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Abstract 
Current methods for evaluating the accuracy of germline variant calls are restricted to easy-to-

detect high-confidence regions, thus ignoring a substantial portion of difficult variants beyond the 

benchmark regions. We established four DNA reference materials from immortalized cell lines 

derived from a Chinese Quartet including parents and monozygotic twins. We integrated 

benchmark calls of 4.2 million small variants and 15,000 structural variants from multiple 

platforms and bioinformatic pipelines for evaluating the reliability of germline variant calls inside 

the benchmark regions. The genetic built-in-truth of the Quartet family design not only improved 

sensitivity of benchmark calls by removing additional false positive variants with apparently high 

quality, but also enabled estimation of the precision of variants calls outside the benchmark regions. 

Batch effects of variant calling in large-scale DNA sequencing efforts can be effectively identified 

with the concurrent use of the Quartet DNA reference materials along with study samples, and can 

be alleviated by training a machine learning model with the Quartet reference datasets to remove 

potential artifact calls. Matched RNA and protein reference materials were also established in the 

Quartet project, thereby enabling benchmark calls constructed from DNA reference materials for 

evaluation of variants calling performance on RNA and protein data. The Quartet DNA reference 

materials from this study are a resource for objective and comprehensive assessment of the 

accuracy of germline variant calls throughout the whole-genome regions. 
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Introduction 
The detection of germline variants from high-throughput DNA sequencing (DNA-seq) is vital for 

biomedical research and molecular diagnostics of rare1 and complex2 genetic diseases. Well-

characterized genomic reference materials can be used to benchmark measurement procedures, 

calibrate measuring systems and determine flagging criteria, and thereby support reliable 

application of genomic sequencing in basic research and clinical practice3, 4. 

Genome in a Bottle (GIAB) and other efforts have established various whole-genome 

reference materials and defined benchmark calls and regions to benchmark germline small variants 

(SNVs and indels)5-8 and structural variants (SVs)9-11. However, all these efforts on genomic 

reference materials only evaluated variants identified inside the benchmark regions. The full extent 

of sequences generated and analyzed for a test genome is greater than what is defined by the 

boundaries of the benchmark regions. A substantial portion of variants detected outside the 

benchmark regions are overlooked, including many medically relevant variants12. Moreover, 

benchmark calls and regions are generally integrated from various sequencing technologies and 

bioinformatic pipelines, and thus biased toward easy-to-detect genomic contexts. Using variants 

calling performance inside the benchmark regions as a proxy will overestimate the overall 

performance of DNA assays or bioinformatic pipelines on the whole-genome region. Moreover, 

ignoring variants outside the benchmark regions will militate against objective understanding of 

the limitations of existing sequencing technologies, and thus hindering further method 

development. 

Furthermore, in many practical applications of omics technologies, especially in large cohort 

studies, samples are often inevitably processed by multiple sequencing platforms at multiple 

centers over a relatively long period of time13. These large-scale projects usually suffer from batch 

effects due to the inconsistency of experimental conditions and sequencing machines14, 15. In DNA 

sequencing, batch effects are largely overlooked, but their widespread existence could lead to 

incorrectly taking batch-specific artifacts as real biological findings. Genomic reference materials 

are effective tools to identify and mitigate batch effects in DNA-seq16. Genomic reference 

materials can be sequenced along with test samples in every batch to determine whether batch 

effects exist. According to the properties of true positives and false positives detected from 
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genomic reference materials, proper thresholds can be selected to remove batch-specific artifacts 

for each batch17. 

To address these challenges in DNA-seq and beyond, we established four DNA reference 

materials from Epstein Barr Virus (EBV)-immortalized lymphoblastoid cell lines of a Chinese 

Quartet family, including the biological parents and monozygotic twin daughters. The Quartet was 

recruited from the Fudan Taizhou cohort in Central China, possessing genetic features of both 

Northern and Southern Chinese populations18. We extensively sequenced the whole genomes of 

the Quartet reference samples using multiple short-read and long-read sequencing platforms. We 

integrated both small variant and structural variant benchmark sets for each of the Quartet 

reference samples for evaluating variants calling accuracy inside the benchmark regions. The 

genomes of the monozygotic twins are almost identical19, and the expected number of germline de 

novo variants is fewer than 30 per generation and fewer than 1000 somatic mutations are 

introduced from cell culture20. The number of Mendelian violations in the detected variants is far 

more than the expected numbers of germline de novo variants and somatic mutations, indicating 

that most of the violations are sequencing or calling errors. Pedigree information of the Quartet 

members not only helped improve the sensitivity of benchmark sets by eliminating additional false 

positive variants with apparently high quality, but also facilitated the estimation of false positive 

rates of variants called outside the benchmark regions. The diverse sequencing data from the 

Quartet DNA reference materials also allowed us to identify batch effects present in whole-genome 

sequencing (WGS). The Quartet pedigree information was used to develop a machine learning 

based batch-specific filtration strategy to remove false positives and improve cross-batch 

reproducibility. 

This study is part of the Quartet Project that aims for quality control and data integration of 

multiomic profiling (http://chinese-quartet.org/). Apart from the DNA reference materials, the 

Quartet Project also established matched RNA, protein and metabolite reference materials from 

the same culturing of the immortalized Quartet cell lines. Benchmark sets defined for the DNA 

reference materials facilitate evaluation of variants calling accuracy from RNA and protein data 

according to the principles of the central dogma. Accompanying papers on the overall project 

findings[Zheng], transcriptomics[Yu], proteomics[Tian], metabolomics[Zhang], batch-effect 

monitoring and correction[Yu], and the Quartet Data Portal[Yang] can be found elsewhere21-26.  
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Results 

Study design with monozygotic twins and data generation 

We established four immortalized lymphoblastoid cell lines of a Chinese Quartet family, including 

father (F7), mother (M8), and monozygotic twin daughters (D5 and D6) (Fig. 1a). The Quartet 

DNA reference materials are genomic DNA (gDNA) extracted from each immortalized 

lymphoblastoid cell line in large single batches. To unbiasedly characterize germline small variants 

and SV benchmark calls, we sequenced all four Quartet genomes on four short-read (Illumina 

HiSeq and NovaSeq, BGI MGISEQ-2000 and DNBSEQ-T7 (30-60x coverage)) and three long-

read (Oxford Nanopore Technologies (ONT) (100x coverage), Pacific Biosciences (PacBio) 

Sequel (80x coverage), and PacBio Sequel II (30x coverage)) sequencing platforms at seven 

centers. We then used four orthogonal technologies, including linked-read sequencing (10x 

Genomics (30x coverage)), SNP array (the Axiom Precision Medicine Research Array (PMRA)), 

optical sequencing (BioNano), and PacBio circular consensus sequencing (CCS) reads (50x 

coverage) to validate and refine the benchmark calls (Fig. 1a and Supplementary Table 1). 

 A total of 108 germline small variants call sets were obtained from 27 short-read WGS 

libraries of each Quartet genome using the widely adopted GATK best practices (BWA-MEM and 

HaplotypeCaller (HC)) (Fig. 1b and Supplementary Table 2). A total of 120 germline SV call 

sets were obtained from three long-read WGS libraries of each Quartet genome with 11 

combinations from three aligners (NGMLR27, minimap228, and pbmm2) and five callers (Sniffles27, 

NanoSV29, cuteSV30, SVIM31, and pbsv) (Fig.  1c and Supplementary Tables 3 and 4).  

 Variants call sets of the monozygotic twins are expected to be the same, because the twins 

share the identical genome from their parents. When investigating the consistency of call sets from 

different sequencing platforms, variants calling methods, and Quartet samples (Supplementary 

Fig. 1), we observed that SNVs, small indels (<50 bp), large insertions, or large deletions (>50 bp), 

were clustered distinctly based on the identity of the Quartet samples, and the monozygotic twins 

were grouped together as expected. However, for large duplications, inversions, or translocations 

(>50 bp), the call sets did not cluster by the identity of the Quartet samples, but revealed strong 

clustering by bioinformatic pipelines, indicating lack of reliability of or consistency in 

bioinformatic pipelines for these three types of SVs. Thus, these three types of SVs were not 

included in the benchmark sets.  
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Determining small variant benchmark calls and regions  

To define germline variant benchmark calls, we first selected reproducible variants among call sets 

for each of the Quartet samples. Because the number of Mendelian violations was much more than 

the expected number of de novo mutations or somatic mutations arising from cell culture, all 

Mendelian violations were assumed to be errors20. Thus, we excluded Mendelian violations from 

the benchmark calls, even when they were reproducible among call sets.  

