
Batch Normalization Followed by Merging Is Powerful for
Phenotype Prediction Integrating Multiple Heterogeneous
Studies

Yilin Gao1, Fengzhu Sun1,*

1 Department of Quantitative and Computational Biology, University of Southern
California, Los Angeles, CA, USA

* fsun@usc.edu

Abstract

Heterogeneity in different genomic studies compromises the performance of machine
learning models in cross-study phenotype predictions. Overcoming heterogeneity when
incorporating different studies in terms of phenotype prediction is a challenging and
critical step for developing machine learning algorithms with reproducible prediction
performance on independent datasets. We investigated the best approaches to integrate
different studies of the same type of omics data under a variety of different
heterogeneities. We developed a comprehensive workflow to simulate a variety of
different types of heterogeneity and evaluate the performances of different integration
methods together with batch normalization by using ComBat. We also demonstrated
the results through realistic applications on six colorectal cancer (CRC) metagenomic
studies and six tuberculosis (TB) gene expression studies, respectively. We showed that
heterogeneity in different genomic studies can markedly negatively impact the machine
learning classifier’s reproducibility. ComBat normalization improved the prediction
performance of machine learning classifier when heterogeneous populations presented,
and could successfully remove batch effects within the same population. We also showed
that the machine learning classifier’s prediction accuracy can be markedly decreased as
the underlying disease model became more different in training and test populations.
Comparing different merging and integration methods, we found that merging and
integration methods can outperform each other in different scenarios. In the realistic
applications, we observed that the prediction accuracy improved when applying
ComBat normalization with merging or integration methods in both CRC and TB
studies. We illustrated that batch normalization is essential for mitigating both
population differences of different studies and batch effects. We also showed that both
merging strategy and integration methods can achieve good performances when
combined with batch normalization. In addition, we explored the potential of boosting
phenotype prediction performance by rank aggregation methods and showed that rank
aggregation methods had similar performance as other ensemble learning approaches.

Author summary

Overcoming heterogeneity when incorporating different studies in terms of phenotype
prediction is a challenging and critical step for developing machine learning algorithms
with reproducible prediction performance on independent datasets. We developed a
comprehensive workflow to simulate a variety of different types of heterogeneity and
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evaluate the performances of different integration methods together with batch
normalization by using ComBat. We also demonstrated the results through realistic
applications on six colorectal cancer (CRC) metagenomic studies and six tuberculosis
(TB) gene expression studies, respectively. From both the simulation studies and
realistic applications, we showed that batch normalization is essential for improving
phenotype prediction performance by machine learning classifiers when incorporating
multiple heterogeneous datasets. Combined with batch normalization, merging strategy
and ensemble weighted learning methods both can boost machine learning classifier’s
performance in phenotype predictions. In addition, we explored that rank aggregation
methods should be considered as alternative way to boost prediction performances, given
that these methods showed similar robustness as ensemble weighted learning methods.

Introduction 1

Genotype to phenotype mapping is an essential problem in the current genomic era. 2

With the development of advanced biotechnologies, many types of genomic data such as 3

single nucleotide polymorphisms, gene expression profiles, proteomics, metagenomics, 4

etc. have been generated in many different studies. These omics data provide essential 5

resources to understand the relationships between omics data and phenotypes. Despite 6

these fundamental developments, due to the heterogeneity of data, it is challenging to 7

integrate the omics data to understand genotype to phenotype mapping. For a single 8

type of data such as gene expression or metagenomic data, many sources of 9

heterogeneity can occur. For example, the samples can come from different ethnic 10

groups with varying underlying distributions of the features. Even if the samples come 11

from the same population, the genomic data can be generated from different laboratories 12

and/or derived from different experimental technologies resulting in different 13

distributions of the data. Another types of heterogeneity can be caused by the different 14

causal mechanisms of the same phenotype in the populations under study [1]. The 15

objective of this study is to investigate the best approaches to integrate different studies 16

of the same type of data under a variety of different heterogeneities. In this work, we 17

concentrate on gene expression profiles or microbial abundance in metagenomic studies. 18

Many machine learning algorithms including linear regression, logistic regression, 19

penalized regression, support vector machines (SVM), random forests (RF), neural 20

networks (NN) and deep neural networks (DNN) have been used to predict phenotypes 21

from omics data [2–5]. Most previous studies validated the prediction methods using 22

within dataset cross validation usually with relatively high prediction accuracy. 23

However, the prediction accuracy is markedly decreased when the learned algorithms 24

are used in independent datasets [6, 7]. Many sources of study heterogeneity, for 25

example, different experimental platforms or procedures and differences in patient 26

cohorts [1], all contribute to compromise the prediction performance of machine learning 27

models in cross-study settings. Thus, overcoming heterogeneity in cross-study 28

phenotype prediction is a critical step for developing machine learning algorithms with 29

reproducible prediction performance on independent datasets. 30

Many studies have been carried out to mitigate the heterogeneity in cross-study 31

phenotype predictions. Zhang et al. [8] focused on the batch effects of data when 32

developing genomic classifiers. Patil et al. [9] simulated genomic samples and perturbed 33

the coefficients of linear relations between outcomes and predictors to evaluate model 34

reproducibility with different degrees of heterogeneity. In this study, we address three 35

types of heterogeneity: different background distributions of genomic features in 36

populations, batch effects across different studies from the same population, and 37

different disease models in various studies. We aim to evaluate how different statistical 38

methods can mitigate these three types of heterogeneity. 39
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Merging all datasets into one and treating all samples as if they are from the same 40

study is a generally used method for cross-study predictions. With the increase of 41

sample size and diversity in the study population, merging method has been shown to 42

lead to better prediction performance than using only individual studies [2, 5, 10]. 43

Another approach is to integrate the trained predictors from different machine learning 44

models derived from various training datasets. Ensemble weighted learning is a 45

commonly used integration method to deal with the impact of heterogeneity on 46

cross-study prediction performance. Ensemble learning methods that integrate 47

predictions from multiple machine learning models showed the ability to boost the 48

prediction performance than using only the component methods that the ensemble 49

learning contains [9, 11]. Besides ensemble weighted learning methods, aggregating the 50

ranks from sample predicted probability instead of the probability itself offers a 51

promising alternative for integration. In some situations, the predicted probabilities for 52

the samples in the test data may not be correct, but the relative order could provide 53

some useful information. In such situations, aggregating the ranks instead of the 54

predicted probabilities might be more reasonable. To the best of our knowledge, no 55

studies investigated rank aggregation methods based on omics data phenotype 56

prediction. 57

ComBat [12] normalization is a commonly used method for removing batch effects 58

between different datasets. In our previous study [13], we showed that when dealing 59

with heterogeneity in cross-study predictions, applying ComBat only before training 60

machine learning models did not improve the prediction performance. Zhang et al. [8] 61

showed that ensemble weighted learning methods outperform batch correction by 62

ComBat at high level of batch differences. Nevertheless, in this study, we aim to explore 63

the potential of combining the normalization of ComBat together with merging and 64

integration methods (ensemble weighted learning and rank aggregation) in the presence 65

of three different types of heterogeneity mentioned above. We provide both simulations 66

and real data applications on metagenomic and gene expression data to show the 67

comparisons of performance from different statistical methods when dealing with 68

cross-study heterogeneity. 69

Methods 70

Outline of workflow for integrating multiple heterogeneous 71

metagenomic datasets 72

To investigate the prediction performance of different merging and integration methods 73

when applied to multiple heterogeneous datasets, we developed a comprehensive 74

workflow with three main steps to conduct the experiments. 75

The first step of our workflow is to simulate heterogeneous metagenomic datasets 76

under three different scenarios as shown in Fig 1A. In the first scenario, we investigated 77

the impacts of different background distributions of genomic features in populations on 78

the machine learning model’s prediction performance. Due to population differences 79

such as different ethnicity, diet, etc, the background distributions of the genomic 80

features such as SNPs, expression levels and microbial abundance in microbiome can be 81

different. Thus, when training machine learning classifiers on one population and 82

predict on a different population, the heterogeneity in the background distributions may 83

negatively impact the prediction performance if the heterogeneity between the training 84

and test datasets is ignored. In order to determine how the population difference 85

heterogeneity can affect machine learning classifier’s performance as well as find the 86

best approaches for integrating different prediction methods from several heterogeneous 87

studies, we simulated three different populations with different background genomic 88

