (directly upwind). Thus, a uniform spread of orientations results in an 
average orientation of 90°. D. Mean orientation response across all trajectories during 3-12 s of ON block. EA: 
Canton-S flies in turbulent ethyl acetate plume; Smoke: Canton-S flies in turbulent smoke plume. Orco>Chr: w; gmr-
hid/+; Orco-GAL4/UAS-20XChrimson in fictive plume. NO ATR: Orco>Chr mutant without feeding all-trans retinal, in 
fictive plume. GAL4 parent: w;+;Orco-Gal4, in fictive plume. UAS parent: w;gmr-hid;UAS-Chrimson, in fictive plume.. 
Ns are 918, 412, 144, 272, 126 and 114 trajectories respectively. E. Full range of optogenetic stimuli presented, 
varying in encounter frequency (0.2, 0.5, 1.0, 1.5, 1.75, 2, 2.5, 3, 4, 5 Hz) and encounter duration (0.02, 0.05, 0.10, 
0.25, 0.50, 1.00 s). Combinations of duration and frequency that created indeterminable flashes (i.e. intermittency >= 
1) were excluded.  
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due to the way we reflect orientations results in a mean of 90°-see Figure 1 caption) in both 148 
laminar and turbulent wind environments (Figure 1-Figure Supplement 1). During the ON block, 149 
both CS flies in EA or smoke and Orco>Chr mutants in the fictive plume oriented more upwind 150 
than crosswind (one-sample t-test, EA: 115.7°±1.4°, pval < 1e-6, Smoke: 130.6°±1.7°, pval < 1e-6 151 
Orco>Chr: 119.9°±2.9°, pval < 1e-6) (Figure 1D). In comparison, the orientation of both the UAS-152 
parental control line and the Orco>Chr mutant line without ATR did not differ from uniform 153 
orientation (UAS: 92.4°±3.5°, pval = 0.491, NO ATR: 92.2°±2.4°, pval = 0.343), (Figure 1D, grey, 154 
Figure Supplement 2). Interestingly, the GAL4-parental control line oriented more downwind 155 
than expected (79.1°±2.9°, pval = 0.0002), which we attributed to a mild influence of background 156 
visual stimuli, since this parent was not blind. 157 
 158 
The similarity in gross behaviors between wildtype flies navigating real odors and optogenetically 159 
stimulated flies navigating fictive odors indicate that spatially uniform, dynamic optogenetic stimuli 160 
can drive upwind naturalistic plume navigation. This is consistent with previous results that used 161 
real odors (Alvarez-Salvado et al., 2018), though an added benefit here is that bilateral information 162 
is entirely removed by using full-field optogenetic flashes. Temporal signal variation alone is 163 
enough to drive persistent upwind navigation, emphasizing the importance of temporal stimuli 164 
features in the absence of spatially-variable concentrations or local gradients. 165 
 166 
Upwind heading correlates with signal frequency and intermittency, but not duration 167 
 168 
Next, we asked how frequency, duration and intermittency modulate upwind heading. We 169 
generated 45 fictive odor environments with pulse durations between 0.02s and 1s, and pulse 170 
frequency between 0.2 Hz and 5 Hz (Figure 1E). Intermittency – the fraction of time signal is 171 
present – is equal to frequency multiplied by duration (Jayaram et al., 2022), and varied between 172 
0.004 and 0.875 (intermittency is bounded between 0 (signal is never present) and 1 (signal is 173 
always present)). Combinations that produced indeterminable encounters (i.e. intermittency ≥ 1) 174 
were excluded.  175 
 176 
Average upwind heading exhibited common trends across environments (Figure 2A). At ON 177 
block onset, flies oriented toward the upwind direction (180o) when the odor was present, and 178 
went downwind at odor offset, similar to behavior in real odor plumes (see Figure 1). For low 179 
frequencies, where there was sufficient time between encounter onsets to distinguish individual 180 
encounter responses (i.e. 0.2Hz, 0.5Hz), flies oriented upwind at each encounter onset, 181 
maintained their upwind orientation for the duration of the encounter, then oriented downwind at 182 
the end of the encounter. Beyond 1Hz, individual encounter responses were largely 183 
indistinguishable, but we observed that flies drove their orientation upwind for the duration of the 184 
ON block, and turned downwind at ON block offset. For low frequencies, average upwind 185 
orientation increased with duration, but this effect tapered beyond ~1Hz. Meanwhile, for a given 186 
pulse duration, mean orientation increased with frequency up to around 3Hz, before decreasing 187 
at very high frequencies. This aligns with previous studies that have shown that olfactory receptor 188 
neurons can respond to high frequencies (Fox and Nagel, 2021). 189 
 190 
To quantify how the frequency, duration, and intermittency of odor encounters influence upwind 191 
bias, we calculated the instantaneous angular velocity as a function of orientation at each time 192 
point during the ON block (Materials and Methods) (Figure 2B). Here, angular velocity was signed 193 
such that upwind turns were positive and downwind turns were negative. Average angular velocity 194 
was nearly zero when flies were oriented upwind or downwind, but became increasingly positive 195 
with signal frequency for those oriented crosswind, up to around 3 Hz. Similar trends were found 196 
with intermittency, but not duration (Figure 2, Figure Supplement 1A-1B). Since these trends 197 
were most apparent when flies were oriented crosswind (grey region in Figure 2B), we pooled  198 
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 200 
the angular velocities over all instances in which flies were oriented within a 45° sector around 201 
the crosswind (90°) direction, and calculated correlations with signal frequency, duration, or 202 
intermittency (Figure 2C). We found a significant positive correlation between angular velocity 203 
and either frequency (Pearson’s correlation coefficient, R=0.59, p<0.001) or intermittency 204 
(R=0.55, p<0.001), but not duration (R=0.10, p=0.496). This result indicated that flies use odor 205 
frequency and intermittency to drive upwind motion, prompting us to examine behavioral models 206 
that respond to these particular signal features. 207 
 208 
Turn dynamics exhibit novelty-response and offset-response 209 
 210 
Fly orientation results from the cumulative effect of individual turns. To understand how temporal 211 
features of the odor signal drive turn dynamics, we first explored how the average angular speed 212 
(the magnitude of the angular velocity) was modulated during the signal block across 213 
environments (Figure 3A). For clarity, we focus on four example odor environments chosen from 214 
the 45 environments shown in Figure 2. We chose these 4 cases to illustrate the different signal 215 
and response regimes present in the full dataset (Figure 3 Figure Supplement 1).  216 
 217 
In low frequency and intermittency environments (e.g. 0.2Hz, 1s), where responses to individual 218 
odor encounters could be clearly resolved, the angular speed was dynamic and peaked at each 219 
encounter onset (Figure 3A, Figure 3 Figure Supplement 1). For higher frequency 220 
environments >~1.5 Hz, angular speed peaked sharply only at the onset of the ON block, rather 221 
than at each individual encounter. It quickly dropped towards the pre-stimulus baseline and 222 
remained roughly steady for the remainder of the ON block. We first wondered whether this was 223 
because in higher frequency environments, flies had maintained their upwind orientation upon 224 
receiving new pulses and hence did not need to reorient upwind. However, we found that in higher 225 
frequency environments, even flies facing crosswind or downwind at the onset of later pulses did 226 
not show large changes in mean angular speed (Figure 3, Figure Supplement 2).This suggests 227 
a type of “novelty response”, where angular speed will spike at the onset of a new encounter 228 
provided the previous odor encounter was in the sufficiently distant past. In high intermittency 229 
environments e.g. 3 Hz, 0.25 s, we observed a second large, sharp peak in angular speed at the 230 
end of the ON block, which was also seen at the end of individual, long duration encounters (e.g. 231 

Figure 2: Flies use the frequency and intermittency of odor signals to navigate upwind across temporally 
diverse fictive odor environments. A. Population mean orientation response across 45 fictive odor environments. 
Each environment projected stimuli with a fixed duration and frequency. Each row represents a different tested 
frequency: 0.2 Hz, 0.5 Hz, 1 Hz, 1.5 Hz, 1.75 Hz, 2 Hz, 2.5 Hz, 3 Hz, 4 Hz and 5 Hz, from top to bottom. Each 
column represents a different duration: 0.02 s, 0.05 s, 0.1 s, 0.25 s, 0.5 s and 1 s from left to right. Red bars denote 
the signal simultaneously encountered by all flies within an experiment (Materials and Methods). Upwind is 180°, 
downwind is 0°. Grey-blue dashed line: crosswind direction (90°). Black: Population mean orientation; orientation 
was flipped over 180° as before. Grey shading: SEM for each time point (recording rate = 60 Hz). Between 176 
and 407 trajectories were recorded per environment. Between 72 and 237 trajectories were recorded per time point 
across all environments. B. Instantaneous angular velocity of flies as a function of their orientation during the ON 
block (0-15 s). Upwind is at 180°, downwind at 0°. Orientation was split into 8 bins with width 22.5°. Vertical dashed 
line indicates crosswind orientation 90°. Positive (negative) angular velocities correspond to upwind (downwind) 
turning. Black horizontal line at 0 °/s indicates no change in orientation. Color indicates environment frequency; 
yellow: low frequencies (0.2 Hz, 0.5 Hz), orange: medium frequencies (1 Hz, 1.5 Hz, 1.75 Hz, 2 Hz, 2.5 Hz, 3 Hz), 
red: high frequencies (4 Hz, 5 Hz). C. Mean angular velocity of individual flies oriented within the crosswind range 
(90°± 22.5°; grey shading in B) over duration of ON block (0-15 s) as a function of environment frequency (left), 
duration (middle) and intermittency (right). Each point represents a different environment with defined frequency 
and duration. Error bars: SEM for that environment. Dotted grey line represents no mean change in orientation. ρ 
value is the Pearson’s correlation coefficient between mean angular velocity and the temporal feature (frequency, 
duration, intermittency), obtained from linear least-squares regression. Correlations with environment frequency 
and intermittency were significantly different from 0 (frequency: ρ=0.63, p < 0.001; intermittency: ρ=0.55, p < 0.001). 
Correlation with duration was not significantly different from 0 (ρ=0.07, p = 0.633).  
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0.2Hz, 1s) similar to previous observations (Alvarez-Salvado et al., 2018). These data suggest 232 
that turn dynamics exhibit novelty detection and offset-response, and that they are modulated by 233 
both odor frequency and intermittency. While odor offset responses have been seen and 234 
quantified before (Alvarez-Salvado et al., 2018), the “novelty response” following an unexpected 235 
odor encounter has not yet been characterized, though it is also observable in previous studies 236 
(see fig 1F, 2A in (Alvarez-Salvado et al., 2018)). 237 
 238 