We generated one small variant benchmark dataset by integrating 108 call sets (27 call sets 

per sample) of all four Quartet samples based on short-read WGS. At the individual sample level, 

we obtained a total of 6 million variants of 27 call sets at the beginning, and an average of ~4.6 

million consensus variants after voting across triplicates in a batch, sequencing labs, and library 

preparation methods (PCR-free and PCR) (Fig. 2). To check Mendelian consistency of the 

remaining variants, genotypes should be confidently detected in all four Quartet samples for each 

variant. We then removed a total of 412,054 variant positions with no-call or conflict genotypes 

among the 27 call sets of any Quartet sample. Compared with variants filtered during the voting 

process, these removed variants showed higher variant allele frequency (VAF), read depth, 

mapping quality, and genotype quality (Supplementary Fig. 2). Therefore, they could not be 

removed by simply increasing variants filtration thresholds.  

We identified 5,708,723 small variant positions with reproducible genotype calls among all 

four Quartet samples. These remaining variants were further examined for Mendelian consistency 

in the Quartet family, and 7,329 (0.13%) of them were identified as Mendelian violations. We 

manually inspected 4,761 variants located in the callable regions with high mapping quality. Of 

the 3,221 validated small variants, 1034 overlapped with large deletions. They were mistakenly 

considered as Mendelian discordant by Mendelian analysis software VBT32, which was based on 

the hypothesis that variants always passed on diploid. Comparing with the variants detected in the 

matched blood samples of the Quartet family members, we found 95 pre-twinning germline de 

novo variants shared by the twins (homozygous reference in the parents and heterozygous or 

homozygous alternative in the twins), one postzygotic germline de novo variant specifically found 

in Quartet-D5, 1,532 somatic variants (also found in blood), and 559 variants probably 

accumulated from cell culture (not found in blood) (Supplementary Table 5). Finally, we kept 

the Mendelian violations confirmed by manually curation into the initial catalog of benchmark 
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calls. This process resulted in about 4.2 million well-supported small variants for each Quartet 

sample. 

Previous studies show that PacBio CCS reads yield a higher variant calling accuracy 

compared with NGS, especially when calling variants in the repetitive regions of the genome. 

When comparing with the variants based on 50x coverage of PacBio CCS reads, we found that 

98.7% and 95.0% of the variants in our benchmark dataset can be validated (Supplementary 

Table 6). The 89.7% unvalidated ones were found to be located in the repetitive regions of the 

genome, especially segmental duplications (41.6%) and centromeres regions (27.9%).  

We also validated the small variant benchmark dataset using 16 replicates of PMRA SNP 

array. We obtained 793,024 Mendelian consistent probes that were well-supported by most 

replicates from the 902,394 clinically related probes assayed on the PMRA array. Of those reliable 

probes, 99.99% homozygotic references, 98.6% SNVs, 95.7% small insertions, and 96.2% small 

deletions were the same with the NGS consensus variants (Supplementary Table 7). Among the 

2,845 discordant variants, 2,704 were detected by the PMRA array but were absent from NGS.  

We manually inspected the read alignment and found that the remaining 141 calls were either 

missed by NGS or genotyped differently from the PMRA array, and only seven were obvious false 

positive in the NGS consensus calls due to misalignment of NGS reads. The seven obvious false 

positives were later removed from the small variant benchmark calls. Consequently, the two 

validation processes removed 61,532 SNVs and 61,152 indels from the benchmark call sets.  

To enable the identification of false positive and false negative variants, we defined 

benchmark regions for small variants (Supplementary Fig. 3). Benchmark regions were defined 

as high-confidence variant and homozygotic reference regions in consensus callable regions by all 

Quartet samples, covering 87.8% of GRCh38 reference genome (~2.66 G; chr1-22, X). Consensus 

and Mendelian consistent variants outside the benchmark regions were not included in the final 

benchmark call sets (Table 1). 

We further compared the small variants benchmark calls with high confidence call sets from 

two accompanying studies33, 34 (Supplementary Fig. 4). These two high confidence call sets 

provide orthogonal confirmation of our calls (FDU), since Pan et al. (NCTR) integrated high 

confidence calls from four mappers (Bowtie2, BWA, ISAAC, and Stampy) and six callers 

(FreeBayes, GATK-HC, ISAAC, Samtools, SNVer, and Varscan), and Jia et al. (XJTU) 
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constructed haplotype-resolved high confidence calls by combining short-read and long-read 

technologies. We compared variants in the intersect of the three high confidence regions of the 

three studies and found that 99.99% SNVs and 99.51% indels in our FDU callset could be 

confirmed by either the NCTR callset or the XJTU callset.  

 

Determining structural variant benchmark calls and regions  

A similar strategy was used to determine SV benchmark calls by integrating the 120 call sets 

obtained from the long-read WGS data (Fig. 3). Because a large SV may be incorrectly called as 

multiple adjacent smaller SVs, we clustered SVs of the same type within 1 kb in each call set. This 

left about 90,000 isolated SVs of each Quartet sample. Then, SVs supported by the same pipeline 

from at least two sequencing platforms or by at least six pipelines from the same platform were 

determined as consensus SVs. Large SVs over 10 Mb and the ones located in centromeres, peri-

centromere, and gaps regions of the reference genome were excluded. The remaining 31,659 SVs 

were then re-genotyped in a pedigree using three genotypers (Sniffles27, SVjedi35, and LRcaller36) 

with the reads of PacBio Sequel and ONT. Consensus genotypes (23,891) from at least six of the 

ten genotype call sets were then determined as the consensus genotype calls for each of the Quartet 

samples. SVs with conflict genotypes had higher VAF (0.12-0.25 and 0.75-1.0) compared with 

discordant variants among replicates (0.12), but not as high as VAFs at peaks near 0.5 

(heterozygous) or 1.0 (homozygous), respectively (Supplementary Fig. 5). 

After obtaining consensus genotyped SVs, we then removed Mendelian violated SVs. Of the 

194 Mendelian violated SVs, we found that an 1,820 bp germline de novo heterozygous deletion 

shared by the twins, one specific heterozygous deletion of a twin daughter and two homozygous 

deletions of the father which probably were somatic or arose from cell culturing (Supplementary 

Table 8). These four SVs were supported by all three long-read platforms and thus retained in the 

benchmark call set. Following manual curation, we observed that the remaining 190 SVs were 

incorrectly genotyped. Most of them (91.7%) were located in regions of simple repeats over 100 

bp or segmental duplications, or clustered with other variants. Therefore, these 190 SVs were not 

included in the benchmark call set. Finally, ~15,000 benchmark SVs were kept into the benchmark 

call set for each Quartet sample (Table 1). Consistent with prior studies, we observed three peaks 
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near 300 bp, 2.1 kb and 6 kb, likely reflecting the activities of Alu elements, SVA elements, and 

full-length LINE1 elements in the human genome (Supplementary Fig. 6).  

Validating based on Illumina short reads, 10X Genomics linked-read, BioNano optical 

mapping, and whole genome assemblies using PacBio CCS and PacBio CLR data, we found that 

our SV benchmark callset is of high quality (Supplementary Table 9). The overall validation 

rates of insertions and deletions were 95.24% and 95.78% by at least one technology. Although 

we integrated short-read SV validation callset using 15 SV callers, the validation rates by short-

reads (48.7% INS and 76.0% DEL) were much lower than long reads assemblies (90.7% INS and 

92.6% DEL). BioNano only validated 3.2% INS and 1.8% DEL over 1 kb, due to its low resolution 

(kb) by specific restriction enzyme cut sites and failure to accurately determine breakpoints37. We 

also validated our SV benchmark callset with Jia et al.34, and found that 97.1% INS and 91.9% 

DEL were confirmed.  