September 27, 2022 3/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.28.509843doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509843
http://creativecommons.org/licenses/by/4.0/


distributions and manipulated the differences. The detailed implementation of 89

simulating the two training datasets and one test dataset is described in Scenario 1: 90

Different background distributions of genomic features in populations. 91

The second scenario of heterogeneity is related to batch effects. Batch effects are 92

referred to as non-biological variations across different batches of data, typically, 93

variations caused by technical differences across experimental conditions or laboratories. 94

It has been argued that the reproducibility of genomic findings can be weakened by 95

batch effects [14]. Batch effect correction is a common pre-processing step when dealing 96

with genomic data. Many batch effect correction methods have been proposed recently, 97

such as ComBat [12], edgeR [15] and DESeq2 [16]. Several studies proposed ensemble 98

learning methods that can potentially mitigate batch effects [8, 9]. Here we investigated 99

how those methods perform in terms of mitigating batch effects on prediction 100

performance of binary classifiers through simulation studies. In this scenario, the 101

training and test datasets are from the same background distribution of genomic 102

features. However, after the simulation of training and test datasets, batch effects were 103

simulated on training datasets to form two different batches. These two batches were 104

served as the training datasets in the following experiments. The detailed method is 105

described in Scenario 2: Different batch effects in studies with the same background 106

distribution of genomic features in a population. 107

In the above two scenarios, we considered the effects of different background 108

distribution of genomic features in populations and batch effects on the classifier’s 109

performance, and we assumed that the underlying disease models for either the same or 110

different populations are the same. However, several studies have shown that the 111

associated microbes can potentially be population dependent. For example, CRC 112

development varies in populations with different status of diabetes [17], smoking [18] 113

and obesity [19]. Thus, we further explored the performance of those merging and 114

integration methods when the underlying disease models are different. More specifically, 115

the disease related gnomic features are different in training and test datasets. This is 116

the third scenario in our workflow. We tuned the number of overlapping disease related 117

microbes in training and test disease model, and simulated different datasets 118

accordingly. The description of methods can be found in Scenario 3: Different disease 119

models in different studies 120

After the simulations of training and test datasets from the above three scenarios as 121

shown in Fig 1A, we aimed to evaluated the performance of merging and integration 122

methods in two settings as shown in Fig 1B: naive setting with direct use of the 123

simulated training and test datasets from the first step into the third integration step, 124

and ComBat normalization setting with normalizing the two training datasets before 125

applying the integration and merging methods. In the Methods section Naive and 126

ComBat normalization settings, we described how the ComBat normalization was 127

conducted on the training datasets in details. 128

Then, two simulated training datasets and one test dataset from the above steps are 129

served as input of the last step in this workflow. In this step, a machine learning 130

classifier was trained on each training dataset independently, and then different 131

integration methods were applied on the two predictors and generated final results. The 132

predictors from the trained machine learning classifiers were directly used in ensemble 133

weighted learning methods, while when applying rank aggregation methods, the 134

predicted probabilities were converted to ranks. A more detailed description of the 135

ensemble weighted learning and rank aggregation methods we used is in Methods. In 136

addition to these integration methods, we also applied the merging strategy. As shown 137

in Fig 1C, we pooled the two training datasets together and trained machine learning 138

classifier on the merged dataset, then predicted on the test dataset directly to get final 139

results. The performances of merging and integration methods were compared later. In 140
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this study, we chose random forests (RF) [20] as the machine learning classifier to be 141

used in the above procedures. 142

Simulation strategies 143

Scenario 1: Different background distributions of genomic features in 144

populations 145

For the first scenario, we considered the situation that the two training populations 146

differ from each other and both of them are also different from the test population. We 147

also adjusted the simulations to reflect the extend of differences between the two 148

training populations. To simulate such a scenario, we first decided the underlying 149

operational taxonomic unit (OTU) abundance levels for different populations. To do so, 150

we generated three probability vectors to represent the underlying OTU abundance 151

levels in three different populations respectively, adapted from three real colorectal 152

cancer metagenomic datasets. We collected a total of six publicly available and 153

geographically diverse colorectal cancer metagenomic datasets with download links from 154

their original papers [5,21–25]. We excluded the samples from patients with adenoma so 155

that only samples from patients diagnosed with CRC and healthy controls were used. 156

The numbers of cases and controls as well as country of origin for each dataset are 157

shown in Table 1. We drew a PCoA plot on the samples to show the population 158

differences among these six CRC datasets as in Fig 2. From the PCoA plot, we chose 159

the three least overlapping populations, Hannigan, Feng and Yu datasets as the basis of 160

generating background OTU relative abundance vectors. The Hannigan and Yu 161

datasets were chosen to be used for generating training data, while the Feng dataset was 162

used to generate test data. The two training datasets were pre-processed to retain the 163

top 1000 OTUs with the largest variance in each dataset. We then took the union of the 164

OTUs from the two datasets as the complete OTUs to be used in the following analysis. 165

A total of 1,267 OTUs were used for the simulation study. We kept the OTU of the 166

1,267 OTUs for the Feng dataset (background distribution for simulating test dataset), 167

and removed the other OTUs. Then, the count data has been transformed to relative 168

abundance vector, using each OTU’s total counts from all samples divided by sum of all 169

OTUs’ total counts. 170

Table 1. Six metagenomic datasets related to colorectal cancer.