To unravel the decisions underlying these angular speed dynamics, we turned from population 239 
averages to individual trajectories. At the level of individual trajectories, changes in angular speed 240 
exhibited large, discrete jumps (Figure 3B), that occurred both during ON and OFF blocks across 241 
all odor environments. Angular speed also underwent small fluctuations that we posited to occur 242 
from the fly’s walking gait (DeAngelis et al., 2019) and measurement noise. Following previous 243 
work (Cruz et al., 2021; Dan et al., 2021; Demir et al., 2020), we attributed the large angular 244 
changes to turn events, i.e. intentional, large-scale reorientations that align the navigator’s 245 

Figure 3: Flies change orientation in discrete turn events modulated by the signal. A. Population mean 
angular speed during stimulus presentation for four conditions – 0.2 Hz, 1 s (left), 0.5 Hz, 0.25 s, (middle-left), 
1.5Hz, 0.1s (middle right) and 3 Hz, 0.25 s (right) – obtained from the instantaneous absolute angular velocity of 
tracked flies (Materials and Methods). Black line: population mean at each time point. Grey shading: SEM at each 
time point. Red bars: stimulus. 0.2 Hz, 1 s, n=93-154 trajectories per time point. 0.5Hz, 1s, n=86-130 trajectories. 
1.5Hz, 0.1s, n=72-120 trajectories.  3 Hz, 0.25 s, n=105-181 trajectories. B. Definition of turn and fixation events. 
Black: angular speed of an individual fly. Turns must have a minimum angular speed of 25 deg/s (green dotted line; 
see Figure 3, Supplement 2A, 2B) and a minimum duration of 0.18 s (see Figure 3, Supplement 2C, 2D). C. 
Distribution of fixation durations across all 45 frequency-duration experiments at different times during the 
experiment. Fixation durations are roughly exponentially distributed with a rate (slope) that depends on signal timing 
(see Figure 3, Supplement 3). Orange: turn rate during ON block onset (0-0.4 s). Pink: turn rate at OFF block 
onset (from tlast to tlast+0.5 s) where tlast is the time at the end of the last stimulus of a ON block. Purple: baseline 
turn rate during OFF block (20-25 s). Lines are PDFs. Light shade indicates standard error estimated using 
bootstrapping (repeats = 1000). D. Same as C but for the distribution of turn durations. Turn duration distributions 
do not vary much over time E. Distribution of mean angular speed during turns across all 45 frequency-duration 
experiments at different times. Colors and shading are the same as in C. The shifting mean indicates that turns are 
faster during ON block onset and offset as compared to the baseline turn speed when no stimulus is present. 
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heading to the direction of interest. We defined turn events by setting a threshold on angular 246 
speed. Events above threshold were called “turns”, those below threshold were called “fixations”. 247 
The threshold (25 deg/s) was chosen to remove small fluctuations that contribute little to the 248 
overall change in heading, but keep large angular changes that drive navigation behaviors. We 249 
also set a minimum turn duration of 0.18s to remove very short fluctuations in angular speed that 250 
were potentially artefacts of the tracking (Figure 3 - Figure Supplement 3 and Materials and 251 
Methods).  252 
 253 
Having defined turn and fixation events, we examined how the rate, duration, and angular speed 254 
of these discrete events, which modulate total angular speed, are influenced by signal statistics. 255 
To obtain the turn rate, we note that >95 % of fixation events (times between turns) lasted less 256 
than 1.5 s (Figure 3, Figure Supplement 4A,4B), and within this range, the distribution of fixation 257 
events appeared approximately exponential (Figure 3, Figure Supplement 4C), suggesting that 258 
turn events obeyed a Poisson process. The slope of the distribution, i.e. the turn rate, changed 259 
with time (Figure 3C). It was high at the onset (4.92 ± 0.18 turns/s) and offset (4.18 ± 0.09 turns/s) 260 
of ON blocks, but lower (3.19 ± 0.02 turns/s) during OFF blocks. Turn durations also appeared 261 
exponentially distributed, but with a rate that varied less over time (Figure 3D). Finally, the mean 262 
turn speed exhibited a unimodal distribution that resembled a Gamma distribution with mean that 263 
strongly depended on the signal (Figure 3E): higher at the onset and offset of the ON block, and 264 
lower otherwise. Together, this suggested that angular speed dynamics depended more on 265 
changes in turn rate and turn speed than on temporal variations in turn duration.  266 
 267 
To get a qualitative understanding of how turn rate and speed depend on the signal, we plotted 268 
them as a function of time (Figure 4A). We observed a similar novelty response and offset 269 
responses as we observed for angular speed (Figure 3A): turn rate and turn speed spiked at 270 
each pulse onset, however for the higher frequencies the responses were stronger at the onset 271 
of the ON block than for the subsequent odor encounters. At high intermittencies there was also 272 
an off-response at the offset of the ON block (Figure 4A grey, Figure 4 Figure Supplement 1, 2 273 
grey). We conclude that turn dynamics are mainly controlled by signal-driven modulations of the 274 
turn rate and turn speed, which exhibit both a novelty-response and offset-response. 275 
 276 
To model turn rate and turn speed at signal offset, we defined an intermittency-dependent offset 277 
response OFF(t) analogous to the OFF response reported by (Alvarez-Salvado et al., 2018), who 278 
used real odors to stimulate flies in a setup similar to ours. The OFF(t) function computes the 279 
difference between two integrative filters which decay at different timescales, one long and one 280 
short, producing a transient spike after long duration encounters or higher intermittency signals 281 
(Figure 4B) (Materials and Methods). This makes it a good candidate for modeling the observed 282 
offset behavior in turn rate and angular speed.  283 
 284 
For the frequency-dependent novelty detection, we defined the function N(t) that would spike at 285 
pulse onsets and then decay until the next pulse onset. The height of a spike increases with the 286 
time since the last pulse onset (i.e. when a pulse has more “novelty” to it):  287 

𝑁(𝑡) = 𝐴(𝑡)	𝑒
!!"!#$% , 288 

 289 
where 𝑡" is the time of the latest pulse onset, and 𝜏# is the decay timescale of the response to 290 
individual odor pulse. 𝐴(𝑡) controls the height of the response to each pulse. It is maximal (= 1) 291 
for the initial odor encounter but decays for successive encounters that occur within a novelty 292 
timescale 𝜏$ (see Materials and Methods). Odor encounters that occur after a time 𝜏$ are treated 293 
as novel signals and elicit maximal response again (Figure 4B).  294 
 295 
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 296 
Figure 4: Novelty detection and offset response together can predict turn rate, angular speed given turning, 297 
and angular speed dynamics. A. Population mean turn rate (top) and mean turn speed (bottom) from four of the 45 298 
odor environments: 0.2 Hz 1 s, 0.5 Hz 0.25 s, 1.5 Hz 0.1s s, 3 Hz 0.25 s. Grey shading: mean ± SEM. We used a 0.25s 299 
sliding window shifted by 1 frame (0.016s) to obtain turn rate and turn speed (see Materials and Methods). Pink line: 300 
mean predicted turn rate over time (𝜆(𝑡), top) and mean predicted turn speed over time (bottom). Parameters of 301 
equations (1-3) were estimated using Maximum Likelihood Estimation (Materials and Methods). Pink shading: standard 302 
deviation obtained from repeated simulation of model prediction (Materials and Methods and Figure 4 Figure 303 
Supplement 1 caption). Red bars:  fictive odor pulses. We had 8-103 turns per frame across all 45 odor environments. 304 
B. Model of turn dynamics. Flies initiate discrete turn events (green) with a defined mean turn speed. Turn initiations 305 
are modelled as an inhomogeneous Poisson process with rate  𝜆(𝑡) calculated as a linear combination of a baseline 306 
turn rate, a novelty detector (N(t), blue), and an offset detector (Off(t), yellow) (Equation 2). Mean turn speed was 307 
modelled similarly (Equation 3). Fits and their errors are shown in pink in A. C. Grey: Mean angular speed of the flies. 308 
Grey shade: mean ± SEM. Pink: model prediction for the mean, pink shade: mean ± SEM.  309 
 310 
Given these two response functions, 𝑂𝐹𝐹(𝑡) and 𝑁(𝑡), we attempted to capture the dynamics of 311 
both the turn rate and turn speed by simple linear combination. We modeled the turn rate 𝜆(𝑡) as  312 
 313 
 314 
 315 
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𝜆(𝑡) = 𝜆% + 𝜆&𝑁(𝑡) + 𝜆'𝑂𝐹𝐹(𝑡) 316 
 317 
and the mean turn speed 𝜇(𝑡) as   318 
 319 