We also compared our SV benchmark calls to the SVs identified by GRC38, HGSVC39, and 

HX140 with different groups of samples. The validation rates were 91.3%, 77.8%, and 54.7%, 

respectively. The high validation rate of GRC was because a Chinese sample was included, and 

the SVs were also detected from long-read data. Note that such comparison based on limited a 

number of samples will only detect the common SVs that are shared in different samples.  

To defined SV benchmark regions, we used ~100x PacBio Sequel CLR reads to establish 

haploid de novo assemblies for the parents F7 and M8 (2.94-2.99 Gb), and diploid de novo 

assemblies for the twins D5 and D6 (2.87-2.88 Gb). We then mapped de novo assemblies to the 

GRCh38 reference genome, and ~2.74~2.78 Gb callable regions were retained which were 

supported by reads larger than 50 kb and with mapping quality greater than 5. Regions of 

assembly-specific SVs, centromeres, and gaps were excluded from callable regions 

(Supplementary Fig. 7). The Quartet SV benchmark regions cover ~2.62 Gb of the reference 

genome (GRCh38; chr1-22) and contains ~12,705 (75.7%-83.6%) SVs of the benchmark calls. 

Only SVs inside the benchmark regions are considered when we evaluate variants calling 

performance of test sets based on benchmark sets with precision and recall. 
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Applications of the Chinese Quartet Genomic Reference Materials 

Evaluating variants calling performance by pedigree information and benchmark sets 

We used the whole-genome variants callsets derived from various library preparation methods, 

sequencing platforms, and bioinformatic tools to demonstrate the usability of the Quartet DNA 

reference materials in evaluation of variants calling performance. Each callset was evaluated based 

on the F1-score in the benchmark regions and the Mendelian consistent rate (MCR) on the whole 

genome. 

Four common mappers (Bowtie2, BWA, ISAAC, and Stampy) and six germline variant 

callers (HaplotypeCaller, ISAAC, Varscan, FreeBayes, Samtools, and SNVer) were compared 

based on ~30x Illumina short-read replicates from three sequencing centers (Fig. 4a). Callers had 

greater impact on variants calling accuracy compared with mappers. SNVs calling performance 

was high and similar (F1-score 0.978+0.012, MCR 0.944+0.017) among different callers, while 

Indels calling performance was lower and varied (F1-score 0.732+0.158, MCR 0.695+0.094). 

RTG, Sentieon, and HaplotypeCaller showed higher F1 scores for indel calling, with Samtools and 

SNVer performing the worst.  

To investigate the small variants calling performance of different sequencing platforms, we 

called small variants using the same pipeline (Sentieon) for short-read data and DeepVariant for 

PacBio CCS reads (Fig. 4b). Illumina platforms, BGI platforms, and PacBio CCS had similar 

performance, with no obvious differences. Sequencing platforms had smaller impact on variants 

calling accuracy compared with library preparation methods. PCR-free libraries were superior to 

PCR libraries for detecting Indels, with higher F1 scores (0.983+0.005 vs 0.958+0.016) and MCR 

rates (0.921+0.050 vs 0.873+0.094).  

For investigating SV calling performance, we compared 15 common callers using short-read 

data (Fig. 4c). Different callers had various SV calling performance, with F1 scores ranging from 

0 to 0.891 and MCR rates ranging from 0 to 0.645. Detection of DEL by short reads was slightly 

accurate than INS. Only Manta exhibited relatively high F1-score and MCR rate for both INSs and 

DELs compared to other callers. The MCR of INSs called by DELLY, GRIDSS, and MELT was 

much higher than F1-score evaluated by benchmark calls, because they detected fewer variants 

and had lower recall rates. We observed that most callers achieved high performance of DELs 

results, except for CNVnator, inGAP, and svaba. inGAP identified many more DELs (60,151) than 

benchmark calls, but had low precision and recall at the same time, indicating its low accuracy.  
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We also investigated SV calling performance of long-read sequencing platforms and 

bioinformatic pipelines, by retrospectively evaluating the performance of structural variants call 

sets used in this study to establish the benchmark sets (Fig. 4d). Generally, more SVs were detected 

from long reads (7726+3203) than short reads (4922+12471), and present sequencing technologies 

and algorithms display higher performance for DELs detection than INSs. Combination of 

mappers and callers should be carefully chosen according to sequencing platforms, since different 

combinations had F1 scores ranging from 0.374 to 0.856 and MCR rates ranging from 0.119 to 

0.437. NGMLR with cuteSV showed high performance detecting both DELs and INSs on all three 

long-read sequencing platforms. Pbmm2 with pbsv, which was specifically developed for the 

PacBio platform, performed better on PacBio Sequel II than Sequel. Notably, DELs detected by 

pbmm2/sniffles had low F1-score but high MCR. Compared with the median het/homo ratio 2.2:1 

in 30 call sets, het/homo ratio of pbmm2/sniffles was 0.02:1, which resulted in ~98% SVs of all 

four individuals with 1/1 genotypes, indicating that the genotypes of the pipeline were unreliable.  

We found that an average of 9% SNVs, 40% indels, 33% DELs, and 20% INSs were located 

outside the benchmark regions, which could not be evaluated by benchmark sets. The F1 scores 

for variants inside the benchmark regions might not reflect the accuracy outside the benchmark 

regions (Supplementary Fig. 8a). As expected, the error rates were significantly higher outside 

of the benchmark regions. Moreover, the Quartet family design identified more false-positive 

variant candidates compared to twins and trios and enabled a more precise measurement of error 

rates (Supplementary Fig. 8b). 

 
Identifying and mitigating batch effects in genomic sequencing  

To identify batch effects in WGS using the Quartet DNA reference materials, we performed 

principal component analysis (PCA) on genotype calls detected from various short-read 

sequencing platforms. Compared with RNA sequencing, DNA sequencing revealed a much 

smaller level of batch effect41. In the scatterplot of the first two eigenvectors, the monozygotic 

twin daughters were clustered together and located in the middle between the two parents in PC1 

and above the parents in PC2, as expected (Supplementary Fig. 9). We observed a clear batch 

effect from the third and the fourth eigenvectors (Figs. 5a-d). The sequencing platforms played an 

important role in leading to such detectable batch effects. Large insertions exhibited the lowest 

reproducibility across the sequencing platforms compared with other variant types, because 
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obvious batch effects were observed even from the first two eigenvectors. Variants called outside 

the benchmark regions showed larger batch effects than variants called inside the benchmark 

regions, as expected, because more variants outside the benchmark regions could not reach 

agreement among call sets (Supplementary Fig. 10). 

Batch effects can be mitigated by removing false positive variants in each batch due to 

different variant quality metrics such as quality scores, read depth, and mapping quality scores. 

Pedigree information of the Quartet DNA reference materials can be used to select proper 

thresholds of those variant quality metrics for each batch to filter potential artifacts. We trained a 

one-class SVM (support vector machines) classifier using variant quality metrics of Mendelian 

consistent variants (reliable variants) from one of the three replicates for each batch 

(Supplementary Table 10, batches 5, 6, and 7). Then the trained models were applied on the other 

two replicates to filter potential false positives for each batch. The efficiency of batch-specific 

filtration method was assessed by precision, recall, and cross-batch reproducibility (Figs. 5e-g). 

After filtration, the cross-batch reproducibility was greatly improved. The precision compared with 

the benchmark calls increased, while the recall rates decreased, which indicating that false 

positives were greatly reduced with inevitably sacrificing a small number of true variants. 

 

Evaluating variants called from mRNA and protein 

Apart from DNA reference materials, we also established RNA, protein, and metabolite reference 

materials from the same large batch of lymphoblastoid cell lines. Multiomic reference materials 

from the same resources of Quartet cell lines provide possibilities for cross-validating biological 

findings from one omics dataset by other levels of omics datasets, supporting quality assessment 

of a wide range of new technologies and bioinformatics algorithms.  