Dataset Country No. of cases No. of controls Reference
Zeller France 91 93 [21]
Yu China 74 54 [22]
Hannigan USA/Canada 27 28 [23]
Feng Austria 46 63 [24]
Vogtmann USA/Canada 52 52 [25]
Thomas Italy 61 52 [5]

Let v1, v2, and v3 be the three background relative abundance vectors from the 171

microbial abundance profiles of the healthy control samples in the pre-processed 172

Hannigan, Yu and Feng datasets, respectively. The three vectors have the same 173

dimension of 1,267, with each dimension as relative abundance level for each OTU. To 174

investigate the impact of difference between populations on cross-study prediction, we 175

created a pseudo-population with relative abundance vector. 176

v1(α) = αv1 + (1− α)v2 (1)
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Note that v1(α)− v2 = α(v1 − v2). Therefore, the difference between the two simulated 177

populations based on v1(α) and v2 increases with α. When α = 0, the two simulated 178

populations have the same underlying distribution and thus there are no population 179

differences between the two training populations. When α = 1, the two simulated 180

populations have the largest difference. We used different values of α from 0 to 1 with 181

0.2 increment to represent different magnitudes of training population differences in the 182

following analysis. The relative abundance profiles v1(α) and v2 were used as 183

background relative abundance vectors for training populations while v3 was used for 184

the test population. 185

From these 1,267 OTUs, we randomly chose 10 OTUs and assumed these OTUs 186

were associated with a particular disease of interest. Since disease associated OTUs can 187

be either enriched or depleted, we assumed the first 5 OTUs to be enriched and the 188

other 5 to be depleted. These 10 OTUs were fixed for all the experiments in following 189

analysis. In order to quantify the disease effect on those disease associated OTUs, we 190

defined a disease effect factor, ed, and assumed that the relative abundance of those 191

OTUs were as follows, 192

{relative abundance}enriched = {relative abundance} ∗ ed (2)

193

{relative abundance}depleted =
{relative abundance}

ed
(3)

We first modified v1(α), v2, and v3 this way and then normalized them to be probability 194

vectors denoted as v1(α)
′, v′2, and v′3, respectively. We then used v1(α)

′, v′2, and v′3 to 195

simulate case microbiome profiles. To see the impact of disease effect on the results, we 196

let ed to be 1.05, 1.075 and 1.1 in our simulation studies. The larger the value of ed is, 197

the more marked difference between case and control samples is. 198

We simulated the OTU counts for the controls and cases in each population as 199

follows. We used one million reads as the library size for all the following simulations. 200

We generated the OTU counts using multinomial distribution MN(librarysize, v) where 201

v is the relative abundance vector. When simulating the control samples, v1(α), v2, and 202

v3 were used in multinomial distribution; when simulating case samples, v1(α)
′, v′2, and 203

v′3 were then used. Fifty controls and fifty cases were generated for each v, and we 204

referred to the generated datasets as training1, training2, and test, respectively. Then, 205

we changed the count data to log-transformed relative abundance data. The count data 206

were changed to relative abundance data by dividing the sample counts first, followed 207

by a zero-replacement strategy suggested by Martn-Fernndez et al. [26]. In the strategy, 208

we took the minimum non-zero abundance in the dataset, and replaced all the 0 209

abundances with 0.65 times this minimum non-zero abundance. Then, the non-zero 210

relative abundance data were log-transformed and used in all of the following analysis. 211

Scenario 2: Different batch effects in studies with the same background 212

distribution of genomic features in a population 213

For this simulation, we kept the underlying populations the same for the training and 214

test data. The underlying OTU abundance profiles were chosen from Yu et al. [22] 215

shown in Table 1. Fixing the background genomic distribution ensures there is no 216

population variation described in Scenario 1 between the training and test samples. The 217

number of disease associated OTUs was set to 10 and library size is one million reads, 218

while the disease effect factor ed was set to 1.025. We generated 50 cases and 50 219

controls for each of the two training datasets and one test dataset. 220

We followed similar procedures as in Zhang et al. [8] to simulate batch effects on the 221

training data. The two training datasets were used as two batches to simulate different 222

batch effects. The batch effect generating model was based on the linear model 223
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proposed in ComBat batch correction method [12], which assumes an additive effect on 224

the mean of normalized OTU abundances, and a multiplicative effect on the variance. 225

We then chose three severity levels of batch effects (the levels of changes) for the effect 226

on the mean sevmean ∈ {0, 3, 5} and three severity levels for the effect on the variance 227

sevvar ∈ {1, 2, 4}. Thus, the model generated batch effect on the two batches with 228

adjusted mean to be {mean− sevmean,mean+ sevmean}, and adjusted variance 229

{var/sevvar, var × sevvar}. Batch effects were only simulated on the training data 230

while the test dataset was unchanged. The two training batches and one test dataset 231

were named as batch1, batch2, and test, respectively. batch1 and batch2 served the 232

same purpose as training1 and training2 from the previous scenario. 233

Scenario 3: Different disease models in different studies 234

In the simulation of different diseased models, unlike the previous two scenarios where 235

10 disease associated OTUs were fixed in the training and test datasets, we tuned an 236

additional parameter ‘overlapping OTUs’ in the test dataset. The 10 disease associated 237

OTUs were fixed in training data, while the number of disease associated OTUs in test 238

data were chosen from 2, 4, 6, 8, and 10 among the 10 disease associated OTUs in the 239

training data. As the number of overlapping disease associated OTUs increases, the 240

disease models in the training and test data becomes more similar. When the number of 241

overlapping OTUs achieves 10 in the test data, the disease models in the training and 242

test data are the same. After choosing the overlapping OTUs between the training and 243

test disease models, we followed the same procedures as the previous two scenarios to 244

simulate two training datasets with background OTU distribution from the CRC 245

dataset by Yu et al. [22], and one test dataset with background OTUs distribution from 246

the dataset by Feng et al. [24]. The details about the two datasets are shown in Table 1. 247

The three datasets were simulated with the following parameters: 100 samples with 50 248

cases and 50 controls, one million reads, disease effect factor ed 1.075. The two training 249

datasets and one test dataset were named as training1, training2, and test, 250

respectively. No batch effects were added in this simulation. 251

The random forests (RF) classifiers 252

After we simulated two training datasets and one test dataset as described above, we 253

treated training1 and training2 (batch1 and batch2 in scenario 2) as the training 254

datasets to be used in training RF classifier, and test to be used in applying trained 255

classifiers. We randomly split test into 50% validation data and 50% test data, and 256

renamed them val and test. The case and control samples were split evenly to avoid 257

bias. We then pooled the training1 and training2 together to form a merged dataset 258

as suggested by the merging method. training1 and training2 each has 100 samples, 259

and val and test each has 50 samples, while merged has 200 samples in total. All the 260

RF classifiers trained in our study were implemented by the ‘caret’ package in R [27] 261

with 1000 decision trees, and the ‘mtry’ parameter was tuned by a 10 fold 262

cross-validation. We also chose to use ‘ranger’ as the method for the train function, as it 263

reduced the running time compared to the ‘rf’ method. 264

Naive and ComBat normalization settings 265

We implemented two settings for the experiment, naive and ComBat normalization. In 266

the naive setting, the RF classifiers were trained directly on the original training 267

datasets and applied to the test dataset, and then combined by the integration methods. 268

In the ComBat normalization setting, the test dataset was used as reference to 269

normalize training1 and training2 by ComBat separately. Then, training1 combat 270
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and training2 combat was generated after the normalization while the test was not 271

changed. merged combat was generated by pooling training1 combat and 272

training2 combat into one dataset and used to be compared with merged dataset. RF 273

classifiers were trained on those normalized datasets as well. The prediction results 274

without integration methods using the above RF classifiers are described as following. 275

1. Training1: Train RF classifier on training1. 276

2. Training2: Train RF classifier on training2. 277

3. Training1 ComBat: Train RF classifier on training1 combat. 278

4. Training2 ComBat: Train RF classifier on training2 combat. 279

5. Merged: Train RF classifier on merged. 280

6. Merged ComBat: Train RF classifier on merged combat. 281

For Scenario 2, the notations were slightly different from the above. “Training1”, 282