𝜇(𝑡) = 𝜇% + 𝜇&𝑁(𝑡) + 𝜇'𝑂𝐹𝐹(𝑡), 320 
 321 
where 𝜆( and 𝜇( for 𝑖 = 0, 1, 2 are constant parameters. We note that turn duration was weakly 322 
modulated by the signal statistics (Figure 4, Figure Supplement 3), but the modulation was 323 
much smaller compared to modulations in turn rate and turn speed. Thus, for simplicity, we treated 324 
turn duration as exponentially-distributed with fixed parameters determined from data (Figure 325 
3D). We first estimated the parameters for 𝜆(𝑡) using maximum likelihood estimation (see 326 
Materials and Methods), carrying out the estimation by pooling data from all 45 stimulus 327 
environments. This fixed 𝜆%, 𝜆&, and 𝜆', as well as the timescales involved in the 𝑁(𝑡) and 𝑂𝐹𝐹(𝑡) 328 
responses (Materials and Methods, Table 1). Then, holding the timescales fixed, we estimated 329 
the 𝜇 coefficients, again fitting to the data pooled from all 45 environments (Materials and 330 
Methods, Table 1). Our model captured both turn rate and turn magnitude well, albeit slightly 331 
underestimating both at lower frequencies (Figure 4A, pink, Figure 4 Figure Supplements 1,2 332 
pink).  333 
 334 
Up to this point, our model captures how the stimulus modulates the rate and magnitude of 335 
discrete turn events. These two aspects, along with turn duration, which we held fixed, should 336 
predict angular speed across environments with diverse signal frequency and intermittency. To 337 
test this, we simulated virtual agents enacting our dynamic model. Agents executed turns via an 338 
inhomogeneous Poisson process following Equation 2. The mean angular speed of each turn was 339 
sampled from a Gamma distribution with signal-dependent mean (Equation 3 and Materials and 340 
Methods). The turn duration was sampled from a fixed exponential distribution (Materials and 341 
Methods). In our dataset there are at most 240 fly trajectories at any given time. Therefore, we 342 
simulated 240 agents in each of the 45 environments to get a population-averaged trace, and 343 
then repeated this process 10,000 to get an estimate of the model-predicted mean and error. To 344 
quantify model accuracy, we calculated the ratio of the root-mean-square error of the model fit to 345 
the data standard deviation (NR score) across all environments (Geffen et al., 2009; Martelli et 346 
al., 2013). An NR score of <1 indicates a model prediction within the noise of the data. The NR 347 
score across all 45 environments was 0.16, indicating that the model recapitulates the dynamics 348 
of the fly angular speed well across experiments, albeit with some underestimation at the lowest 349 
frequencies (Figure 4C; predictions for all 45 environments are shown in Figure 6A below).  350 
 351 
The model reproduces two important aspects of the turning dynamics and its dependency on 352 
signal frequency and intermittency: a varying turn rate at the onset and offset of longer odor 353 
encounters, and a roughly constant turn rate when the frequency of encounters is high (after the 354 
initial spike), both of which have been observed experimentally in separate paradigms 355 
investigating these distinct odor environments (Alvarez-Salvado et al., 2018; Demir et al., 2020). 356 
 357 
 358 
Upwind bias responds to odor signal with two timescales: a fast rise time and a slow decay  359 
 360 
Up until now, we are able to describe fly angular speed dynamics well, through a dynamic turn 361 
rate and turn speed. In order to describe fly orientation, we must also understand the direction of 362 
these turns, controlled by the upwind bias – the probability that a given turn is upwind (Demir et 363 
al., 2020). To illustrate how the upwind bias depends on signal, we plotted it in time (Materials 364 
and Methods), finding that in general it was dynamic and high during the ON block, but otherwise 365 
slightly below 0.5 (Figure 5A, grey, Figure 5 Figure Supplement 1 grey). Unlike the turn rate 366 
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and turn speed, upwind bias also depended on fly orientation, and was largest for crosswind-367 
facing flies (Figure 5B).  368 
 369 
Following our previous work (Demir et al., 2020), we model upwind bias 𝐵(𝑡) as a sigmoid (Figure 370 
5C): 371 
 372 

𝐵(𝑡) =
1

1 + exp8−:𝑎% + 𝑔	𝑢(𝑡)> ⋅ sin' 𝜃D	
 373 

 374 
where 𝑎% represents a baseline bias (i.e. when no signal is present), and the sin' 𝜃 term ensures 375 
that the bias is maximal at crosswind angles (Figure 5C). 𝑢(𝑡) is the output of a signal processing 376 
model and 𝑔 is a gain factor controlling how much the signal affects upwind bias. To best capture 377 
the upwind bias, we consider four simple signal processing models 𝑢(𝑡) = 𝐼(𝑡), 𝐹(𝑡), 𝐻(𝑡), 𝑅(𝑡) 378 
hereafter called: intermittency sensing 𝐼(𝑡), frequency sensing 𝐹(𝑡), dual-frequency-intermittency 379 
sensing 𝐻(𝑡) and two-timescale integrator 𝑅(𝑡). The intermittency sensing model exponentially 380 
filters the binary signal 𝑆(𝑡) with timescale 𝜏: 381 

 382 

𝐼(𝑡) = ∫ &
)
𝑒!

&!"!'(
$)

*
% 𝑆(𝑡+)𝑑𝑡′  383 

 384 
By construction, 𝐼(𝑡) responds uniquely to signal intermittency (Jayaram et al., 2022). The 385 
frequency sensing model 𝐹(𝑡) was proposed in (Demir et al., 2020). Here, the duration of the 386 
signal is ignored, and the signal is converted to a time-series 𝑤(𝑡) of delta function spikes at the 387 
onset of each odor encounter. The onsets are exponentially filtered to produce the output, which 388 
is effectively a running estimate of odor encounter frequency: 389 
 390 

𝐹(𝑡) 	= 	M 𝑒!
,*!*'-
)*

*

%
𝑤(𝑡+)𝑑𝑡′ 391 

 392 
The third model examined was a dual frequency and intermittency sensing model 𝐻(𝑡), outlined 393 
in (Jayaram et al., 2022). This model linearly combines I(t) and F(t), but the contributions of F(t) 394 
and I(t) are independently weighted: 395 
 396 

𝐻(𝑡) = 𝑔. ⋅ 𝐼(𝑡) +	𝑔' ⋅ 𝐹(𝑡) 397 
 398 
Here 𝑔. and 𝑔/ are gain factors. In this case the gain 𝑔 in Equation (4) is set to be 1 and the same 399 
timescale is assumed for 𝐼 and 𝐹. Finally, in the two-timescale integrator model, the response 400 
𝑅(𝑡) adapted to the signal with one timescale 𝜏0 when the signal turned on, but another timescale 401 
𝜏# when the signal was lost. This is expressed mathematically as: 402 
 403 

𝑑𝑅
𝑑𝑡

=
1
𝜏0
⋅ :𝑆(𝑡) − 𝑅(𝑡)>	 404 

when the signal is on and   405 
 406 

𝑑𝑅
𝑑𝑡

=
−1
𝜏#

⋅ 𝑅(𝑡) 408 

 409 
 407 

(5) 

(6) 

(7) 

(8) 

(9) 
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when no signal is present. This model always responds to signal intermittency, but also responds 410 
to frequency independently, up to frequencies of &

)%
, provided 𝜏0 ≪ 𝜏# (see Materials and 411 

Methods). Equations (4-9) define 4 alternative models for the upwind bias. Together with the turn 412 
dynamics model described in the previous section, this provides us with 4 alternative models to 413 
predict fly orientation dynamics. 414 

  415 
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Figure 5: Comparison of flies orientations with simple models suggests that upwind bias is modulated over 416 
two timescales. A. Probability to turn upwind given turning (i.e. upwind bias) as a function of time for the same 4 417 
environments as in Figure 3A (grey) and predictions from a two-timescale integrator with an instantaneous rise 418 
timescale (purple). Experimental upwind bias is estimated using a 0.25s sliding window (Materials and Methods). B. 419 
Upwind bias vs orientation at two different signal times, across all 45 fictive odor environments. 0 degrees denotes 420 
downwind facing flies; 180 degrees denotes upwind facing flies. During the signal (times when the fictive odor flashes 421 
were on), turns tend to be oriented upwind with crosswind-facing flies showing the strongest bias (red). When there is 422 
no signal present (20s-30s, i.e. last 10s of the OFF block), flies tend to turn downwind and the bias is strongest for 423 
crosswind-facing flies (black). Dashed purple: model fit for upwind bias vs orientation when there is no signal.  C. A 424 
model for turn bias suggested by the data. We use a sigmoidal form as in (Demir et al., 2020; Jayaram et al., 2022) 425 
where the likelihood to turn upwind given turning increases with 𝑅(𝑡), the two-timescale integrating response with an 426 
instantaneous rise timescale and finite decay timescale, while the sin+ 𝜃 factor ensures that the bias is maximal for 427 
crosswind orientations and suppressed at upwind or downwind orientations. D. Comparison of prediction from the four 428 
signal processing models in the same four odor environments as in panel A. Grey: mean fly orientation. Grey shading: 429 
the standard mean error of the experimental response data. Color: best prediction for each model (Parameters in 430 
Materials and Methods, Table 1). Yellow: best prediction of intermittency-sensing model 𝐼(𝑡), blue: best predition of 431 
frequency-sensing model 𝐹(𝑡), green: best prediction of dual intermittency and frequency sensing model 𝐻(𝑡), purple: 432 
best prediction of two-timescale integrating model 𝑅(𝑡). Black dashed line indicates crosswind orientation at 90°. Scales 433 
for time and orientation are given by the horizontal and vertical black solid bars respectively. NR scores are calculated 434 
using all 45 environments.  435 
 436 
 437 
 438 
To find out which of these 4 models best describes fly behavior, we fit all of them to data. To 439 
constrain 𝑎% we took advantage of the fact that the upwind bias returns to baseline within a couple 440 
of seconds following the offset of the ON block (Figure 5A, grey, Figure 5 Figure Supplement 441 
1 grey). Accordingly, we estimate 𝑎% by using the last 10s of the OFF block (Figure 5D, black) to 442 
fit Equation (4) with 𝑢(𝑡) = 0 (Figure 5A, purple). To estimate the remaining parameters we 443 
simulated stochastic agents. Turn initiation, speed and duration were simulated as explained 444 
above using the best fit parameter values extracted from the analysis in the previous section. Turn 445 
bias parameters were estimated using Equation (4) to generate a stochastic turn direction for 446 
each turn executed by the agents. For each environment, 240 sample trajectories were 447 
generated. We constrained the parameters by minimizing the mean squared error between the 448 
mean orientation of agents and flies (Materials and Methods).  449 
 450 
We found that the two-timescale integrator model 𝑅(𝑡) best fit the data across all environments 451 
(Figure 5D). For the intermittency sensing model (𝐼(𝑡), overall NR = 0.27, the optimal 452 
parameters	𝜏. = 0.04s, 𝑔 = 12.6) predicted well the response for long encounters or lower 453 
frequencies, but underestimated responses at higher frequencies or lower durations, and 454 
overestimated the response at the highest intermittencies (Figure 5D, yellow). Conversely, the 455 
frequency sensing model (𝐹(𝑡), overall NR = 0.29; best fit parameters 𝜏/ = 0.08s, 𝑔 = 9.3) 456 
exhibited the opposite trend: satisfactory fits for frequencies > ~1.5 Hz, but clear underestimates 457 
for lower frequencies (Figure 5D, blue). This suggested that a simple sum of these models might 458 
resolve these individual failure modes. Indeed, the dual-frequency-intermittency model was more 459 
accurate overall (𝐺(𝑡), NR = 0.25), and with optimally fit gains 𝑔. = 2.7, 𝑔/ = 3.2 and timescale 𝜏1 460 
= 0.1s, captured the mean and dynamics the orientation response across a range of odor 461 
environments (Figure 5D, green). Still, it underestimated the response at low frequencies < 1.5 462 
Hz. The two-timescale integrator model, however, predicted the mean orientation responses 463 
across all panels better (𝑅(𝑡), NR = 0.20) than the than the dual-frequency-intermittency model. 464 
The optimally fit rise time for the response at signal onset was almost instantaneous (𝜏0 = 0.01s-465 
-Materials and Methods for details about this value), whereas the decay timescale was much 466 
longer (𝜏# = 1s).  We also verified that the two-timescale integrator models with best-fit parameter 467 
values reproduces upwind bias in the data (Figure 5A, purple).  468 
 469 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.28.509840doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509840
http://creativecommons.org/licenses/by/4.0/