We illustrated a cross-omics validation of variants detected using the Quartet genomics, 

transcriptomics, and proteomics datasets. As shown in Fig. 6a, a total of 57,000 RNA variants and 

18 missense single amino acid variants were detected in RNA-seq and LC-MS/MS based 

proteomics of Quartet D5, respectively. Specifically, about 40-60% RNA variants in RNA-seq 

could not be validated by DNA small variant benchmark calls (Fig. 6b). We found more A>G and 

T>C RNA mutations in the false positive variants than in the true positive variants (Fig. 6c), 

indicating that RNA editing may play an important part in the high level of inconsistency between 

variants called from DNA and RNA sequencing datasets. The most prevalent RNA editing 
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involves the A>I conversion (adenosine to inosine), which is recognized by the cellular 

machineries or sequencing enzymes as A>G (or T>C on the opposite strand) in sequencing data42. 

Fig. 6d shows that a specific SNV benchmark call can be validated by both RNA and protein 

sequencing data. A missense SNV (chr17:74,866,471 T>C) caused a single amino acid mutation, 

changing from glutamic acid to arginine. 

These preliminary cross-omics validation results implicated that current applications for 

variant detection from RNA sequencing and LC-MS/MS based proteomics remain a challenge. 

The Quartet multiomic reference materials and datasets enable objective quality assessment of 

these emerging bioinformatics algorithms from cross-omics validations. 
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Discussion 
One primary challenge of germline variants performance assessment by a single reference sample 

is that the benchmark sets focus on evaluating the performance of easily detected variants and 

genomic regions, but ignore difficult variants outside the benchmark regions. Here, we established 

four DNA reference materials from a Chinese Quartet with parents and monozygotic twins. We 

constructed high-quality germline benchmark calls, including SNVs, small indels, large insertions 

and deletions, for each Quartet reference sample based on extensive short-read and long-read 

sequencing. The quality of the benchmark calls was improved through a series of data-filtering 

procedures including consensus voting of replicates, pedigree information, and orthogonal 

technologies.  

We demonstrated that the use of the Quartet DNA reference materials together helps make 

a comprehensive performance assessment of variants across the whole genome. There are two 

aspects of “truth” related to the Quartet DNA reference materials. One aspect is related to the 

benchmark calls, where only highly confident variants were kept. Precision and recall are 

commonly used metrics to evaluate variants calling performance within benchmark regions. 

Another aspect is the genetic built-in truth of the monozygotic twins and their parents. Mendelian 

concordance rate of variants among the Quartet members can be used to estimate the fraction of 

variants that might be correctly detected. Compared to other studies focusing on easy-to-detect 

variants in benchmark regions alone, difficult variants outside the benchmark regions not only 

reflect major discordances among different sequencing platforms and labs, but also help guide 

future development and optimization of sequencing technologies.  

There are also drawbacks only using pedigree information instead of benchmark sets for 

performance assessment. For example, systematic sequencing or mapping errors, such as 

heterozygotic or homozygotic variants called on all Quartet samples, which are Mendelian 

consistent, will be mistakenly considered as true variants. In some cases, Mendelian concordance 

rate is low due to sequencing failure of one or more Quartet reference samples. Comparison with 

the benchmark calls can help identify which sample exhibits bad variants calling performance. 

Notably, pedigree information can be used to evaluate Mendelian concordance, but it cannot help 

determine false negatives. Therefore, benchmark sets are necessary to identify false negatives and 
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measure recall rate, while the pedigree information provides additional tool for the assessment of 

variants calling accuracy outside the benchmark regions.  

Although benchmark sets are important, the current version of benchmark regions are 

relatively limited. Future work is needed to combine short-read and long-read data to expand the 

benchmark regions by resolving more difficult genomic regions. We will also include inversions, 

duplications and translocations in the benchmark sets as methods for variant detection improve.  

To evaluate and monitor the performance of the data generation processes, sequencing all 

the Quartet genomes is not cheap, especially for long-read sequencing. If one is only interested in 

variants or regions in the benchmark calls and regions, we recommend sequencing one of the 

Quartet samples and making quality assessment using benchmark sets by precision and recall. If 

the aim is to improve current technologies in some challenging genomic regions, we recommend 

sequencing all four Quartet samples to estimate performance on those difficult regions. Since a 

new technology is often accompanied by advantages beyond what current technologies can offer, 

the Quartet based Mendelian concordance rate is independent of the benchmark calls and can 

provide a more objective evaluation.  

To monitor and improve data quality across different sequencing centers in large-scale 

studies, we recommend sequencing all the Quartet DNA reference materials per batch. In an 

automated library preparation setup, 96 samples are routinely handled in a batch. Although 

including four quality control samples per batch increases experimental cost by ~5%, it can benefit 

the study tremendously by identifying and mitigating batch effects for the sake of discovering 

genuine biomarkers for precision medicine.  

The Quartet DNA and other types of omics reference materials are publicly available to the 

community by requesting through the Quartet Data Portal website (http://chinese-quartet.org/). 

We encourage researchers to upload and share Quartet sequencing data, thereby hoping the rich 

collections of diverse datasets and analysis for the Quartet samples will enable optimization of the 

benchmark sets and regions. In summary, the Quartet DNA reference materials and datasets are 

essential resources for objective and comprehensive evaluation of the quality of sequencing and 

bioinformatic methods, which will greatly improve the quality control awareness of the sequencing 

community and help overcome barriers to the translation of findings from genomic studies into 

clinical practices.  
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Methods 

Materials Availability  

The Quartet DNA reference materials generated in this study can be requested from the Quartet 

Data Portal (http://chinese-quartet.org/) under the Administrative Regulations of the People’s 

Republic of China on Human Genetic Resources. 

Data Availability 

Short-read and long-read datasets used in this study can be obtained through the Genome Sequence 

Archive GSA (GSA) of the National Genomics Data Center of China with BioProject ID of 

PRJCA007703, or from SRA. Quartet DNA benchmark sets generated by this study can be 

accessed from the Quartet Data Portal (http://chinese-quartet.org/). 

Establishing DNA reference materials 

The Chinese Quartet DNA reference materials were extracted from four immortalized B-

lymphoblastoid cell lines transfected by Epstein-Barr virus, including father (F7), mother (M8) 

and monozygotic twin daughters (D5/D6). We extracted two batches of DNA on August 6, 2016 

and October 28, 2017 from two large expansions of the cell lines. We diluted DNA to 220 ng/µL 

and made >1,000 aliquots for each DNA sample. Each vial contains 10 µg of DNA in TE buffer 

(10 mM TRIS, pH 8.0; 1 mM EDTA, pH 8.0). The Quartet DNA is stored at -80°C for long-term 

preservation, or at 4°C for short-term preservation. We checked the integrity of DNA (DIN) by 

Agilent 4200 and the distribution of DNA fragment length by Agilent 2200. The Quartet DNA is 

stable for at least three years at -80°C and for three weeks at 4°C during the entire duration of 

quality monitoring. This study focuses on germline variants calling quality control. Two batches 

(Lot 20160806 and Lot 20171028) of DNA reference materials were extracted from large 

expansion of cell lines, with 1000 tubes (10 µg, 220 ng/µL) for each Quartet reference sample at 

each batch. DNA reference materials are stable and in good quality. The peak size of DNA 

fragments is over 60 kb. The stability has been monitored monthly for three years, with DNA 

integrity number (DIN) over 8.5. 

Library preparation and whole-genome sequencing 

1. Short-read sequencing 
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Twelve tubes of Quartet DNA reference materials, with three replicates for each of the four Quartet 

sample types, were sequenced per batch. DNA reference materials were from Lot 20160806. We 

obtained datasets from four sequencing platforms in six sequencing labs by PCR and PCR-free 

library protocols, resulting in 27 replicates per sample and 108 libraries in total: 

1) ~50x paired-end, whole-genome sequencing with 2x100 bp reads of ~250 bp insert size 

from MGI-SEQ2000 with PCR library kit, performed at BGI. 