“Training2”, “Training1 ComBat” and “Training2 ComBat” were renamed as “Batch1”, 283

“Batch2”, “Batch1 ComBat” and “Batch2 ComBat” since we had two batches with 284

different batch effects. “Merged” was replaced by two methods “Merged NoBatch” and 285

“Merged Batch”. “Merged NoBatch” was done by training RF classifier on the original 286

merged dataset with no batch effect simulated; while “Merged Batch” was done by 287

pooling “Batch1” and “Batch2” into one dataset first followed by the trained RF 288

classifier. “Merged ComBat” was done by pooling “Batch1 ComBat” and 289

“Batch2 ComBat” into one dataset, followed by the trained RF classifier. The above 290

trained classifiers were then applied to test data as predictors. Then, different ensemble 291

weighted learning or rank aggregation methods combined the predictors from 292

“Training1” and “Training2” or from “Training1 ComBat” and “Training2 ComBat” to 293

get final predictor. 294

Ensemble weighted learning methods 295

Patil et al. [9] evaluated the performance of cross-study learner by using five alternative 296

choices of weights: simple average of predictions from each single-study learner (“Avg”), 297

average weighted by study sample size (“n-Avg”), average weighted by cross-study 298

performance (“CS-Avg”), stacked regression (“Reg-s”), and averages of study-specific 299

regression weights (“Reg-a”). The last three ensemble methods reward reproducibility. 300

We compared these 5 ensemble weighted learning methods in our study as well. In 301

addition, we also implemented two other methods combined with RF classifier as 302

implemented in [13]. The detailed ensemble weighted learning methods are described as 303

follows. 304

1. Avg: Take the average of predictors from “Training1” and “Training2”. 305

2. n Avg: Average weighted by study sample size of the predictors from 306

“Training1” and “Training2”. In the simulations, since the sample sizes are the same for 307

the two training datasets, “n Avg” is the same as “Avg”. For real data applications, 308

due to different sample sizes of the datasets, the results from these two methods can be 309

different. 310

3. CS-Avg: Average weighted by cross-study performance. RF classifier was 311

trained on training1 and the applied the trained classifier on the samples from 312

training2 to get predicted probabilities, then calculated the cross-entropy loss. 313

Cross-entropy loss is defined as: 314

cel = − 1

N

N∑
n=1

yilog(pi) + (1− yi)log(1− pi), (4)

where N is the sample size in the test dataset, yi is the real case/control status of 315

sample i (yi is 0 if it is a control sample, or is 1 if it is a case sample), and pi is the 316

predicted probability of sample i to be a case sample by the machine learning classifier. 317
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The cross-entropy loss of training on training1 and predicted on training2 was 318

calculated and named as cel1. Likewise, we trained RF classifier on training2 and 319

predicted on training1, and calculated the cross-entropy loss cel2. Next, calculated 320

weights as weight1 = |cel1−max(cel1, cel2)|, and weight2 = |cel2−max(cel1, cel2)|, 321

and normalize the two weights to have sum of 1. In the two training datasets scenario, 322

the method always assigns the RF classifier with worse cross-study performance (higher 323

cross-entropy loss) to have zero weight, so in the simulations, only one of the predictors 324

from “Training1” and “Training2” was used for this method. In general scenario where 325

multiple training datasets are presented, the cross-entropy loss is calculated for each 326

training dataset performing predictions on each of the other datasets, for example, celij 327

is calculated by the predicted probabilities from samples in dataset j while training on 328

dataset i, then for dataset i the total cross-entropy loss is calculated by 329

celi =
∑

j,j ̸=i celij . Similar as the two training datasets scenario, the weights for each 330

dataset is calculated as weighti = |celi −max(cel1, cel2, ..., celi, ..., celn)| where n is the 331

total number of training datasets used. The final weights are normalized to sum to 1. 332

This method assigns zero weight to the model with the worst average performances on 333

the rest of the training datasets. 334

4. Reg-a: Averages of study-specific regression weights computed by non-negative 335

least squares. RF classifiers were trained on training1 and training2, respectively. 336

Then predicted on training1 and training2 to obtain 4 predictors. For testing on 337

training1, fit non-negative least squares to the two associated probability vectors with 338

real case/control status in training1 as response, and get the 2 coefficients. Repeated 339

same procedure for testing on training2. After this step, we constructed a 2× 2 340

coefficient matrix, with each row representing test data and each column representing 341

training data. Then, the coefficients in each row were multiplied by the sample size of 342

the test data, and the weights were finally computed as the column average of the 343

adjusted coefficients. 344

5. Reg-s: Stacked regression weights computed by non-negative least squares. The 345

2 predicted probability vectors from the “Reg-a” method were stacked into one vector 346

for each test dataset, and then fit non-negative least squares to the stacked vectors with 347

real case/control status as response. The coefficients were then used as weights. 348

6. val-auc: RF classifiers were trained on training1 and training2 independently. 349

Then applied the two trained classifiers on val to predict. Calculate the area under the 350

operational characteristic curve (AUC) scores by comparing to the real disease status 351

from val, and assign the two AUCs as weights on the predictors from “Training1” and 352

“Training2”. 353

7. LOSO-auc: Leave-One-Sample-Out (LOSO) AUCs were calculated for all test 354

samples, and then used the corresponding AUC − 0.5 as weights to combine predictors 355

from “Training1” and “Training2”. This method was proposed in [13]. 356

pi =
max(AUCtraining1

i − 0.5, 0)× ptraining1i +max(AUCtraining2
i − 0.5, 0)× ptraining2i

max(AUCtraining1
i − 0.5, 0) + max(AUCtraining2

i − 0.5, 0)
(5)

In the ComBat normalization settings, the above seven integration methods were 357

applied similarly to the predictors obtained from “Training1 ComBat”, 358

“Training2 ComBat” and “Merged ComBat”. The area under the operational 359

characteristic curve (AUC) scores were computed by comparing the predicted 360

probabilities from the combined predictors by ensemble learning methods to the real 361

case/control status, and evaluated the performance of each of these methods. 362
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Rank aggregation methods 363

Rank aggregation methods have not been used for predicting phenotypes. In this study, 364

we investigate how to use rank aggregation for phenotype prediction and their 365

performance. For each individual prediction method, we first ranked the samples in the 366

test data based on the predicted probabilities of being cases in a decreasing order to 367

obtain a ranked list, and assigned the smallest rank to items with ties. We then created 368

two ranked lists based on the predictions from the two training predictors. Next we 369

applied some rank aggregation methods to obtain an aggregated rank list for the 370

samples. 371

We used five rank aggregation methods and compared their performance both 372

among themselves and to the previous mentioned ensemble learning methods. 373

1. mean: Take the mean of the two rank lists. 374

2. geometric mean: Take the geometric mean of the two rank lists. 375

3. Stuart rank aggregation: First, normalize the ranks to rank ratios. Then, use 376

order statistics as proposed by Stuart et al. [28] to create an aggregated rank list. We 377

used the ‘RobustRankAggreg’ package [29] from R with method ‘stuart’ to compute the 378

results. 379

4. Robust rank aggregation (RRA): This method was proposed by Kolde et 380

al. [29] also based on the use of order statistics, but improved on the computational 381

efficiency and statistical stability. For each item in the rank list, the algorithm looks at 382

how it is positioned and compares this to the baseline case where all the preference lists 383

are randomly shuffled. A P-value is then assigned for all items, showing how much 384

better it is positioned in the ranked lists than expected by chance. This P-value is then 385

used to re-rank the list. We used the ‘RobustRankAggreg’ package [29] to compute the 386

results. 387

5. Bayesian analysis of rank data with covariates (BARC): Li et al. [30] 388

recently developed a Bayesian based rank aggregation method incorporating 389

information from covariates. Even though covariates are not of concern in our study, we 390

used their rank aggregation method with no covariates involved version. The method is 391

accessible from https://github.com/li-xinran/BayesRankAnalysis 392

After we obtained the aggregated rank lists by the above methods, we then 393

computed the area under the operational characteristic curve (AUC) scores to evaluate 394

the performance of those rank aggregation methods. Similar to the ensemble weighted 395

learning methods, those rank aggregation methods were applied to both naive and 396