 15 

We conclude that models that combine frequency and intermittency sensing to determine upwind 470 
bias perform better than single-sensor models (Jayaram et al., 2022). However, a linear 471 
combination of the frequency and intermittency sensors is not sufficient. The data is better 472 
reproduced by sensor that responds to these features through integrating the odor signal over 473 
two different timescales.  474 
 475 
A single model captures general trends in angular speed and orientation across a broad 476 
spectrum of temporally diverse fictive odor environments  477 
 478 
To better examine the limits of our model, we now plot mean angular speed and orientation 479 
predictions on top of the data across all 45 environments. As mentioned above, angular speed is 480 
predicted well across most environments (Figure 6A NR=0.16) and the model captures the 481 
variation of the turning dynamics with respect to signal frequency and intermittency, recapitulating 482 
differences previously seen between experiments that explored different signal parameter 483 
regimes (Alvarez-Salvado et al., 2018; Demir et al., 2020).  484 
 485 
The model also captures the general trend in orientation (Figure 6B NR=0.20), albeit less well 486 
than for angular speed. This is to be expected given the cumulative effect that errors in the 487 
prediction of angular speed and turning bias have on orientation. Maxima in mean fly orientation 488 
were underestimated at low frequencies, but overall general trends across all 45 panels were 489 
captured.  490 
 491 
We conclude that flies navigate diverse temporal statistics by: 1) modulating their turn decisions 492 
and turn speed via a frequency-dependent novelty detector and an intermittency-dependent offset 493 
detector of odor signals; and 2) biasing the orientation of these turns using a response function 494 
that integrates the signal over two timescales, a very fast rise timescale (tens of ms) and a slow 495 
decay timescale (seconds).  496 
 497 
DISCUSSION 498 
 499 
 500 
It is well-known that animals from crabs (Keller and Weissburg, 2004) to moths (Vickers and 501 
Baker, 1994) and Drosophila (Sehdev et al., 2019b; van Breugel and Dickinson, 2014) use various 502 
temporal features of olfactory stimuli to modulate navigation. Previous studies in walking flies 503 
have shown that turns can be modulated by the frequency of odor encounters in complex plumes, 504 
and by encounter duration in low frequency environments (Alvarez-Salvado et al., 2018; Demir et 505 
al., 2020; Jayaram et al., 2022). Here we carefully examined the transition between these two 506 
regimes.  To isolate temporal features from spatial information such as the spatial structure of 507 
odor encounters, local odor gradients, and turbulent wind structure, we used optogenetics. This 508 
allowed us to probe a broad range of odor frequency and durations.  509 
 510 
A key finding of this study is that a model incorporating both a frequency-dependent novelty 511 
response (this study) and a previously observed intermittency-driven offset response (Alvarez-512 
Salvado et al., 2018) can successfully describe the dynamics of turns across the spectrum of 513 
temporally diverse environments studied. This single model predicts that in environments with 514 
high odor intermittency, the turn rate is dynamic and spikes at the encounter offset, as seen in 515 
(Alvarez-Salvado et al., 2018), whereas in environments of high frequency odor encounters, the 516 
turn rate remains roughly constant, as seen in (Demir et al., 2020), after the initial response to the 517 
first encounter. Although the novelty response was not observed in (Demir et al., 2020), such a 518 
feature was likely highlighted in our current study due to all flies receiving identical odor stimuli 519 
simultaneously.   520 
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 531 
Figure 6: A single model with fixed parameters captures general trends in angular speed and orientation 532 
across a spectrum of temporally diverse fictive odor environments. A. Population mean angular speed (grey) 533 
and model predictions (pink). Grey shading denotes standard error of the mean while pink shading denotes simulated 534 
standard deviation (see Materials and Methods). Trends in population angular speed, which is modelled as the result 535 
of dynamic turn rates and mean turn angular speeds (Equations 2 and 3, respectively), are well captured by the 536 
model across all 45 experiments. B. Population mean orientation (grey) and standard error (grey shading) along with 537 
model predictions (purple) and estimated model errors (purple shading). 180 degrees is upwind, 90 degrees is 538 
crosswind and 0 degrees is downwind. Dashed blue line indicates 90 degrees. Model orientation is the result of 539 
simulated turns occurring with dynamic rates (Equation 2) and average angular speeds (Equation 3) as well as a 540 
dynamic bias towards the upwind direction (Equation 4). We see that general trends and mean values across all 45 541 
different environments are well-approximated by our model. Number of trajectories per time point is the same as in 542 
Figure 2A.  543 
 544 
 545 
The novelty response reveals that after ~2s of no stimulus a fly is very likely to execute a large 546 
turn in response to a new odorant encounter, whereas more frequent encounters are not as likely 547 
to trigger such a deterministic response. In turbulent odor plumes, times between encounters 548 
(blank times) are power-law distributed and odor packets tend to arrive in clumps (Celani et al., 549 
2014; Connor et al., 2018; Murlis et al., 2000). Thus, even within a plume a fly may not experience 550 
any odor packet for an extended period of time. It would be interesting to compare this novelty 551 
timescale with the distribution of blank times and clumps durations in natural plumes. Flying flies 552 
also experience very different signal statistics from walking flies, which begs the question of 553 
whether this novelty timescale is the same in flying flies. The observed spikes in turn rate and 554 
turn speed are also transient, decaying with a timescale of about 0.5 s. Probing the basis of this 555 
novelty response and how these observed timescales emerge from the neural circuitry could be 556 
a fruitful avenue for future study. It would also be insightful to investigate theoretically the 557 
optimality of varying turn rate and turn speed in such a way--whether modulation with this novelty 558 
response and offset response is optimal for navigation success across a range of temporally 559 
diverse environments.  560 
 561 
In addition to the modulation of turn rate and turn speed, another important finding of this study is 562 
that the likelihood for a turn to be oriented upwind increases with a very fast timescale (fit to be 563 
roughly 10ms) at signal onset and decays with a slower timescale of roughly 1s. We show 564 
(Materials and Methods) that as a result, upwind bias increases independently with both signal 565 
frequency and intermittency, thus allowing for a sustained upwind bias across environments. The 566 
response to both frequency and intermittency is largely consistent with previous findings that 567 
intermittency dominates upwind motion in high-duration, low frequency environments whereas 568 
frequency dominates in low-duration, high frequency environments (Alvarez-Salvado et al., 2018; 569 
Demir et al., 2020; Jayaram et al., 2022).  570 
 571 
The multiple timescale integration observed here in fly behavior is within the range of the fast and 572 
precise processing capabilities of the Drosophila olfactory circuit. Drosophila ORNs process 573 
signal as fast as 100 Hz (Schuckel et al., 2009).  This information is preserved downstream where  574 
2nd-order projection neurons (PNs) encode a broad range of signal frequencies via multiple post-575 
synaptic currents (Nagel et al., 2015) (Fox and Nagel, 2021; Fulterer et al., 2018; Pooryasin et 576 
al., 2021). These features enable rapid behavioral responses (~50ms) (Bhandawat et al., 2010). 577 
A recurring theme in Drosophila temporal odor processing, both in behavior and circuitry, is the 578 
importance of two distinct timescales. At the first processing relay, ORNs synapse onto PNs with 579 
two kinetically distinct fast and slow postsynaptic currents which promote a wide range of 580 
frequency transmission (Nagel et al., 2015) and promote robust navigation of simulated flies 581 
across environments with diverse temporal statistics (Jayaram et al., 2022). Our model of fly 582 
turning exhibit similar fast and slow timescales: the turning bias increases rapidly ~10ms at odor 583 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.28.509840doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509840
http://creativecommons.org/licenses/by/4.0/