2) ~30x paired-end, whole-genome sequencing with 2x150 bp reads of ~300 bp insert size 

from Illumina HiSeq XTen with TruSeq Nano library kit, performed at ARD and NVG. 

3) ~30x paired-end, whole-genome sequencing with 2x150 bp reads of ~400 bp insert size 

from Illumina HiSeq XTen with TruSeq Nano library kit, performed at WUX. 

4) ~30-60x paired-end, whole-genome sequencing with 2x150 bp reads of ~300-400 bp insert 

size from Illumina NovaSeq6000 with PCR-free library kit, sequenced at ARD, BRG, and 

WUX. 

5) ~35x paired-end, whole-genome sequencing with 2x150 bp reads of ~380 bp insert size 

from DNB-SEQT7 with PCR-free library kit. 

2. Long-read sequencing 

To establish structural variant benchmark calls, the four Quartet DNA reference materials, one 

replicate for each sample, were sequenced on three long-read platforms, resulting in three libraries 

per sample and 12 libraries in total:  

1) ~100x, whole-genome sequencing with 11-14 kb mean read length and 20-25 kb N50 read 

length from Oxford Nanopore Technologies (ONT). DNA reference materials were from 

Lot 20171028. 

2) ~100x, whole-genome sequencing with 8-11 kb mean read length and 13-18 kb N50 read 

length from PacBio Sequel (CLR). DNA reference materials were from Lot 20160806. 

3) ~30x, whole-genome sequencing with 16-18 kb mean read length and 26-28 kb N50 read 

length from PacBio Sequel II (CLR). DNA reference materials were from Lot 20160806. 

We also generated sequencing datasets from BioNano, 10x Genomics and PacBio CCS reads 

to validate benchmark calls: 
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1) BioNano Genomics: ~200X for D5, ~300X for D6, F7 and M8 BioNano Genomics data 

with average fragment length 260~300 kb. DNA reference materials were from Lot 

20160806. 

2) 10x Genomics: ~30X Genomics data with average fragment length ~150 kb. DNA 

reference materials were from Lot 20160806. 

3) ~50x, whole-genome sequencing with 13-14 kb mean read length and 13-14 kb N50 read 

length from PacBio Sequel II (CCS HiFi reads). DNA reference materials were from Lot 

20160806. 

Reads mapping and variants calling for short-read sequencing 

Sequences were mapped to GRCh38 (https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-

reference-files). We used Sentieon Genomics software (https://www.sentieon.com/) to analyze 

short-read WGS datasets from raw fastq files to GVCF files. This workflow was derived from 

recommended germline small variants calling pipeline by the Broad Institute 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-

discovery-SNPs-Indels-), including reads mapping by BWA-MEM, duplicates removing, indel 

realignments, base quality score recalibration (BQSR), and variants calling by HaplotyperCaller 

in GVCF mode. Then we performed joint variants calling using Sentieon GVCFtyper to merge all 

108 GVCF files. We used default settings for all processes. 

      Different from regular VCFs, GVCF files have records and extra information for all genomic 

sites. A site is recorded as a variant call, homozygotic reference, or with no reads covered. In a 

regular VCF, we cannot distinguish a site with no information from a homozygotic reference. 

GVCF files enable us avoid mistaking no-call sites as homozygotic references, and facilitate 

representation of complex variants as well. 

      To keep as many variants as possible and not to remove any potential true variants with low 

qualities, we did not filter variants from the original GVCF call sets by empirical variants quality 

or machine learning based variants quality score recalibration (VQSR). 

Reads mapping and variants calling for long-read sequencing 

We used three mappers (NGMLR, minimap2, and pbmm2) and five callers (cuteSV, NanoSV, 

Sniffles, pbsv, and SVIM) to call structural variants, resulting in 11 combinations. Reads were 
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mapped to human genome version hg38 (GCA 000001405.15) from UCSC Genome Brower 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes/). 

      PacBio Sequel-based call sets were generated as follows: 

1. Reads were aligned with NGMLR v.0.2.7 with -x pacbio parameter, minimap2 v.2.17-r941 

with -x map-pb --MD -Y parameters and pbmm2 v.1.0.0 with --sort --median-filter --sample 

parameters separately. 

2. Structural variants calling was performed using cuteSV v.1.0.4 with --genotype parameter, 

NanoSV v1.2.4 with per chromosome pattern and an ancillary file containing random positions 

in hg38, Sniffles v.1.0.11 with default parameter and SVIM v.1.2.0 with --minimum_depth 10 

parameter based on BAM files created by NGMLR v.0.2.7 and minimap2 v.2.17-r941 

separately. Additionally, Sniffles v.1.0.11 was also run on pbmm2 v.1.0.0 and pbsv v.2.2.1 was 

run on pbmm2 v.1.0.0 and NGMLR v.0.2.7. The pbsv discover stage was run with --tandem-

repeats parameter using tandem repeat annotations file 

human_GRCh38_no_alt_analysis_set.trf.bed 

(https://github.com/PacificBiosciences/pbsv/tree/master/annotations). The pbsv discover and 

call stages were both run on the full genome. 

      PacBio Sequel II-based call sets were generated as follows: 

1. Reads were aligned with NGMLR v.0.2.7 with -x pacbio parameter, minimap2 v.2.17-r941 

with -x map-pb --MD -Y parameters and pbmm2 v.1.0.0 with --sort --median-filter --sample 

parameters separately. 

2. Structural variants calling was performed using cuteSV v.1.0.4 with -s 3 --genotype parameters, 

NanoSV v1.2.4 with per chromosome pattern and an ancillary file containing random positions 

in hg38, Sniffles v.1.0.11 with -s 3 parameter and SVIM v.1.2.0 with --minimum_depth 3 

parameter based on BAM files created by NGMLR v.0.2.7 and minimap2 v.2.17-r941 

separately. Additionally, Sniffles v.1.0.11 with -s 3 was also run on pbmm2 v.1.0.0 and pbsv 

v.2.2.1 was run on pbmm2 v.1.0.0 and NGMLR v.0.2.7. The pbsv discover stage was consistent 

with PacBio Sequal-based process. 

      Nanopore-based call sets were generated as follows: 

1. Reads were aligned with NGMLR v.0.2.7 with -x ont parameter and minimap2 v.2.17-r941 
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with -x map-ont --MD -Y parameters. 

2. SVs were called using cuteSV v.1.0.4 with --genotype parameter, NanoSV v1.2.4 with per 

chromosome pattern and an ancillary file containing random positions in hg38, Sniffles 

v.1.0.11 with default parameter and SVIM v.1.2.0 with --minimum_depth 10 parameter based 

on BAM files created by NGMLR v.0.2.7 and minimap2 v.2.17-r941 separately. 

      In addition to the parameters of mappers and callers mentioned above, the others are default. 

Detecting structural variants from Illumina-based short-read sequencing 

Illumina NovaSeq WGS short-read sequencing with ~40x 2×150 bp and 420 bp insert size was 

performed at ARD and used to call structural variants. The reads were mapped to the 

GRCh38.d1.vd1 reference genome by Sentieon BWA. According to previous studies43, 15 

algorithms with relatively high precision and/or recall were selected for structural variants 

discovery, including Breakdancer44, CNVnator45, DELLY46, GRIDSS47, inGAP-sv48, LUMPY49, 

Manta50, MELT51, Pindel52, softSV53, SvABA54, SVseq255, tardis56, TIDDIT57, and Wham58. 

Consequently, 15 Illumina-based call sets were generated for each Quartet reference sample. 

Structural variants were filtered based on the number of reads supporting structural variants (RSS), 

types and lengths. For several algorithms, RSS value was not available and other values such as 

quality scores were used to simulate RSS. Only five types of structural variants were retained 

(INSs, DELs, DUPs, INVs, and BNDs). Structural variants under 50 bp were removed except for 

BNDs. The filtered output file for each algorithm was converted to a VCF format with 

SVMETHOD, END, SVTYPE, and SVLEN tags in the information field. All 15 call sets for each 

individual in Quartet were merged into a single call set based on the same type and with 

breakpoints distance of 1 kb using SURVIVOR v.1.0.7.  