ComBat normalization settings separately. 397

Applications on real CRC metagenomic datasets 398

We demonstrated applications of merging and integration methods to six real CRC 399

metagenomic datasets. We excluded the samples from patients with adenoma so that 400

only samples from patients diagnosed with CRC and healthy controls were used. The 401

information about the numbers of cases and controls for each dataset, country of origin, 402

and relevant references are shown in Table 1. We used MicroPro [31] to generate 403

microbial count profiles for the six CRC datasets. The generated count data has been 404

log transformed into relative abundance data using the same procedures as described in 405

the data pre-processing in simulation studies Scenario 1: Different background 406

distributions of genomic features in populations. We then pre-processed each dataset to 407

retain the top 1000 OTUs with the largest variance. 408

We implemented a Leave-One-Dataset-Out (LODO) setting for the real data 409

applications. For each dataset among the six datasets, we treated it as a test data and 410

the other five datasets were used as training data. We took the union of all the OTUs in 411

the five training datasets and filled with 0 abundance when the feature was missing in 412
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any particular dataset. We applied ComBat normalization on the five training datasets 413

as in simulation studies, while the training data were not changed for the naive setting. 414

Next, we trained RF classifiers on the five training datasets independently, and applied 415

integration methods to the five predictors. For the merging method, the five training 416

datasets were pooled into one dataset, and a single RF classifier was trained on it. 417

Applications on TB gene expression datasets 418

For the real application on the TB gene expression studies, we collected six annotated 419

and cleaned datasets from Zhang et al. [8]. The information about the country of origin, 420

numbers of case and controls, and relevant references can be found in Table 2. The TB 421

datasets were already transformed into the logarithm of fragments per kilobase of 422

transcript per million mapped reads (logFPKMs). Therefore we directly selected the 423

top 1000 gene features with the largest variance for each of the datasets, and took the 424

union of those genes as the complete features to be used in the following analysis. The 425

Leave-One-Dataset-Out strategy was performed on the six TB gene expression datasets 426

in the same way as for the CRC datasets described above Applications on real CRC 427

metagenomic datasets. 428

Table 2. Six gene expression datasets related to tuberculosis.

Dataset Country No. of cases No. of controls Reference
Zak South Africa/Gambia 16 104 [32]
Anderson South Africa/Malawi/Kenya 20 50 [33]
Leong India 25 19 [3]
Walter USA 35 35 [34]
Kaforou1 South Africa 46 48 [35]
Kaforou2 Malawi 51 35 [35]

Results 429

ComBat normalization is essential for heterogeneous populations 430

In the first scenario, we investigated the impacts of the different background operational 431

taxonomic unit (OTU) distributions in the training samples on the prediction 432

performance and the results are shown in Fig 3. When the training and the test data 433

have different background OTU distributions, direct applications of the trained 434

prediction model based on the training data to the test data yielded very low prediction 435

accuracy with area under the operational characteristic curve (AUC) close to 0.56 as the 436

“Training1” and “Training2” rows show. Merging the raw training data and directly 437

integrating the trained models from multiple training samples did not improve the 438

prediction accuracy. These results clearly showed the importance of normalization in 439

building prediction models. 440

Many methods have been developed for normalization of metagenomic data across 441

different studies ( [12], [15], [16]). However, most of these methods were designed to 442

mitigate the impacts of experimental artifacts, not for dealing with population 443

differences among the different studies. Still we applied one of the widely used 444

normalization method, ComBat [12], to normalize the different metagenomic data from 445

the different populations to see if the normalization can improve the prediction accuracy. 446

It is important to see that using ComBat to normalize the metagenomic data markedly 447

improved the prediction accuracy in the test data. For example, the AUC score for 448

“Training2 ComBat” was increased from average of 0.56 to about 0.96, 0.88 and 0.66 449
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when the disease effect was set at 1.100, 1.075 and 1.050, respectively. For different 450

values of α, we used v1(α) = αv1+(1−α)v2 as the background OTU relative abundance 451

for “Training1”, where α measures the difference between “Training1” and “Training2”. 452

It can be seen that the prediction accuracy decreases as α increases for all values of 453

disease effect ed. For example, when ed = 1.075, the AUC for “Training1 ComBat” 454

decreased from 0.87 to 0.78 as α increases from 0 to 1. This observation can potentially 455

be explained by the fact that v1 is further away from the test data than v2. 456

With the marked increase of prediction accuracy for “Training1 ComBat” and 457

“Training2 ComBat”, we investigated if integrating the two predictors by ensemble 458

weighted learning or rank aggregation can further increase the prediction accuracy and 459

the results are shown on the top rows marked with red. Except for 460

“rank RRA ComBat” and “CS Avg ComBat” that slightly underperformed the other 461

integration methods, all the other integration approaches give similar results and they 462

also outperformed both “Training1 ComBat” and “Training2 ComBat”. 463

Most surprisingly, the relatively simple merging method after ComBat normalization, 464

“Merged ComBat”, yielded the best performance. When the disease effect ed is relatively 465

high, for example, ed >= 1.075, the increase in AUC over other integration method is 466

minimal. However, when ed = 1.05, the AUC for “Merged ComBat” is 0.77 compared 467

to about 0.72 for other integration methods when α is small. Similarly, the AUC for 468

“Merged ComBat” is 0.75 compared to about 0.69 for other integration methods when α 469

is large. 470

These results indicates normalizing the population difference before training machine 471

learning models could play an important role in improving model prediction 472

performance. This result is surprising given that ComBat was originally designed to 473

correct for experimental artifacts like batch effects, not for adjustment for population 474

differences. Our results clearly showed that ComBat can be used to adjust for 475

population differences to increase cross study prediction accuracy. 476

ComBat normalization can successfully remove batch effects 477

within the same population 478

In the second scenario, we considered studies within the same population but from 479

different laboratories or using different sequencing technologies. In such a scenario, 480

experimental batch effects can happen and it is essential to correct the batch effects in 481

such studies. As presented in Scenario 2: Different batch effects in studies with the 482

same background distribution of genomic features in a population, we simulated batch 483

effects affecting the mean and the variance of OTU abundance levels, respectively. We 484

evaluated the RF classifier’s prediction accuracy on the test data for the two types of 485

batch effects separately. In this scenario, we let disease effect ed = 1.025 to clearly show 486

the relative performance of the different methods. Fig 4A shows the results when there 487

are additive effects on the mean (sevmean ∈ {0, 3, 5}) with variance remains unchanged 488