 19 

onset but decays slowly ~1s at odor offset. Moreover, our analysis shows that, for a simple 584 
integrating response to increase independently with frequency and intermittency, it is necessary 585 
for the rise timescale to be faster than the decay timescale.  586 
 587 
Drosophila OSNs adapt their activity to both the mean and variance of fluctuating odor stimuli 588 
(Gorur-Shandilya et al., 2017; Martelli et al., 2013; Martelli and Fiala, 2019; Nagel and Wilson, 589 
2011), which aids preservation of both response dynamics (Martelli et al., 2013) and odor 590 
encounter timing in OSN spiking (Gorur-Shandilya et al., 2017; Kadakia and Emonet, 2019). Here 591 
we used optogenetics to drive behavior, thus bypassing the part of the ORN adaptation dynamics 592 
that takes place upstream of the firing machinery (Gorur-Shandilya et al., 2017; Nagel and Wilson, 593 
2011). In a previous paper that used the exact same experimental setup and light intensity, we 594 
verified that the type of stimuli used here drives ORN responses within their physiological range 595 
and that fly behavior resembles that in real odor plumes (Kadakia et al., accepted). Since the odor 596 
encounters in this study neither fluctuated in intensity nor lasted longer than 1 second, it is 597 
perhaps unsurprising that we did not need to include ORN adaptive dynamics in our model. 598 
However, in experimental paradigms with longer light stimuli or varying intensity, adaptation could 599 
play an important role in navigational behavior. 600 
 601 
Other aspects of olfactory navigation have not been considered in this study. As we wanted to 602 
focus solely on orientation dynamics, we did not factor changes in ground speed or transitions 603 
between stops and walk bouts into our predictive models, although these locomotory behaviors 604 
are known to be modulated by odor encounter timing and duration (Alvarez-Salvado et al., 2018; 605 
Demir et al., 2020). Further analyses with these data studying the effect of temporally varying 606 
stimuli on walking speed would be useful. We acknowledge that this paradigm creates a simplistic 607 
odor landscape in which other sensory inputs such as visual cues are removed, which when 608 
present can improve navigation success (Budick et al., 2007; Frye et al., 2003). Moreover, any 609 
information available to the fly from bilateral sensing was removed due to the spatially uniform 610 
signal. Doing so was important to isolate odor timing since insects respond to timing differences 611 
across antennae (Takasaki et al., 2012), use them to detect odor motion (Kadakia et al., accepted) 612 
and respond to bilateral concentration differences (Duistermars et al., 2009; Gaudry et al., 2013). 613 
Since our fictive odor signal activated all Orco-expressing ORNs (Tao et al., 2020), we did not 614 
examine the effect of odor identity or valence on turning dynamics (Jung et al., 2015; Tao et al., 615 
2019).  We additionally did not investigate any potential effects of flies learning the structure of 616 
the odor scene during navigation (Buehlmann et al., 2015; Pang et al., 2018), as well as potential 617 
collective behavior that could improve odor environment recognition (Sehdev et al., 2019a). 618 
 619 
We have demonstrated that processing odor signals over multiple timescales allows for 620 
temporally driven navigational behaviors across diverse environments. Further extensions of this 621 
work include investigating the neural bases for these different timescales, as well as how temporal 622 
information from individual odor encounters, combined with the overall spatial structure of an odor 623 
scene can be exploited for successful navigation. 624 
 625 
 626 
  627 
MATERIALS AND METHODS 628 
 629 
Flies/Handling 630 
 631 
All fly genotypes used were reared at 25˚C and 60% humidity on a 12 hr/12 hr light-dark cycle in 632 
plastic vials containing 10 mL standard glucose-cornmeal medium (Archon Scientific, NC). All 633 
flies used in experiments were female, aged 3-10 days old. 634 
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 635 
To obtain our experimental genotype, we crossed w;gmr-hid;20X-UAS-CsChrimson (GMUCR) 636 
males with w;+;Orco-GAL4 (117) virgin females (F1: w; +/gmr-hid; Orco-GAL4/20X-UAS-637 
CsChrimson). Adults were removed from vials after 3 days, and the F1 females were collected 1-638 
3 days after eclosion. All F1 flies contained a copy of gmr-hid, making them blind, and expressed 639 
the channelrhodopsin Chrimson in their Orco-expressing olfactory receptors. 20-30 females were 640 
starved 72 hours prior to the experiment in empty plastic vials containing water-soaked cotton 641 
plugs at the bottom and top. 24 hours before the experiment, flies were fed 1 mM all trans-Retinal 642 
(ATR) (MilliporeSigma) dissolved in water. The vials were covered in foil for these last 24 hours 643 
to avoid ATR degradation. For control experiments without ATR (Figure 1D, Figure 1- 644 
Supplement 2), flies were instead given 1 mM deionized water.  645 
 646 
Behavioral apparatus 647 
 648 
The fly walking arena in this study is identical to that used in (Kadakia et al., accepted), based on 649 
(Demir et al., 2020). The arena was 270 mm x 170 mm x 10 mm (length x width x height). The 650 
top and bottom surfaces were made of glass, and walls were acrylic. A plastic mesh was placed 651 
downstream of the airflow to prevent flies from escaping, near to which flies were aspirated into 652 
the arena through a sealable hole. The arena was illuminated using 850 nm IR LED strips 653 
(Waveform Lighting) placed parallel to the sidewalls. Note that although the experimental line is 654 
blind, two of the control lines (Canton-S and GAL4 parent) are not blind, thus we additionally 655 
shone green light using an LED (Luxeon Rebel LED 530 nm) throughout the arena to flood the 656 
visual response to simplify comparisons. All other light sources were removed. 657 
 658 
Dry air (Airgas) was passed into the arena through a stack of heavy duty plastic coffee stirrers 659 
(Mr. Coffee) to present laminarized wind with a flow rate at 150 mm/s. In all experiments, laminar 660 
wind was used. To present complex wind within the arena for wind control experiments (Figure 661 
1- Supplement 1, Figure 2- Supplement 1), airflows perpendicular to the laminar flow either side 662 
of the laminar mesh were alternately turned on with 100 ms correlation time to perturb the wind 663 
structure.  664 
Experiments were recorded at 60 frames per second with a camera (FLIR Grasshopper USB 3.0) 665 
with an IR-pass filter. Optogenetic stimuli were delivered using a projector (DLP LightCrafter 666 
4500) mounted above the arena, with resolution 912 x 1140 pixels, which illuminated the entire 667 
walking arena with pixels of size 292 µm (along wind axis) x 292 µm (perpendicular to wind axis). 668 
Only the red LED (central wavelength 627 nm) was used throughout this study. All experiments 669 
used a 60 Hz stimulus update rate. The projector and camera were aligned by minimizing the 670 
least square difference between the two coordinate systems, as described in detail in (Kadakia et 671 
al., accepted). 672 
 673 
 674 
 675 
 676 
Stimulus protocol 677 
 678 
All stimuli were written using custom scripts in Python 3.6.5. All stimuli were delivered to the 679 
projector using the Python package PsychoPy, version 2020.2.4.post1. 680 
 681 
During signal presentation, the entire arena was illuminated with a spatially uniform pulse of red 682 
light (“odor encounter”), presented at the maximum intensity (LED 255). We note that flies 683 
demonstrated similar albeit weaker responses to odor encounters with a lower intensity (data not 684 
shown). The odor encounter was presented regularly at a defined frequency (0.2 Hz, 0.5 Hz, 1.0 685 
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Hz, 1.5 Hz, 1.75 Hz, 2 Hz, 2.5 Hz, 3.0 Hz, 4.0 Hz, or 5.0 Hz) and a defined duration (0.02 s, 0.05 686 
s, 0.1 s, 0.25 s, 0.5 s, or 1.0 s). Any combinations of frequency and duration that produced 687 
overlapping encounters with indistinguishable onsets and offsets were excluded from the 688 
environment sweep.  689 
 690 
Within one experiment, the stimulus paradigm was repeated four times. Each repeat consisted of 691 
an “ON block” and an “OFF block”. Odor encounters were presented only during the ON block, 692 
which lasted for maximum 15 s. Note that the end of the ON block (i.e. the offset of the last odor 693 
encounter) is dependent on the combination of encounter frequency and duration used and thus 694 
could be as short as 10.02 s (0.2 Hz, 0.02 s). Any signal that ended after 15 s (i.e. 1.75 Hz 0.25 695 
s, 1.75 Hz 0.5 s, 2.5 Hz, 0.25 s) was terminated at 15 s. The ON block was followed by a 15 s 696 
long OFF block, in which no odor was presented. Note that due to the variability in the end of the 697 
ON block means that the OFF block could last between 15 s and 19.98 s. Thus each repeat lasted 698 
for 30 s, and the entire experiment lasted 120 s.  Laminar wind was presented continuously for 699 
the span of the experiment unless otherwise stated. Up to 10 experiments were presented to the 700 
same set of flies within one session, with a 60 s interval between experiments. The order of the 701 
experiments within a session were pseudo-randomized so that two consecutive experiments 702 
would not present same stimulus to avoid flies possibly learning from the environment. 703 
 704 
Experimental protocol 705 
 706 
Experiments were performed between 08:00 and 12:00 as Drosophila activity peaks during this 707 
time (van Breugel et al., 2018), in a temperature- and humidity-controlled environment 708 
(temperature: 22.2 °C ± 0.2 °C, humidity: 52.3 % ± 2.7 %).  Female flies were aspirated into the 709 
arena and allowed to acclimatize to the new surroundings and the laminar wind flow for one 710 
minute. To ensure that the cross had been successful and that the F1 were healthy and correctly 711 
expressing Chrimson in their Orco-receptors, we presented flies with three parallel static red 712 
fictive odor ribbons for 1 minute in laminar airflow. Responsive flies, when encountering the 713 
ribbon, tend to turn upwind and weave along the edges of the ribbon towards the expected odor 714 
source (Demir et al., 2020). Sets of flies that did not show this behavior were discarded. For each 715 
combination of encounter frequency and duration investigated, between 6 and 12 716 
videos/experiments were recorded/performed with between 11 and 27 individuals in one session. 717 
 718 
 719 
Fly tracking/data acquisition 720 
 721 
All tracking scripts were custom written by Nirag Kadakia in Python 3.7.4 and are described in 722 
detail in (Kadakia et al., accepted).  723 
 724 
Briefly, fly centroids were determined using the SimpleBlobDetector function in OpenCV, and 725 
assigned to a trajectory identity by matching to other nearby centroids. Centroids that could not 726 
be connected to existing trajectories within 30 frames were excluded, and subsequent detected 727 
centroids were thus marked as a new trajectory. Orientation was obtained using the canny 728 
function in scikit-image to determine fly “edges”, defined between 0 and 360. Measurement noise 729 
was removed using a Savitsky-Golay filter (4th order polymonial, window size of 21 frames (0.3 730 
s). The ground velocity in the individual x and y directions were defined by taking the analytical 731 
derivative of the fitted polynomials for x and y, and was used to resolve the head and rear of the 732 
fly (Kadakia et al., accepted). The angular velocity was determined in the same manner using the 733 
orientation. Any potential location bias in the arena due to physical constraints from the stimulus 734 
projection were removed by randomly selecting half of the trajectories from each odor 735 
environment and flipping the y coordinates and heading along the y axis (axis perpendicular to 736 
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the airflow). Any trajectory where the fly’s mean speed across all the time it was tracked was less 737 
than 2mm/s was considered as a non-responsive individual and removed from all further 738 
analyses. For Figure 1 only (and its corresponding supplemental figures), individual time points 739 
where the fly moved less than 2mm/s were additionally removed to ensure equal treatment of 740 
data for comparison with data taken from (Demir et al., 2020). 741 
 742 
Defining turns 743 
 744 
To define a turn event, we sought to determine a threshold angular speed and minimum duration, 745 
above which the reorientation event would be classified as a turn. This method is robust against 746 
artificial detections of spurious events that may occur due to measurement fluctuations. However, 747 
arbitrarily setting the angular speed threshold too high will neglect large angular changes that 748 
likely drive changes in the overall heading. To determine a suitable minimum angular speed 749 
threshold for this dataset, we pooled trajectories across all 45 odor environments, and examined 750 
how changing the threshold angular speed for a turn event affected the distribution of the angular 751 
change for “fixation” events, i.e. the change in orientation for events where the angular speed was 752 
below threshold. We set the threshold at between 5 deg/s and 150 deg/s. For each of the 17 753 
tested thresholds, we obtained the distribution of angular change magnitudes during fixation 754 
events, and extracted the 95th percentile to obtain a comparable measure representing the 755 
majority of angular changes made (Figure 3, Figure Supplement 3A).  756 
 757 
A suitable threshold would have smaller angular changes during fixations, and larger changes 758 
during turns. We found that initially, as the threshold increased, smaller angular changes that are 759 
likely caused by trivial reorientations were classed as “fixations”, and thus would be disregarded 760 
as a turn event. Increasing the turn speed threshold beyond 25 deg/s led to much greater changes 761 
in orientation during fixation events, (Figure 3, Figure Supplement 3A) (see also Figure 3B). 762 
Thus we set the minimum angular speed threshold for a turn event at 25 deg/s. 763 
 764 
We observed that the distribution of angular change magnitude for events above the 25 deg/s 765 
threshold angular speed was bimodal (Figure 3, Figure Supplement 3B). The first peak indicates 766 
a proportion of events with small angular changes; the second peak centralized around much 767 
larger angular changes. We reckoned that the distribution of smaller angular changes could be 768 
from very short, sharp changes in orientation, which were potentially artefacts of the tracking to 769 
be removed.  770 
 771 
We fit a Gaussian mixture to the distribution and found that the standard deviation of the low-772 
mean Gaussian was approximately 4.5°. A navigating agent is more likely to regulate the duration 773 
of its turn, rather than the magnitude of the angular change and thus we instead set a minimum 774 
duration for turn events. With a minimum angular speed of 25°/s, and a minimum angular change 775 
of 4.5°, we get a minimum turn duration of 0.18 s. We removed all above angular speed threshold 776 
events with an event duration of less than 0.18 s; the resultant angular change distribution for turn 777 
events was no longer bimodal (Figure 3, Figure Supplement 3C).  778 
 779 
Plotting turn quantities as a function of time 780 
 781 
To estimate the turn rate as a function of time, at any time point we considered trajectories where 782 
flies were in a fixation state or had just transitioned from fixation to turn at that time point. 783 
Assuming an inhomogeneous Poisson process, the probability to transition from fixation to turn 784 
at a timepoint 𝑡 is given by 𝜆(𝑡) ⋅ Δ𝑡, where Δ𝑡 is the time-step resolution of our data, 1/60s. Thus 785 
the fraction of all considered trajectories that had just transitioned from fixation to turn, divided by 786 
Δ𝑡, provides an estimate of 𝜆(𝑡). We smoothed this estimate with a rectangular smoothing window 787 
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of width 0.25s, sliding the window across each time step, and plotted the results in Figure 4A, 788 
grey, and Figure 4, Figure Supplement 1, grey. Errors bars were estimated by bootstrapping 789 
the data 500 times at each time point. 790 
 791 
We estimated mean turn speed, mean turn duration and upwind bias as a function of time in the 792 
following way. We defined a 0.25s wide window and considered all turns that started in this 793 
window. For each turn, we then computed its mean angular speed, its duration and whether it 794 
was upwind (+1) or downwind (0). We then averaged these quantities to get an estimate of the 795 
mean turn speed, mean turn duration or upwind bias, respectively, for that window. As for the turn 796 
rate, we slid the window across each time step and plotted our results against the center of the 797 
time window. Error bars were estimated by resampling the data 1000 times at each time point. 798 
 799 
Modeling fly turning behavior 800 
 801 
The OFF function is defined as  802 
 803 