Detecting small variants and structural variants from 10x Genomics linked reads  

Small variants and structural variants were called by longranger-2.2.2 

(https://support.10xgenomics.com/genome-exome/software/downloads/latest) with default 

parameters from 10x Genomics linked reads data sets. Small variants were from 

phased_variants.vcf.gz. Structural variants over 50bp were from dels.vcf.gz and large_svs.vcf.gz 

were retained.  
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Detecting structural variants from BioNano  

The structural variants were called by BioNano Solve v3.1 

(bnxinstall.com/solve/Solve3.1_08232017) with default parameters. 

Detecting small variants and structural variants from PacBio CCS reads 

The small variants were called by DeepVariant (https://github.com/google/deepvariant) with 

default parameters. The structural variants were called by pbsv 

(https://github.com/PacificBiosciences/pbsv) with default parameters. 

Detecting structural variants from PacBio assembly alignments 

The complete diploid assembly was reconstructed based on trio binning of canu v1.8 from PacBio 

Sequel CLR data (~100X) of twins and Illumina NovaSeq ~40x 2×150bp WGS short-read 

sequencing data with 420 bp insert size performed at ARD for the two parents. Trios are formed 

by twins D5 and D6 and their parents respectively. Each trio is then assembled independently. The 

assembly was performed with canu -p prefix -d prefix genomeSize=3.1g -pacbio-raw 

pacbio.fasta.gz -haplotypeF7 F7.NGS.fastq.gz -haplotypeM8 M8.NGS.fastq.gz. The diploid 

assembly results of parents were generated by FALCON v0.4 with default parameters based on 

~100x PacBio Sequel CLR sequencing data.  

      Two methods of assembly alignment were used, including MUMmer v4.0.0beta2 and 

minimap2 v.2.17-r941. MUMmer assembly alignments were performed with the commands 

nucmer -maxmatch -l 100 -c 500 ref.fa --prefix haplotype.contigs.fasta. Minimap2 assembly 

alignments were performed with the commands minimap2 -cx asm5 -t12 --cs ref.fa 

haplotype.contigs.fasta. Three assembly-based callers were used including Assemblytics V1.2.1, 

SVMU V0.4, and Paftools (https://github.com/lh3/minimap2/tree/master/misc). Assemblytics was 

run with the parameters unique_length_required=10000 min_size=20 max_size=1000000 by 

MUMmer alignment. Results were transformed into VCF format using SURVIVOR. SVMU was 

run with default parameters by MUMmer alignment. Paftools was run with default parameters to 

identify structural variants from the CS tags generated by Minimap2 alignment. Results of SVMU 

and Paftools were transformed into VCF format using a custom script. Structural variants of two 

contigs of the twins were merged into a single call set, and then structural variants shared between 

twins are used to validate structural variants benchmark calls. 
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Preprocessing and filtering of structural variants call set from long-read sequencing 

Due to considerable diversity in the number, type, and size of structural variants and the format of 

VCF files created by different caller algorithms, it was difficult to merge the original VCF files 

directly for downstream analysis. In order to unify the standard and facilitate the analysis, 

structural variants call sets were preprocessed as follows: 

1. Only five types of structural variants (INS, DEL, DUP, INV, and BND) were retained for each 

call set. For Sniffles, complex structural variant types were excluded. For SVIM, DUP_INT, 

and DUP:TANDEM were converted to DUPs. For pbsv, CNVs were filtered.  

2. All structural variants under 50 bp were removed except for BNDs.  

3. All structural variants call sets were filtered if they do not meet the minimum number of 

supporting reads. For ~100X PacBio Sequel and ONT sequencing datasets, structural variants 

call sets from cuteSV and Sniffles were filtered with tag RE ≥10. SVIMs were filtered with tag 

SUPPORT ≥10. Structural Variants called by NanoSV were filtered with tag DV ≥10. For pbsv, 

structural variants were filtered based on read depth of variant allele ≥3 of tag AD. The 

parameter median-filter in pbmm2 v.1.0.0 only aligns the subread closest to the median subread 

length per ZMW and significantly reduces the number of reads supporting structural variants, 

thus a lower filtering threshold should be used. Otherwise, pbsv will lose too many true variants. 

For ~30X PacBio Sequal II, heuristically, the minimum number of reads supporting structural 

variants in all call sets from cuteSV, Sniffles, SVIM, and NanoSV was adjusted to three. The 

filtering threshold of pbsv was the same as that of PacBio Sequel for the parameter --median-

filter. 

4. All structural variants call sets were assigned a unique ID based on sequencing platform, 

sample name, pipelines, serial number and structural variants type for backtracking easily. 

Integration of small variant benchmark calls 

Construction of small variants benchmark calls was described as follows: 

1. GVCF files of 108 libraries were merged by joint variants calling process for each chromosome 

separately (chr1-22, X), with samples in columns and variants in rows. 

2. Variants recurrent in most of 27 replicates for each Quartet sample were selected. This process 

was run for each chromosome. Then we merged results of all chromosomes and obtained four 

integrated catalogs corresponding to the four Quartet reference samples. Each site was 
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annotated by “Conflict” (fail in the replicate consensus process), “./.” (no call in most 

replicates), or agreed genotype by voting. 

3. We removed sites annotated as “Conflict” in any of four Quartet samples, and sites voted as 

“0/0” or “./.” in all four Quartet samples.  

4. A total of 31,155 small variant positions overlapping deletions were removed in all four Quartet 

samples, which represented with “*” in gvcf files, because downstream analysis tools cannot 

del with * allele. 

5. Mendelian inheritance status of remaining sites was checked by VBT 32. We split Quartet into 

two “trios” (D5-F7-M8 and D6-F7-M8), and performed Mendelian analysis by VBT separately. 

Only variants shared between twins and Mendelian consistent with parents were retained. 

6. We kept variants in callable regions described below for all four Quartet samples. 

Integration of structural variant benchmark calls 

The benchmark structural variants were constructed based on all 120 long-read sequencing 

structural variants call sets described above, only including chr1-22: 

1. Structural variants callers with different detection algorithms lead to the same variant being 

called with different breakpoints and lengths. Moreover, due to the scoring systems of aligners 

and different clustering methods of callers, some large structural variants events were split into 

several smaller INSs/DELs in a local region. These redundant variants inflated the number of 

structural variants and hindered subsequent merging calls between different callers for the 

same sample. Jasmine v.1.0.1 (https://github.com/mkirsche/Jasmine) uses an improved 

minimum spanning forest algorithm to merge different variants within a single caller or 

between callers. Each variant was represented by a breakpoint (start, length) in two-

dimensional space. The distance between the two variants was equal to the Euclidean distance 

(default) by their breakpoints. When the distance between variant breakpoints met 

the max_dist value (default value 1000, Euclidean distance: [(start1-start2) ^2+ (length1-

length2) ^2]1/2 ≤1000), these close variants with the same variant type were clustered into a 

single structural variant event.  

2. We used Jasmine with --allow_intrasample, --keep_var_ids and --ignore_strand parameters to 

merge structural variants between callsets for each sample.  

3. The integrated structural variants set of each individual sample was subsequently filtered to 

retain structural variants supported by at least two long-read sequencing platforms or at least 
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six call sets in a single technology.  

4. The four integrated structural variants sets in Quartet were merged into one call set by Jasmine 

with --keep_var_ids and --ignore_strand parameters. 

5. Structural variants were excluded if their size is over 10 Mb and in low-confidence regions, 

including centromeres, pericentromeric region and gaps in hg38 reference genome.  

6. Structural variants frequently occur on repeats, which seriously hinders accuracy of detecting 

breakpoints and sequences on the alternative allele. Structural variants with explicit sequences 

were also helpful for subsequent genotyping. Therefore, we used Iris v1.0.1 to report 

alternative allele sequences of INSs and DELs. It extracted breakpoints by racon or 

falcon_sense to get consensus sequences. Then NGMLR or minimap2 was used to re-align 

these sequences of the breakpoints to the reference genome for refining the variant breakpoints 

and sequences. The read names of supporting structural variants and allele sequences were 

obtained by Sniffles with -n -1 -s 2 --Ivcf parameters. We refined INSs and DELs by Iris with 

max_out_length=1000000, --also_deletions and --pacbio parameters. In addition, the 

minimap2 bam files from PacBio Sequel II of each Quartet sample were adopted for reporting 

sequence and refining breakpoints, because PacBio Sequel II sequencing datasets had lower 

mismatch rates.  