(sevvar = 1). Without data normalization, the AUC score on the test data is slightly 489

higher than 0.5 when sevmean = 0 and is 0.5 when sevmean ̸= 0 as expected. After 490

ComBat normalization, the AUC scores on the test data increased to about 0.75 for all 491

the parameter values. Most of the ensemble weighted learning and rank aggregation 492

methods of the two predictors further increased the AUC close to 0.8. Similar to 493

scenario 1, “rank RRA ComBat” and “CS Avg ComBat” slightly underperformed other 494

integration methods. Simply merging the two training datasets after ComBat 495

normalization achieved the highest AUC score of about 0.85. The last row showed the 496

highest AUC score one could get if there were no batch effects and it shows that the 497

prediction accuracy was only slightly decreased from 0.88 to 0.85 with 498

“Merged ComBat”. 499
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Fig 4B shows the results when there are multiplicative effects on the variance 500

(sevvar ∈ {1, 2, 4}) with no effect on the mean of OTU abundance levels (sevmean = 0). 501

Since the mean perturbation is 0, without normalization there are still some predictive 502

powers for the test data although the AUC score is generally low at around 0.6 based on 503

the two batches separately. Integrating the two predictors without ComBat 504

normalization did not improve the prediction accuracy. When sevvar = 1 or 2, after 505

ComBat normalization, the AUC scores based on the two training datasets were 506

increased to about 0.75. Integrating the predictors after ComBat normalization further 507

increased the AUC to about 0.80. On the other hand, when sevvar = 4, the ComBat 508

normalization only increased the AUC to 0.67 using ensemble weighted learning and 509

rank aggregation. However, merging after ComBat normalization, “Merged-ComBat”, 510

achieved the highest AUC score of 0.81. 511

Prediction accuracy can be markedly decreased as the number of 512

overlapping disease associated OTUs decreases 513

In Scenario 3, we investigated how the differences of disease models in the training and 514

test data affect the RF classifier’s prediction AUC scores and the results are shown in 515

Fig 5. The relative performances of the different prediction methods were mostly 516

consistent with the results from the first two scenarios. However, we did not see obvious 517

advantage of “Merged ComBat” over other ensemble weighted learning and rank 518

aggregation methods although “Merged ComBat” was still one of the best performers. 519

As expected, the prediction accuracy is markedly decreased as the number of 520

overlapping disease associated OTUs decreases. For example, when ed = 1.075 with only 521

less than 4 overlapping associated OTUs between the training and test data, the AUC is 522

less than 0.57 on average. When the number of overlapping disease associated OTUs 523

increases to 6 to 8, the optimal AUCs increased to about 0.7. On the other hand, when 524

the number of overlapping disease associated OTUs increased to 10, the optimal AUC is 525

around 0.91. 526

Aggregating ranks from predicted probabilities is an alternative 527

powerful way to integrating multiple heterogeneous studies 528

Aggregating the rank lists of the genes from multiple studies in order to have a complete 529

understanding of the biological interest has been frequently used in genomic studies. 530

Rank aggregation provides insights to integrating heterogeneous studies without dealing 531

with the challenge of normalizing the data across these studies, and previous studies 532

have shown that the aggregated rank list provides more meaningful results than single 533

rank list ( [28–30]). In our study, instead of aggregating the ranks of the genomic 534

features from multiple studies, we developed a method integrating the predicted 535

probabilities of test samples from multiple machine learning classifiers by transforming 536

those probability lists into rank lists, followed by different rank aggregation methods. In 537

our study, we focused on five established rank aggregation methods: mean of ranks, 538

geometric mean of ranks, Stuart rank aggregation [28], Robust Rank Aggregation 539

(RRA) [29] and Bayesian Analysis of Rank data with Covariates (BARC) [30]. The 540

detailed descriptions of these methods are given in Rank aggregation methods. 541

In our simulation studies, we observed similar prediction performance of the five 542

rank aggregation methods to the ensemble weighted learning methods in all three 543

scenarios (Fig 3, Fig 4 and Fig 5). In particular, all these five rank aggregation methods 544

performed well when combined with ComBat normalization. 545

In the real applications of colorectal cancer (CRC) and tuberculosis (TB), the five 546

rank aggregation methods showed slightly lower prediction performance than the 547
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ensemble weighted learning methods under naive settings. However, when combined 548

with ComBat normalization, all the five methods achieved similar and promising 549

prediction results compared with ensemble weighted learning methods. Surprisingly, S1 550

Fig and S2 Fig show that for individual studies, in the cases when ensemble weighted 551

learning didn’t improve the AUC scores (Figure S1 B and D), the rank aggregation 552

methods actually improved the prediction performance when compared with the 553

ensemble weighted learning methods. 554

As shown in both simulations and real applications, aggregating the ranks of 555

samples’ predicted probabilities provides new insights when integrating multiple 556

heterogeneous datasets in terms of phenotype prediction. We demonstrated that the 557

rank aggregation methods are as robust as the ensemble weighted learning methods, 558

and can even boost the prediction performance in some cases when ensemble weighted 559

learning didn’t work well. 560

Applications to metagenomic datasets related to colorectal cancer 561

We analyzed 6 metagenomic datasets related to colorectal cancer (CRC) as summarised 562

in Table 1 using the various methods. We implemented a Leave-One-Dataset-Out 563

(LODO) setting for the analyses with one of the six datasets as test data, while the 564

other five datasets as training data. The detailed method is described in Applications 565

on real CRC metagenomic datasets. Fig 6A shows the average AUCs among the six 566

LODO experiments for the “Merged”, “Ensemble weighting”, “Ensemble weighting 567

(normalized)”, “Rank aggregation” and “Rank aggregation (normalized)”. The “Single 568

learner” results from each LODO experiment were the averages of 5 single learners (5 569

training datasets), followed by the average among the six LODO experiments. The 570

independent results for each LODO experiment can be found in S1 Fig. 571

As shown in Fig 6A, when one single training dataset was used and predicted on the 572

test data, the AUC result increased from 0.63 to 0.65 on average when we used ComBat 573

normalization on the training data. The AUC results for ensemble weighted learning 574

and rank aggregation both improved slightly after ComBat normalization, but none of 575

those integration methods produced better AUC results compared with merging the five 576

training datasets. Comparing the prediction performance from the merging and 577

integration methods with the single learning, it is expected that the AUCs increased 578

about 0.1 on average, and this further supports the idea that cross-study prediction 579

using multiple training datasets is more accurate than using single training dataset. 580

From the individual training results as in S1 Fig, we observed similar trends as in 581

Fig 6A in most cases. Among the six test datasets, the AUCs associated with the 582

Hannigan dataset has the lowest scores, and neither merging with ComBat 583

normalization or ensemble weighted learning methods improved the prediction 584

performance. Also, the AUC scores when using Hannigan as test data is the lowest 585

among the six results, with an average of 0.61 for single learner and 0.63 for integration 586

methods. This observation is consistent with the data distribution from the PCoA plot 587

Fig 2A. As shown on the figure, the Hannigan dataset is most separate dataset from the 588

other five datasets with least overlap, and this demonstrated the very different 589

distribution of the count data from the Hannigan dataset than the other five datasets. 590