𝑂𝐹𝐹(𝑡) = max	(0, 𝐼2345 − 𝐼672*), 804 
 805 
analogously to how it was defined in (Alvarez-Salvado et al., 2018). Here 𝐼2345 and 𝐼672* are 806 
defined as in Equation 5, with characteristic timescales 𝜏2345 > 𝜏672*. At signal offsets, 𝐼2345 807 
decays slower than  𝐼672* , so their difference (and thus OFF) is positive for some time. At signal 808 
onset or presence, 𝐼672* rises faster and is greater in value than 𝐼2345, thus the max operation 809 
ensures that OFF is 0. Due to the integrative nature of the I filters, this OFF function reaches a 810 
higher peak after high intermittency signals. 811 
 812 
The novelty function N(t) was defined as  813 
 814 

𝑁(𝑡) = 𝐴*𝑒
!!"!#$,% , 815 

 816 
where 𝑡" is the time of the latest pulse onset. For the time between the onsets of the first and 817 
second pulse, 𝐴* ∶= 1. Otherwise, 𝐴* = 1 − 𝑒!,*#!*#

'-/),, where again 𝑡" is the time of the latest 818 
pulse onset and 𝑡"′ is the onset time of the pulse before the latest pulse. For a square wave signal, 819 
𝑡" − 𝑡"′ becomes 𝑇 = &

6
	, i.e. the period of the signal. Thus at first pulse onset, N spikes to 1 and 820 

decays with timescale 𝜏$# . At subsequent pulses, N spikes to a height of 𝐴*	before decaying with 821 
timescale 𝜏$#. The 𝜏$ timescale defines the time required between pulses to induce a strong 822 
response—if 𝑇 ≪ 𝜏$, 𝐴* ≈ 0 and the novelty response is suppressed. On the other hand if 𝑇 ≫823 
𝜏$, 𝐴* 	≈ 1 and the novelty response is maximal. 824 
 825 
Parameter Estimation 826 
 827 
To estimate parameters for turn rate (Equation 2), we considered time points where flies were in 828 
fixations (i.e. not turning) or had just transitioned from fixation to turn. We excluded fixations that 829 
lasted longer than 1.5s, as more than 95% of fixations were shorter than 1.5s and beyond this 830 
duration, fixation durations were no longer exponentially distributed (Figure 3 Figure 831 
Supplement 2). For a time point 𝑡, the probability to not initiate a turn at that time point is 𝑒!9!:* 832 
where Δ𝑡 is our sampling time (1/60s) and 𝜆* denotes the turn rate from Equation 2 at that time 833 
point. The probability to initiate a turn at that time point is 1 − 𝑒!9!:*. We then constructed a 834 
likelihood function: 835 

(10) 

(11) 
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 836 
𝐿 = Π;<=>?<@AB𝑒!9!⋅:*Π?DEA	B?>E?B(1 − 𝑒!9!⋅:*) 837 

 838 
and minimized the negative log of this likelihood using scipy.optimize.minimize with the standard 839 
L-BFGS-B method for minimization with bounds. All subsequent log-likelihood functions were 840 
minimized similarly. Note that for all timescales we estimated the log of the inverse timescale, i.e. 841 
the log of the ‘rate’ and then converted that back into a timescale. 842 
 843 
To estimate turn speed parameters, we calculated the mean angular speed for each turn and 844 
subtracted our minimum turn speed of 25 deg/s (this is added back later when simulating the 845 
turns). The distribution of the resultant mean angular speeds was assumed to be a Gamma 846 
distribution with fixed shape parameter 2, based off the observations in Figure 3. The mean of 847 
this Gamma distribution was assumed to depend on the signal and is given by Equation 3. 848 
Assuming individual turns are independent, we could then construct a likelihood function as the 849 
product of the likelihood of each mean turn speed: 850 
 851 

𝐿 = Π?DEAB
1

Z𝜇*2 [
' 𝑥* ⋅ 𝑒

!G!H!
' 	 852 

where 𝑥* is the observed mean angular speed (after subtracting 25 deg/s) for the turn and 𝜇* is 853 
the predicted mean angular speed for a given set of parameters, using Equation 3. As the 854 
timescales for the N and OFF responses were already estimated from the turn rate analysis, only 855 
the three 𝜇 coefficients were estimated from this likelihood function, by minimizing its negative 856 
logarithm.  857 
 858 
For turn duration, for each turn we calculated its duration and subtracted the minimum turn 859 
duration, 0.18s (this is added back later when simulating turns). We then assumed an exponential 860 
distribution for these resultant turn durations and computed a likelihood function as  861 
 862 

𝐿 = Π?DEAB𝜆#IJ𝑒(!G!9%-.) 863 
 864 
where here 𝑥* denotes the turn duration (after subtracting 0.18s). We found the constant 𝜆#IJ that 865 
minimized the negative log-likelihood. The inverse of this constant is reported as 𝜏#IJ in Materials 866 
and Methods, Table 1.  867 
 868 
For the turn bias (Equation 4), we first fit the 𝑎% parameter as explained in the main text. Given 869 
that the elevated upwind bias returns to baseline within a couple of seconds of ON block offset 870 
(Figure 5C, grey, Figure 5 Figure Supplement 4 grey), we assumed that the bias in the last 10 871 
s of the OFF block (Figure 5D, black) had no remaining signal dependence and so takes the form 872 
1/(1 + exp[−𝑎% ⋅ sin' 𝜃])	. We then minimized the squared error between this functional form and 873 
the no-signal turn bias curve obtained from data (Figure 5D, black), using scipy’s 874 
optimize.least_squares routine and its default method, the Trust Region Reflective algorithm. The 875 
remaining turn bias parameters (timescales and gain factors in Equations 4-9) were fit by 876 
simulating 240 flies (roughly how many trajectories were in the experiment) executing our full 877 
turning strategy (see below for simulation details) with all other parameters fixed to their fit value 878 
and minimizing the squared error between the observed mean 𝜃(𝑡) and predicted 𝜃(𝑡) over the 879 
first 20s of the experiment. The minimization was done with a brute-force search over the 880 
parameter space, where 𝑔 was discretized to 20 values linearly spaced between bounds shown 881 
in Materials and Methods, Table 1, while for the timescales we fit the log of the rates (i.e. 1/𝜏) by 882 
considering 20 values linearly spaced between the log of the minimum rate and log of the 883 

(12) 
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maximum rate, corresponding to fitting the timescales with logarithmic spacing. The parameters 884 
that minimized the mean squared error were used.  885 
 886 
Analysis of two-timescale integrating model 887 
 888 
Following our analysis of a single timescale integrator 𝐼(𝑡) in (Jayaram et al., 2022), we consider 889 
the response 𝑅(𝑡) to a binary square-wave signal with frequency 𝑓 and duration 𝐷. If we let 𝑅M 890 
denote the value of 𝑅(𝑡) at the onset of the nth pulse, then by straightforwardly integrating 891 
Equations 8 and 9, we get the relation 892 
 893 

𝑅MN& = b𝑅M ⋅ 𝑒
! /
$0 + 1 − 𝑒

! /
$0c ⋅ 𝑒

!
1
2"/

$%   . 894 

 895 
Expanding and simplifying, we get  896 
 897 

𝑅MN& = 𝑘 ⋅ 𝑅M + 𝑘 ⋅ b𝑒
O
)0 − 1c 898 

 899 

where we define 𝑘 = 𝑒
! /
$0 ⋅ 𝑒

! 1
2$% ⋅ 𝑒

/
$%. We can then see that in general  900 

 901 

𝑅M = 𝑅%𝑘M + 𝑘 b𝑒
O
)0 − 1c ⋅

1 − 𝑘M

1 − 𝑘
	. 902 

 903 

Note that &
6
= 𝑇, the period of the square wave and so 𝑘 = 𝑒

! /
$0 ⋅ 𝑒

/"3
$% , which we can see is less 904 

than 1. If we denote the asymptotic value of 𝑅M as 𝑅M∗ , we get   905 
 906 

𝑅M∗ = b𝑒
/
$0 − 1c ⋅ Q

&!Q
		.   907 

 908 
We can then compute the asymptotic average value of 𝑅(𝑡) over one period of the signal, which 909 
we denote as 𝑅f as  910 
 911 

𝑅f =
1
𝑇
⋅ gM 𝑅M∗

O

%
⋅ 𝑒

! *
)0 + 1 − 𝑒

! *
)0 	𝑑𝑡 +	M (𝑅M∗ ⋅ 𝑒

!O)0 + 1 − 𝑒
!O)0) ⋅ 𝑒!