7. We re-genotyped merged structural variants from two long-read sequencing platforms (PacBio 

Sequel and ONT) by three long-read genotypers (LRcaller v0.1.2, Sniffles v1.0.11 and SVJedi 

v1.1.0) with default parameters. The bam files from NGMLR and minimap2 of PacBio Sequel 

and ONT were used by Sniffles and LRcaller. The fasta files of PacBio Sequel and ONT were 

used by SVJdei. Thus, for each Quartet sample, a total of 10 genotyping call sets were produced, 

four from LRcaller, four from Sniffles and two from SVJedi. SVs were considered successfully 

and concordantly genotyped if at least six of the ten genotypes were the same. 

8. The structural variants successfully genotyped as heterozygous variants or homozygous 

variants in at least one of four Quartet samples were retained as input of Mendelian analysis. 

We retained structural variants that were shared by twin daughters and Mendelian consistent 

with parents, using bcftools v.1.9-224-g96ef00a. 

Defining benchmark regions of small variants 

First, we obtained callable regions from bam files using GATK V3.8-1 CallableLoci for each of 

the 108 short-read libraries, with –maxDepth 300 --maxFractionOfReadsWithLowMAPQ 0.1 --
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maxLowMAPQ 1 --minBaseQuality 20 --minMappingQuality 20 --minDepth 10 --

minDepthForLowMAPQ 10 parameters.  

      We next selected consensus callable bed regions for each Quartet reference sample, if bed 

regions were denoted as callable (1) at least 2/3 replicates in one batch, (2) at least 4/5 batches by 

PCR library preparation and 3/4 batches by PCR-free, and (3) both PCR and PCR-free library 

preparation methods. Then we kept regions callable in all Quartet samples. 

      We obtained reproducible invariant genomic positions by the same voting process. We then 

converted reproducible invariant genomic positions and high-confidence small variant positions 

to bed region, and kept regions where all Quartet samples had concordant voting results.  

      Benchmark regions include positions of small variants benchmark calls and invariant 

homozygotic reference positions in consensus callable regions mention above. Thus, we got 

regions which were callable and had consistent calling results among replicates and all Quartet 

samples. 

Defining benchmark regions of structural variants 

When evaluating analysis methods using structural variants benchmark calls, structural variants 

were limited in the benchmark regions, which could assess the accuracy of genotyping about INSs 

and DELs.  

The process for constructing benchmark regions was as follows: 

1. We first identified callable regions covered by exactly one contig from output of Paftools based 

on trio binning genome assembly of Canu, as described in PacBio assembly-based structural 

variants detection. By default, Paftools used assembly-to-reference alignment longer than 10 

kb to generate callable regions. 

2. For each individual in twins, we got the union of the regions from each parental haplotype. 

Then we obtained the intersection of callable regions between twins. 

3. We compared the benchmark calls and PacBio-based assembly structural variants from 

Paftools in twins through Jasmine with --keep_var_ids and --ignore_strand parameters, and 

then retained assembly specific structural variants. 

4. We applied svanalyzer widen command to extend the repetitive genomic coordinates 

surrounding assembly specific structural variants, and then added 50 bp on each side of these 
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regions.  

5. Based on the regions obtained in step 2, we removed the regions in the step 4. Finally, we 

constructed the benchmark regions for benchmark set in twins. 

6. The process for constructing benchmark regions in parent was similar to that of twins except 

for step 2, because there were no biological replicates of the parents. 

Validation of small variants benchmark calls by PMRA 

We performed 16 replicates for each Quartet reference material on the Applied BiosystemTM 

AxiomTM Precision Medicine Research Array (PMRA). Genotypes were called by Axiom Analysis 

Suite v4.0.1.  

      We selected genotype calls using the following criteria: (1) less than two replicates with 

missing calls; and (2) more than 80% genotype calls are the same.  

      The PMRA probes were annotated by hg19, but the reference datasets were mapped based on 

GRCh38. To avoid converting errors, we only compared variants annotated in dbSNP by dbSNP 

RefSNP ID.   

Validation of structural variant benchmark calls by independent technologies 

We validated the structural variants benchmark calls using four Illumina short-reads, 10× 

Genomics linked reads, PacBio CLR long reads and BioNano Genomics optical mapping. The 

structural variants datasets corresponding to each technology were generated through the data 

generation section above. In each technology, the shared structural variants between twins were 

used for validation of benchmark call structural variants in twins. The structural variants 

benchmark calls in parents were separately validated by the corresponding structural variants 

datasets. The validation process used Jasmine with --keep_var_ids and –ignore strand parameters. 

      We also randomly selected 40 structural variants including 20 insertions and 20 deletions that 

have not been validated by other technologies and manually checked their accuracy through IGV.  

In addition, the datasets from three other independent researches based on long read sequencing 

were employed to validate our benchmark calls using Jasmine with --keep_var_ids and –ignore 

strand parameters. 

Training batch-specific machine learning models 

Variant quality metrics of Mendelian concordant variants from one D5 replicate for each batch 

(Supplementary Table 10, Batches 5, 6, and7 with three replicates) were used to train one-class 
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SVM classifier (https://scikit-learn.org/stable/modules/svm.html#).  For small variants, 

variant quality, depth, BaseQRankSum, QualByDepth, FisherStrand, SrandOddsRatio, 

RMSMappingQuality, MappingQualityRnakSunTest, ReadPosRankSumTestg, genotype quality 

and membership of dbSNP were used. For structural variants, variant quality, genotype quality 

and the raw counts of paired reads supporting alternate allele were used. The three trained models 

were applied for each batch respectively to classify high-quality variants and low-quality variants. 

Variant calling from RNA-seq 

Sequences were mapped to GRCh38. We used Sentieon Genomics software to analyze short-read 

RNA datasets from raw fastq files to VCF files. This workflow was derived from recommended 

RNA-seq short variants discovery pipeline by the Broad Institute 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-

discovery-SNPs-Indels-), including reads mapping by BWA-MEM, duplicates removing, split 

reads at junction, base quality score recalibration (BQSR), and variants calling by 

HaplotyperCaller. Variants were filtered by GATK VariantFiltration with parameters: -window 35 

-cluster 3 -filterName FS -filter “FS > 30.0” -filterName QD -filter “QD < 2.0”. 

Variant detection from LC-MS/MS proteomics 

XML file contained peptide identification results generated by an open-source search engine 

X!Tandem. The software needs to input the Mascot Generic Format (MGF) file, which is the most 

common format for MS/MS data encoding in the form of a peak list. Then PGA R packages 

(v1.18.1) were used to identify variant peptides from the XML file. 

We constructed custom protein databases from RNA-seq datasets containing SNVs and 

Indels, then searched the database to detect variant peptides and their corresponding variants 

locations on the genome from LC-MS/MS datasets.  

Precision and recall 

Precision is the fraction of called variants in the test dataset that are true, and recall is the fraction 

of true variants are called in the test dataset. True Positives (TP) are true variants detected in the 

test dataset. False Negatives (FN) are variants in the reference dataset failed to be detected in the 

test dataset. False Positive (FP) are variants called in the test dataset but not included in the 

reference dataset. Precision and recall are defined as below: 
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Presicion = 	
TP

TP + FP
 

Recall =
TP

TP + FN
 

      For small variants, we compared variants with benchmark small variants using hap.py 

(https://github.com/Illumina/hap.py). For structural variants, we merged and compared variants in 

different callsets using Jasmine with parameters max_dist=1000 --keep_var_ids --ignore_strand. 

When considering the genotype of structural variants, an additional parameter --output_genotypes 

needs to be used. When comparing with small variants benchmark calls and structural variants 

benchmark calls, genotypes of the variants were considered.  