As we illustrated by the simulation studies, different background distributions of 591

genomic features in populations compromised the reproducibility of machine learning 592

classifier’s prediction performance. 593

Applications to gene expression datasets related to tuberculosis 594

To further investigate the prediction performance of merging and integration methods 595

on real datasets, we used 6 tuberculosis (TB) gene expression datasets as summarised in 596
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Table 2, and repeated the procedures in Applications to metagenomic datasets related 597

to colorectal cancer to the gene expression data. 598

In the application of TB studies (Fig 6B), the overall AUC results were much higher 599

than the CRC studies, and the ComBat normalization results improved markedly on 600

average among all analyzed methods. Unlike the application of CRC studies, the 601

ensemble weighted learning methods outperformed slightly the merging method in both 602

naive and ComBat normalization settings, while the rank aggregation method performed 603

slightly better than the merging method under the ComBat normalization setting. 604

From the individual plots S2 Fig, we observed that when the Zak and Anderson 605

datasets were served as test data, the prediction results are lower than the other four 606

datasets, and the ComBat normalization improvements on all methods are smaller than 607

the other four as well. This observation is consistent with the study by Zhang et al. [8] 608

where these two datasets has highest cross-entropy losses when served as test data. The 609

possible explanation for these difference is that the two datasets include only children or 610

adolescents, while the other four datasets include adults as well. According to Alcäıs et 611

al. [36], children and adults developed different tuberculosis clinical features and 612

parthenogenesis, and this could affect the machine learning models’ reproducibility 613

when the populations have different features in terms of disease. 614

We also observed the remarkable differences among training different single learners. 615

For example, in Figure S2 A, when RF classifier was trained on the Walter and Leong 616

datasets and predicted on the Zak dataset, the AUC results are much higher than 617

trained on Anderson, Kaforou1 and Kaforou2. Similarly, when training RF classifier on 618

Kaforou1 and Kaforou2 and predicted on Anderson, the AUCs can achieve 0.83 and 619

0.88, respectively, while training on the other three datasets and predicted on Anderson 620

only has 0.5 AUC which is more like a random guess. These observations are consistent 621

from the data distribution in the PCA plots (Fig 2B), Anderson, Kaforou1 and 622

Kaforou2 are closer to each other and far away from Zak, Walter and Leong, while the 623

later three datasets are closer to each other. This further indicates that the 624

heterogeneity in different datasets has large impacts on the reproducibility of machine 625

learning classifiers. 626

Lastly, based on the results from the real applications on the CRC and TB studies, 627

consistent with the results of simulation studies mentioned above, we demonstrated that 628

the ComBat normalization method is essential for heterogeneous populations. When 629

dealing with heterogeneous populations, it is recommended that using both merging and 630

integration methods to find best prediction results. 631

Discussion 632

With the increasing availability of large collections of omic data, the reproducibility of 633

machine learning prediction models has raised great concerns when conducting 634

cross-study predictions with the impact of study heterogeneity. Previous studies have 635

addressed this issue and developed many statistical methods to overcome study 636

heterogeneity, including merging with batch effect removal [37] and ensemble learning 637

methods [9]. In this study, we performed a comprehensive analysis of different methods 638

on the phenotype prediction by integrating heterogeneous omic studies. We considered 639

three different sources of heterogeneity between datasets, including population 640

differences, batch effects and different disease models. We developed a workflow in 641

simulating these three sources of heterogeneity and generating simulated samples based 642

on real datasets. We also evaluated the prediction performance of many different 643

statistical methods, including merging, ensemble weighted learnings and rank 644

aggregations. Besides the comparisons of different methods, we also explored the 645

potential of normalizing the data by ComBat first then applied those statistical 646
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methods mentioned above. We provided both simulation studies and real data 647

applications on CRC metageomic datasets and TB gene expression datasets to compare 648

different approaches. 649

In our simulation studies, we observed a decreasing trend in prediction accuracy 650

among all statistical methods we investigated when the population heterogeneity 651

became large, the batch effects increased on training data, as well as the differences of 652

disease models between training and test data enlarged. These observations indicate 653

that overcoming the heterogeneity needs to be addressed before applying machine 654

learning prediction models on cross-study settings. Merging and integration methods 655

that integrate different studies for phenotype predictions without batch correction did 656

not improve the prediction accuracy much when compared to single training model, but 657

when combined with ComBat normalization, we observed a remarkable improvement in 658

the the prediction accuracy in all simulations. These observations indicate normalizing 659

the heterogeneous datasets before training machine learning models is essential in 660

improving phenotype prediction performance. 661

It is noteworthy that our simulations yielded different conclusions in contrast with 662

the study by Zhang et al. [8] on the prediction performance of using merging with 663

ComBat normalization methods. In their study, they showed that merging with 664

ComBat normalization was not as robust as ensemble learning methods at high severity 665

of batch effects. However, in our second scenario of simulating different severity of 666

batch effects on training and test data, we observed that merging combined with 667

ComBat normalization always achieved highest prediction performance in spite of 668

severity of batch effects (Scenario 2: Different batch effects in studies with the same 669

background distribution of genomic features in a population). We investigated the 670

contradictions of observations in our study and the study by Zhang et al. [8], and we 671

noticed that the ComBat normalization process in our study was different from theirs. 672

In their study, when multiple training batches were provided, the batches were pooled 673

into one training data, then applied ComBat normalization on the pooled dataset. They 674

then did a second round of ComBat normalization on the test data using the pooled 675

training data as reference. In our study, we normalized the training batches using the 676

test data as reference when conducting ComBat normalization independently. The 677

normalized training batches were pooled into one data for training machine learning 678

model. Since test data is always the target of prediction, instead of adjusting the test 679

data, we used it as the baseline to adjust different training batches so that the 680

differences between training and test data were mitigated more effectively. Our study 681

showed that our normalization approach yielded higher prediction accuracy. 682

Consistent with simulations, the applications on the CRC metagenomic and TB gene 683

expression datasets with Leave-One-Dataset-Out experiments showed similar trends in 684

terms of performance of merging and integration methods combined with ComBat 685

normalization. However, the increasing trend in prediction accuracy is less remarkable 686

than in the simulation studies, probably caused by the escalations of heterogeneity when 687

five training datasets were used. Different to the simulations, when the number of 688

training datasets became five in the real data applications instead of two in the 689

simulations, the prediction performance of all merging and integration methods 690

improved compared to prediction with single training dataset even without ComBat 691

normalization. These results also suggest that the importance of integrating multiple 692

studies than only using single study in terms of machine learning model reproducibility. 693

With the comparisons of the statistical methods used in our study, we saw similar 694

trends for all the ensemble weighted learning methods except the slightly lower 695

performance of the “CS-Avg” method. The “CS-Avg” method penalized the training 696

dataset with the worst average performances on the rest of the training datasets when 697

doing cross-training-data validations, and it excludes this dataset from predicting on 698
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test dataset. The worse performance of “CS-Avg” demonstrated that excluding the 699

worst performance training data may not be beneficial to phenotype predictions as it 700

discards useful information from that particular training data in the same time. 701

Therefore, we suggest to use other ensemble weighted learning methods that also 702

penalize worst performance training data but retain the useful information in some way. 703