*
)% 	𝑑𝑡

&
6!O

%
h	. 912 

 913 
If we note that 𝑓 ⋅ 𝐷 = 𝐼𝑛𝑡, the intermittency of the signal, we get  914 
 915 

𝑅f =

𝑒
.M*
6)0 ⋅ j𝐼𝑛𝑡 ⋅ b𝑒

.M*
6)% − 𝑒

&
6)%

N.M*6)0c + 𝑓 ⋅ b𝑒
.M*
6)% − 𝑒

&
6)%c ⋅ b𝑒

.M*
6)0 − 1c ⋅ :𝜏# − 𝜏0>k

b𝑒
.M*R &)%

N &
)0
S
− 𝑒

! &
6)%

N'.M*6)0 c
	. 916 

 917 
 918 
 919 

(18) 

(14) 

(15) 

(16) 

(17) 

(19) 
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We can see here that the response depends independently on both the intermittency and 920 
frequency of the signal. Since the response is integrating the signal (Equations 8 and 9), 𝑅f 921 
increases with signal intermittency. To see how it depends on frequency, we consider the 922 
difference between the timescales. Firstly, note that if 𝜏0 = 𝜏# then we just have a single 923 
timescale integrator and 𝑅f = 𝐼𝑛𝑡, as we would expect from (Jayaram et al., 2022). For the case 924 
where 𝜏0 ≪ 𝜏# and can be approximated as 0 (as in our fits), one can readily compute 𝑅f, noting 925 
that 𝑅(𝑡) is 1 when the signal is present and decays with timescale 𝜏# when the signal is absent. 926 
We get  927 
 928 

𝑅f = 𝐼𝑛𝑡 + 𝑓𝜏# b1 − 𝑒
.M*!&
6)% c 929 

 930 
which we can see grows with 𝑓 until 𝑓 ≫ 1/𝜏# at which point it levels off. 931 
 932 
On the other hand, if 𝜏# ≪ 𝜏0 and is taken to be 0 instead, we get  933 
 934 

𝑅f = 𝐼𝑛𝑡 + 𝑓𝜏0 b𝑒
!.M*
6)0 − 1c 935 

 936 
and in this case decreases with increasing frequency, before leveling off. Thus we see that a 937 
short rise timescale and longer decay timescale are necessary for a positive response to both 938 
intermittency and frequency.  939 
 940 
Table 1-All Fit Parameters 941 
 942 

Parameter Explanation Estimation Bounds Fit value 
𝜏$ novelty detection 

timescale 
 

0.01-1200s 2.04 s 

𝜏$O novelty response 
decay timescale 

 

0.01-1200s 0.55 s 

𝜏672* off response fast 
timescale 

 

0.01-1200s 0.19 s 

𝜏2345 off response slow 
timescale 

 

0.01-1200s 0.22 s 

𝜆% base turn rate 
 

-infinity to infinity 3.06 /s 

𝜆& turn rate novelty 
response coefficient 

 

-infinity to infinity 2.80 /s 

𝜆' turn rate off response 
coefficient 

 

-infinity to infinity 45.14 /s 

𝜇% base mean turn 
speed* (see below) 

 

-infinity to infinity 68.1 deg/s 

(20) 

(21) 
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𝜇& mean turn speed 
novelty response 

coefficient 
 

-infinity to infinity 47.1 deg/s 

𝜇' mean turn speed off 
response  

 

-infinity to infinity 582.0 deg/s 

𝜏#IJ turn duration 
timescale* (see 

below) 
 

0.01-1200s 0.18s 

𝑎% upwind bias baseline 
shift 

 

-infinity to infinity -0.49 

𝑔 for 𝐼(𝑡) 
 

upwind bias 
response gain using 
intermittency-sensing 

model 
 

0-16 12.6 

𝜏. 
 

intermittency-sensing 
model integration 

timescale 
 

0.01-5s 0.04s 

𝑔 for 𝐹(𝑡) 
 

upwind bias 
response gain using 
frequency-sensing 

model 
 

0-16 9.3 

𝜏/ 
	

frequency-sensing 
model integration 

timescale 
	

0.05-5s	 0.08s	

𝑔. for 𝐻(𝑡) 
 

intermittency sensor 
gain for dual 

frequency and 
intermittency sensing 

model  
 

0-4 2.7 

𝑔/ for 𝐻(𝑡) 
 

frequency sensor 
gain for dual 

frequency and 
intermittency sensing 

model  
 

0-4 3.2 

𝜏1 
 

dual frequency and 
intermittency sensing 

model integration 
timescale  

 

0.05-5s 0.1s 
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𝑔 for 𝑅(𝑡) upwind bias 
response gain using 

two-timescale 
integrator 

 

0.15-3 1.5 

𝜏0 upwind bias rise 
timescale for two-

timescale integrator 
 

0.01-5s 0.01s** 

𝜏# upwind bias decay 
timescale for two-

timescale integrator 
 

0.05-5s 0.97 s 

 943 
*Note that to fit turn speed and turn duration, we first subtracted the minimum turn speed (25 944 
deg/s) and minimum turn duration (0.18s) set by our thresholding method. These values (𝜇% and 945 
𝜏#IJ) represent the addition to the minimum threshold values set, that were fit. Thus in the 946 
absence of signal the mean turn speed is actually 25 + 68.1 = 93.1 deg/s and the mean turn 947 
duration is 0.18 + 0.18 = 0.36s: the mean turn duration beyond the minimum duration 948 
coincidentally was also fit to 0.18s. 949 
 950 
**Note that the found value of 10ms for 𝜏0 was on the edge of the minimization bounds. We did 951 
not probe shorter timescales as the time-resolution of our data was ~16ms. However we verified 952 
that even for an instantaneous rise timescale the cost was higher than the cost for 10ms but within 953 
3% of its value. The same was true for a 𝜏0 of 20ms. For values greater than 20ms the cost started 954 
to grow more significantly. Hence we concluded that the rise timescale was between 0-20ms.    955 
 956 
Simulating Fly Turning Dynamics 957 
 958 
To simulate flies executing our turn model, we first determined whether a simulated fly would 959 
initiate a turn or not by taking the probability to initiate a turn in a time step Δ𝑡 as 𝜆(𝑡) ⋅ Δ𝑡, where 960 
𝜆(𝑡) is given by Equation 2. If a fly was not turning its angular velocity was assumed to be 0. If a 961 
turn was initiated, its duration in excess of 0.18s was sampled from an exponential distribution 962 
with timescale 𝜏#IJ, and added to 0.18s to get the total turn duration. The mean angular speed of 963 
the turn in excess 25 deg/s was sampled from a Gamma distribution with shape parameter 2 and 964 
mean given by Equation 3, then added to 25 deg/s to get the total mean angular speed. We 965 
assumed a turn had a parabolic angular speed profile (see Figure 3B). Given the mean value and 966 
duration (i.e. time between two zeros) of this parabola, we could compute |𝜃̇| for the duration of 967 
the turn as |6𝜇/𝑑'(𝑡 − 𝑡2*7J*)(𝑡 − (𝑡2*7J* + 𝑑))| where 𝑡2*7J* is the start time of the turn, 𝜇 is the 968 
mean angular speed of the turn, 𝑑 is the duration of the turn and the factor in front ensures that 969 
the average angular speed over the turn is equal to 𝜇. To determine the sign of the turn, we 970 
determined whether it was upwind or downwind by simulating a Bernoulli variable with probability 971 
given by Equation 4. Once 𝜃̇ was specified for the whole turn, we could use Euler integration with 972 
timestep Δ𝑡 = 1/60s (the frame rate of our experiments) to evolve a simulated agent’s heading. 973 
Values for response functions 𝑢(𝑡) except for 𝐹(𝑡) were computed by Euler integration with a 974 
step-size of 1/10th our sampling rate and then resampled for agent simulation. 𝐹(𝑡) was computed 975 
as in (Jayaram et al., 2022). Agents were initialized with headings sampled from the distribution 976 
of experimental flies’ initial headings for that environment and initialized to all not be turning for 977 
simplicity (thus the first 0.1s of our simulated total angular speed is not shown in Figure 5C and 978 
6A as the comparison with data would not be fair).   979 
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 980 
 981 
DATA AND CODE AVAILABILITY 982 
 983 
The data, fly lines used in this study and the scripts used to perform experiments, track flies and 984 
extract relevant behavioral data are available upon request. 985 
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Figure 1-Supplement 1: In absence of fictive or real odor, flies orient on average crosswind in both laminar and 
complex wind. A. Population mean orientation of flies in absence of odor stimulus, in laminar (green) or complex (purple) 
wind. Wind was presented continuously for 5 minutes. Orco>Chr: w; gmr-hid/+; Orco-GAL4/UAS-20XChrimson (experimental 
line responsive to fictive odor stimulus). GAL4 PARENT: w;+;Orco-Gal4. UAS PARENT: w;gmr-hid;UAS-20XChrimson. 
Canton-S: wildtype (same as in Demir 2020). Recorded at 60 fps, but presented by subsampling every 5 frames. Dashed line 
indicates orienting crosswind (90°). All flies that moved less than 2mm/s on average for their entire trajectory were removed. 
Orco>Chr: laminar, n=5-69 trajectories per time point across the entire 5 minute recording; complex, n=8-56. GAL4 PARENT: 
laminar, n=1-18; complex, n=1-17. UAS PARENT: laminar, n=1-13;complex, n=1-12. Canton-S: laminar, n=1-13; complex, 
n=1-12. B. Population orientation mean and SEM across all trajectories for laminar (green) and complex (purple) wind without 
odor stimulus over 5 minute recording. Any time points where the fly moved less than 2 mm/s were removed. Orco>Chr: 
laminar, 91.1° ± 1.1°, n = 678 trajectories; complex, 91.9° ± 1.4°, n = 519. GAL4 parent: laminar, 84.1° ± 2.9°, n = 152, complex, 
82.2° ± 3.3°, n = 119. UAS parent: laminar, 87.2° ± 3.7°, n = 102, complex, 89.8° ± 3.0°, n=114. Canton-S: laminar, 90.2° ± 
4.4°, n = 120, complex, 90.3° ± 4.3°, n = 111.  