We also incorporated the rank aggregation methods into our study as well, and 704

illustrated that the rank aggregation methods showed similar prediction performances, 705

which also boosted the prediction accuracy remarkably. Rank aggregation methods 706

should be considered as an alternative way for integrating heterogeneous studies in the 707

future. We also noticed the extraordinary performance in merging method, and 708

consistent with the findings by Guan et al. [38], merging and integration methods can 709

outperform each other in different scenarios, and when training multiple studies we 710

should consider to use both methods to find optimal. 711
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Supporting information

S1 Fig. Realistic applications of merging and integration methods on
multiple colorectal cancer metagenomic datasets. The results by different
methods are grouped into six groups. “Single learner”: Each of the five training
datasets were trained independently with RF classifier and predicted on the test
dataset, then the average AUC score was taken among the five predictions. “Merged”:
Merging method with pooling all five training datasets into one train data. The “Single
learner” and “Merged” experiments were conducted under both naive and ComBat
normalization settings. “Ensemble learning”: The five training predictors were
integrated by ensemble weighted learning methods under naive setting. “Ensemble
learning (normalized)”: The five training predictors were integrated by ensemble
weighted learning methods under ComBat normalization setting. “Rank aggregation”:
The five training predictors were integrated by rank aggregation methods under naive
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setting. “Rank aggregation (normalized)”: The five training predictors were integrated
by rank aggregation methods under ComBat normalization setting. The red dots and
associated values on the figure are the mean AUC scores for each method, while the
black dots represent the outliers. Same method under different settings are represented
in the same color of boxplots. All the experiments were repeated 30 times for each test
dataset, and the results presented in the figure were based on the average AUC scores of
the total 180 replications for the six test datasets.

S2 Fig. Realistic applications of merging and integration methods on
multiple tuberculosis genomic datasets. The results by different methods are
grouped into six groups. “Single learner”: Each of the five training datasets were
trained independently with RF classifier and predicted on the test dataset, then the
average AUC score was taken among the five predictions. “Merged”: Merging method
with pooling all five training datasets into one train data. The “Single learner” and
“Merged” experiments were conducted under both naive and ComBat normalization
settings. “Ensemble learning”: The five training predictors were integrated by ensemble
weighted learning methods under naive setting. “Ensemble learning (normalized)”: The
five training predictors were integrated by ensemble weighted learning methods under
ComBat normalization setting. “Rank aggregation”: The five training predictors were
integrated by rank aggregation methods under naive setting. “Rank aggregation
(normalized)”: The five training predictors were integrated by rank aggregation
methods under ComBat normalization setting. The red dots and associated values on
the figure are the mean AUC scores for each method, while the black dots represent the
outliers. Same method under different settings are represented in the same color of
boxplots. All the experiments were repeated 30 times for each test dataset, and the
results presented in the figure were based on the average AUC scores of the total 180
replications for the six test datasets.
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Fig 1. Workflow for integrating multiple simulated heterogeneous
metagenomic datasets. A: Simulation step of three different heterogeneity scenarios.
Scenario 1: Different background distributions of genomic features in populations.
Scenario 2: Different batch various studies. The output from this step consists of two
simulated training datasets and one test dataset. B: Naive and ComBat normalization
settings in this study. The output from A are directly used in naive setting, while the
two training datasets in the output are normalized first in ComBat normalization
setting. C: Integration step of applying ensemble weighted learning and rank
aggregation methods. The output training datasets from the previous step are used in
training machine learning classifiers. Then the predictors are integrated by ensemble
weighted learning methods or the ranks of the predictors are integrated by rank
aggregation methods.
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Fig 2. Genomic feature distributions from multiple colorectal cancer and
tuberculosis studies. A: Principal coordinate analysis of Bray–Curtis distances
computed on six colorectal cancer metagenomic count datasets. B: Principal component
analysis of on six tuberculosis gene expression datasets. PCA was computed on the
logarithm of fragments per kilobase of transcript per million mapped reads (log FPKM).
Zak, Leong and Walter datasets are overlapped in this figure and far away from the
other three datasets. C: Principal component analysis of on Zak, Leong and Walter
tuberculosis gene expression datasets. Ellipses represent the 95% confidence level
assuming a multivariate t-distribution. Round dot represents a case sample, while
triangle dot represents a control sample.
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Fig 3. ComBat normalization markedly increases cross-study prediction
when the training and test data have different feature distributions. The
figures show the AUCs of RF prediction using different integration methods with three
different disease effect factors. Columns represents different values of α. All the method
names without a suffix of “ComBat” are the methods carried out in the naive setting,
while the names with a suffix of “ComBat” were carried out in the ComBat
normalization setting. All the experiments were repeated for 100 times and the AUC
scores shown on the figure are the averages from the 100 trials.
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Fig 4. ComBat normalization markedly increases cross-study prediction
when the studies have batch effects. The figures show the AUCs of RF prediction
using different integration methods with various batch severity levels. A: AUC score
comparisons with different severity levels of additive batch effects on the mean of OTU
abundances, with no multiplicative batch effect on the variance. B: AUC score
comparisons with different severity levels of multiplicative batch effects on the variance
of OTU abundances, with no additive batch effect on the mean. The disease effect factor
was set to 1.025 for both situations. All the method names without a suffix of “ComBat”
are the methods done in naive setting, while the names with a suffix of “ComBat” were
done in ComBat normalization setting. All the experiments were repeated for 100 times
and the AUC scores shown on the figure are the averages from the 100 trials.
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Fig 5. ComBat normalization markedly increases cross-study prediction
when the training and test data have different disease models. The figures
show the AUCs of RF prediction using different integration methods with various
number of overlapping disease associated OTUs. The disease effect factor was set to
1.075. Columns represent different numbers of overlapping disease associated OTUs in
the training and test data, the larger the number, the more similar the two disease
models are. When the number achieves 10, the two models are the same in the training
and test data. All the experiments were repeated for 100 times and the AUC scores
shown on the figure are the averages from the 100 trials.
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Fig 6. Realistic applications of merging and integration methods on multiple
colorectal cancer metagenomic datasets and tuberculosis gene expression
datasets. A: Leave-one-dataset-out average AUC score comparisons among different
methods in colorectal cancer metagenomic datasets. B: Leave-one-dataset-out average
AUC score comparisons among different methods in tuberculosis gene expression
datasets. The results by different methods are grouped into six groups. “Single learner”:
Each of the five training datasets were trained independently with RF classifier and
predicted on the test dataset, then the average AUC score was taken among the five
predictions. “Merged”: Merging method with pooling all five training datasets into one
train data. The “Single learner” and “Merged” experiments were conducted under both
naive and ComBat normalization settings. “Ensemble learning”: The five training
predictors were integrated by ensemble weighted learning methods under naive setting.
“Ensemble learning (normalized)”: The five training predictors were integrated by
ensemble weighted learning methods under ComBat normalization setting. “Rank
aggregation”: The five training predictors were integrated by rank aggregation methods
under naive setting. “Rank aggregation (normalized)”: The five training predictors were
integrated by rank aggregation methods under ComBat normalization setting. The red
dots and associated values on the figure are the mean AUC scores for each method,
while the black dots represent the outliers. Same method under different settings are
represented in the same color of boxplots. All the experiments were repeated 30 times
for each test dataset, and the results presented in the figure were based on the average
AUC scores of the total 180 replications for the six test datasets for metagenomic and
gene expression studies respectively.
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