 

Figure 1-Supplement 2: Parent flies and Orco>Chr flies without ATR do not respond to the fictive odor 
signal. Traces of mean orientation over time for control lines in presence of 2 Hz, 0.1 s fictive odor. Population 
mean orientation of GAL4 parent (left) and UAS parent (middle) genotypes of optogenetically active flies, and 
the optogenetically active line without feeding ATR (right). Black line is mean across all trajectories at that time 
point, grey shading indicates SEM. Dashed black line indicates crosswind orientation at 90°. Red bars indicate 
fictive odor presence. Any time points where the fly moved less than 2 mm/s were removed. GAL4 parent: 52-
74 trajectories per frame, UAS parent: 50-89 trajectories per frame, Orco>Chr (no ATR): 108-159 trajectories 
per frame. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.28.509840doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509840
http://creativecommons.org/licenses/by/4.0/


 35 

 1178 
 1179 
 1180 

Figure 2 Supplement 1: Population mean behavioral responses of flies navigating fictive odor stimuli are 1181 
similar in laminar and complex wind.  1182 
Mean population orientation response measured from flies navigating one of 6 from the 45 fictive odor environments: 1183 
0.2 Hz 1 s, 0.5 Hz 0.1s, 0.5 Hz 1s, 1 Hz 0.5 s, 2 Hz 0.1 s, 2 Hz 0.25 s (from left to right), in either laminar (green) or 1184 
complex (purple) wind structure. 235-485 trajectories were recorded per odor and wind environment, and 104-242 1185 
trajectories were recorded per time frame (recording rate = 60 frames per second). Red bars indicate odor presence. 1186 

 1187 
 1188 

 1189 
 1190 
 1191 

Figure 2 Supplement 2: Instantaneous angular velocity as a function of environment duration and 1192 
intermittency. A. Instantaneous angular velocity of flies as a function of their orientation during the ON block (0-15 s). 1193 
Upwind orientation is at 180°, downwind at 0°. Orientation was split into 8 bins with width 22.5°. Vertical dashed line at 1194 
90° indicates flies facing crosswind during ON block. Positive angular velocity represents turning upwind, negative 1195 
represents turning downwind. Horizontal solid line at 0 °/s indicates no change in angular velocity, thus no change in 1196 
orientation. Angular velocity is colored by environment duration. Blue: 0.02 s, indigo: 0.05 s, magenta: 0.1 s, red: 0.25 1197 
s, orange: 0.5 s, yellow: 1.0 s. The grey bar indicates the crosswind range (90°± 22.5°) over which the mean angular 1198 
velocity during the ON block per odor environment was calculated in Figure 2C. B. Same as A but colored by 1199 
environment intermittency. Blue: 0-0.05, purple: 0.05-0.2, red: 0.2-0.5, yellow: 0.5-0.875.  1200 
 1201 
 1202 

 1203 
  1204 

wind

A B
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 1206 

Figure 3 Supplement 1: Angular speed responses vary across stimulus frequency and intermittency. Population 1207 
mean instantaneous angular speed, obtained from the absolute of the angular velocity, across 45 fictive odor 1208 
environments, derived from the orientation (see Materials and Methods). Stimuli presented are the same as in Figure 1209 
2A. Red bars denote the signal simultaneously encountered by all flies within an experiment. Between 176 and 407 1210 
trajectories were recorded per environment. Between 72 and 237 trajectories were recorded per time point across all 1211 
environments at 60 fps. 1212 
  1213 
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 1214 

 1215 
Figure 3 Supplement 2: Angular speed response is consistent across fly orientations: Angular speed from 4 of 1216 
the 45 odor environments (0.2 Hz 1 s, 0.5 Hz 0.25 s, 1.5 Hz 0.1s s, 3 Hz 0.25 s). Heading was split into three bins of 1217 
60 degrees; upwind facing (120°-180°, blue), crosswind facing (60°-120°, orange) and downwind facing (0°-60°, 1218 
green). Orientation was flipped over 180° as before. Solid line: population mean angular speed of flies oriented within 1219 
the corresponding 60° bin at each time point. Lighter shading: mean ± SEM at each time point. Red bars: fictive odor 1220 
pulses. Between 170 and 305 trajectories were recorded per environment for each 60° heading bin. Between 9 and 1221 
105 trajectories contribute to the data at each time point. 1222 
 1223 
 1224 
 1225 
 1226 
 1227 

 1228 

Figure 3 Supplement 3: Defining turn events. A. The 95th percentile of the distribution of angular change magnitude 1229 
during fixation events, Δ𝜃45, as a function of the angular speed threshold set to define a turn event. Thresholds tested 1230 
ranged from 5 deg/s to 150 deg/s. Red dashed line highlights the inflection point in the curve at ~25 deg/s, indicating 1231 
that thresholds greater than 25 deg/s ignore larger angular changes that could  contribute to changes in heading. B. 1232 
After applying the 25 deg/s threshold angular speed to turn events, the distribution of angular change during turns is 1233 
bimodal: there is a shorter range distribution centralized around small mean angular changes, and a much wider 1234 
distribution of angular changes around centralized around a larger mean angular change. The smaller changes are 1235 
less likely to influence heading compared to the larger angular changes, thus we sought to exclude them. Distribution 1236 
can be fit using a Gaussian mixture model with a low mean, low variance Gaussian and a high mean, high variance 1237 
Gaussian. The standard deviation of the low-mean Gaussian is 4.5°, which we used to set a minimum turn event 1238 
duration of 0.18 s, given a minimum turn angular speed of 25 deg/s.. C. After applying the 0.18 s threshold duration for 1239 
a turn event, the distribution of angular change is no longer bimodal, meaning that only turn events of significant 1240 
magnitude are selected.  1241 
 1242 
 1243 
 1244 
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 1257 
Figure 3 Supplement 4: Defining turn rate. A. Distribution of fixation durations (bin number = 60), having applied the 1258 
turn speed and turn duration thresholds. Slope of the distribution (i.e. the turn rate) is non-linear; fixation durations can 1259 
reach up to ~40 s. B. Cumulative probability density function of fixation durations. Red line indicates 95th percentile of 1260 
fixation durations. Vertical line indicates that more than 95 % of fixation events have a duration of less than 1.5 s. C. 1261 
Distribution of fixation durations, for fixations lasting up to 1.5 s. These are exponentially distributed, allowing us to 1262 
model turn rate as a Poisson process. 1263 
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Figure 4 Supplement 1: Turn rate is dynamic and well-predicted by the combination of novelty and offset responses. 
Experimental population turn rate estimated with a sliding 0.25s window (grey line) and bootstrapped error (grey shading) (see 
Materials and Methods) for all 45 fictive odor environments as well as model predictions (pink) and simulated error (pink 
shading) using Equation 2 and fit with one fixed set of parameters to all 45 environments using Maximum Likelihood Estimation 
(see Materials and Methods). Turn rate is dynamic and reasonably well-approximated by the model. Each panel had ~150 
trajectories contributing at any timepoint. To generate model predictions and error, for each panel we generated ~150 turn 
series (1 if a turn starts at that time point, 0 if not) and averaged and smoothed this data to get a single time-varying turn rate 
estimate. We repeated this process 10000 times, taking the mean of all these as the model turn rate and the standard deviation 
as the model error. For more details see Materials and Methods. N = 8-103 turn events per time point for all 45 environments. 
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Figure 4 Supplement 2: Mean turn speed is also dynamic and well-predicted by the combination of novelty 
and offset responses. Experimental population mean angular speed given turning estimated with a sliding 0.25s 
window (grey line) and bootstrapped error (grey shading) (see Materials and Methods) for all 45 fictive odor 
environments as well as model predictions (pink) and simulated error (pink shading) using Equation 3 and fit with one 
fixed set of parameters to all 45 environments using Maximum Likelihood Estimation (see Materials and Methods), 
and using timescales for 𝑁 and 𝑂𝐹𝐹 responses extracted from the turn rate parameter estimates. Angular speed 
given turning is dynamic and reasonably well-approximated by the model. To generate model predictions and error, 
artificial turns were simulated occurring at the same times as the real turns. The speed of these turns in excess of the 
25 deg/s threshold was sampled from a gamma distribution with time varying mean, given by Equation 3. Average 
turn speed on this simulated data was then calculated with the same sliding 0.25s window. We repeated this process 
10000 times, taking the mean of all these as the model turn angular speed and the standard deviation as the model 
error. For more details see Materials and Methods. Ns are the same as in Figure 4 Supplement 1. 
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Figure 4 Supplement 3: Mean turn duration is roughly constant in time for high frequency environments 
but shows a small signal dependency for low frequency long duration signal: Mean turn duration (grey) and 
estimated error (grey shading) vs. time for all 45 environments considered as well as the MLE estimate of a 
constant duration (pink line) and uncertainty (pink shading) (see Materials and Methods). We do see some signal 
modulation of turn duration, particularly at lower frequencies and often see an increase in turn duration at the 
offset of the ON block. However, the strength of this modulation is rather mild overall and the response at block 
offset is somewhat unpredictable and not well fit with the off response timescales found for turn rate. Thus, to keep 
our model as simple as possible we neglected modulations in turn duration. To generate model predictions and 
error, artificial turns were simulated occurring at the same times as the real turns. The duration of these turns in 
excess of the 0.18s threshold was sampled from an exponential distribution with fixed parameter. Average turn 
speed on this simulated data was then calculated with the same sliding 0.25s window. We repeated this process 
10000 times, taking the mean of all these as the model turn duration and the standard deviation as the model 
error. For more details see Materials and Methods. Ns are the same as in Figure 4 Supplement 1. 
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Figure 5 Supplement 1: Turn bias is dynamic and well approximated by a two-timescale integrator with an 
instantaneous rise timescale. Probability to turn upwind given turning (i.e. upwind bias) vs time (grey) and 
estimated error (grey shading) for all 45 fictive odor environments along with model predictions (purple) and 
estimated error (purple shading) for a two-timescale integrating response (Equations 8-9) with instantaneous rise 
timescale and finite decay timescale (see Materials and Methods). Upwind bias was estimated by calculating the 
fraction of turns that were upwind in a sliding 0.25s window. We see that upwind bias generally rises during signal 
presence and otherwise is slightly less than 0.5, suggesting that in the absence of signal flies display a preference 
for downwind orientation. To generate model predictions and error, artificial turns were simulated occurring at the 
same times as the real turns, with the same initial orientations. The direction of these turns (upwind or downwind) 
was assigned according to the probability given by the time varying bias, Equation 4. Turn bias on this simulated 
data was then calculated with the same sliding 0.25s window. We repeated this process 10000 times, taking the 
mean of all these as the model turn bias and the standard deviation as the model error. For more details see 
Materials and Methods. N = 8-103 turn events per time point for all 45 environments. 
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