Mendelian violation rate of Quartet family 

Mendelian violation rate is the number of variants not following Mendelian inheritance laws 

divided by the total number of variants called among the four Quartet samples. Mendelian violated 

variants are the variants not shared by the twins or following Mendelian inheritance laws with 

parents. When calculating Mendelian violation of small variants, variants on large deletions 

defined by structural variants benchmark calls were not included, because VBT 

(https://github.com/sbg/VBT-TrioAnalysis) takes these true variants as Mendelian violations. For 

structural variants, Mendelian analysis was only done for Quartet-D5, because we could not 

distinguish homozygotic references and no call sites. We did not consider genotype information; 

therefore, Mendelian discordant variants are variants not shared by Quartet twins or specifically 

identified in twins but not in parents. 
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Figure Legends  
 

Figure 1. Study design and data generation. (a) Overview of the study design. Briefly, DNA 

reference materials were constructed from immortalized cell lines of a Chinese Quartet with father 

(F7), mother (M8), and monozygotic twin daughters (D5 and D6). They were sequenced by four 

short- and three long-read platforms at seven labs. Small variant and structural variant benchmark 

calls were integrated from massive sequencing datasets. Performance of a test dataset can be 

evaluated by comparing with benchmark calls or genetic built-in truth within the Quartet family. 

(b) Schematic overview of short-read sequencing datasets. Three replicates for each of the Quartet 

DNA reference materials were sequenced in nine batches, by both PCR and PCR-free libraries on 

four sequencing platforms at six labs, resulting in 108 WGS libraries. (c) Schematic overview of 

long-read sequencing datasets. One replicate for each of the Quartet DNA reference materials was 

sequenced per batch by PacBio Sequel, PacBio Sequel II and ONT. Eleven combinations of three 

mappers and five callers were used to detect structural variants, resulting in 120 variants calling 

datasets. 

 

Figure 2. Integration workflow of Quartet small variant and structural variant benchmark 

calls.  This workflow depicted the integration process to obtain small variant benchmark calls from 

108 original GVCF call sets. Numbers in the boxes represented remaining small variants after each 

data processing step in the grey dotted boxes. Approximately 6 million small variants were 

discovered in 27 call sets for each Quartet reference sample. About 1.5 million small variants were 

removed by the voting process. We merged the four consensus call sets corresponding to the four 

Quartet samples, and discarded variants that did not reach agreement across 27 replicates in any 

Quartet sample. Only Mendelian consistent variants, which were shared by twins and following 

Mendelian inheritance laws and validated by PMRA and PacBio CCS datasets, were kept as small 

variant benchmark calls. 

 

Figure 3. Integration workflow of structural variant benchmark calls. This workflow depicts 

the integration process to obtain structural variants benchmark calls from 120 call sets. Numbers 

in the box represented remaining structural variants after each data processing step in the grey 

dotted boxes. Briefly, approximately 90,000 structural variants were discovered in 30 call sets of 
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each Quartet reference sample. We first kept structural variants supported by at least two 

sequencing platforms or at least six pipelines from one sequencing platforms, then removed SVs 

with length over 10 Mb or located on centromeric or peri-centromeric regions and gaps. INSs and 

DELs were extracted for the construction of structural variants benchmark calls. Sniffles was used 

to report structural variants sequences, and structural variants that failed in reporting sequences 

were filtered. Iris was applied to refine variant sequences. After obtaining consensus of structural 

variants in multiple data sets, we merged four catalogs of reproducible variants of each Quartet 

reference sample and obtained 31,659 SVs in total. Three genotypers were used to determine 

genotypes of these SVs, and only SVs with consensus genotypes in at least six of all ten genotype 

call sets were kept for Mendelian analysis. The final structural variants benchmark calls were 

shared by twins and followed Mendelian inheritance laws with parents. 

 

Figure 4. Evaluating variants calling performance by pedigree information and benchmark 

sets. F1 score and MCR rate of different (a) mappers and callers for detecting small variants using 

Illumina short reads; (b) sequencing platforms and library preparation methods for detecting small 

variants; (c) callers for detecting SVs using Illumina short reads; and (d) sequencing platforms, 

combination of mappers and callers for detecting SVs using long-read data. 

 

Figure 5. Quartet DNA reference materials can be used to identify and mitigate batch effects 

in DNA sequencing. The scatterplots of the third and the fourth eigenvectors generated from PCA 

show batch effects in (a) SNVs, (b) small indels, (c) large deletions, and (d) large insertions. (e) 

The percentage of Mendelian concordant and discordant variants as decreasing quality score 

stringency thresholds were set from left to right. (f) Reproducibility of variants called on the whole-

genome region before and after filtration. The metrics were defined in our companion paper33. (g) 

Precision of variants called inside the benchmark regions before and after filtration. (h) Recall of 

variants called inside the benchmark regions before and after filtration. 

 

Figure 6.  Evaluating variant calling accuracy from RNA and protein data by benchmark 

calls constructed from DNA data. (a) Schematic of central dogma and the number of variants 

detected in the Quartet DNA-seq, RNA-seq, and LC-MS/MS based proteomics datasets. (b) 

Validation of Quartet RNA variants using DNA reference datasets. True positive (TP) means RNA 
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variants validated in DNA reference datasets, whereas false positive (FP) means the RNA variants 

not included in the DNA reference datasets. (c) Composition of RNA variant types in false positive 

(RNA_FP) and true positive RNA (RNA_TP) variant calls. (d) A T-to-C variant (located in chr17: 

74866471) detected by both DNA-seq and RNA-seq is visualized in IGV. The corresponding Glu-

to-Arg variant was also detected by LC-MS/MS based proteomics. 
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Figures  
 
 
 

 
Figure 1. Study design and data generation.   
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Figure 2. Integration workflow of Quartet small variant and structural variant benchmark 

calls.   
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Figure 3. Integration workflow of structural variant benchmark calls.     
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Figure 4. Evaluating variants calling performance by pedigree information and benchmark 

sets.  
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Figure 5. Quartet DNA reference materials can be used to identify and mitigate batch effects 

in DNA sequencing.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.28.509844doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509844


 
Quartet_MS2_DNA_Ren_V20220925 

 42 

 

Figure 6.  Evaluating variant calling accuracy from RNA and protein by benchmark calls 

constructed from DNA.  
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Tables 
 

Table 1. Summary of Quartet small variant and structural variant benchmark calls and 

regions. 

 Quartet-D5 Quartet-D6 Quartet-F7 Quartet-M8 

Sm
al

l V
ar

ia
nt

 
Be

nc
hm

ar
k 

Ca
lls

 

Total variants 1 4,134,243 4,134,243 4,108,558 4,134,361 
SNV 3,564,768 3,564,768 3,544,173 3,564,170 

sINS 2 278,747 278,747 276,996 280,237 
sDEL 2 281,938 281,938 279,177 281,495 

Block Substitutions 3 8,790 8,790 8212 8,459 
Het/Hom Ratio 1.37 1.37 1.30 1.35 

SNV Ti/Tv 2.08 2.08 2.07 2.07 
Benchmark region, 

chr1-22, X(bp) 2,662,213,268 2,662,213,268 2,662,213,268 2,662,213,268 

St
ru

ct
ur

al
 V

ar
ia

nt
s 

Be
nc

hm
ar

k 
Ca

lls
 

Total Variants 4 15,005 15,005 15,098 14,893 
INS 5 < 1kb 7,216 7,216 7,353 7,161 
INS ≥ 1kb 734 734 755 717 
DEL 5< 1kb 6,352 6,352 6,287 6,324 
DEL ≥ 1kb 703 703 703 691 

Het/Hom Ratio 1.43 1.43 1.45 1.57 
Longest INS (bp) 12,450 12,450 12,450 12,450 
Longest DEL (bp) 117,310 117,310 435,343 494,712 
Affected bases (bp) 7,796,176 7,796,176 8,821,558 8,550,650 
Benchmark region, 

chr1-22 (bp) 2,622,728,511 2,622,728,511 2,591,967,148 2,596,140,552 

1 All small variants benchmark calls are located in small variants high-confidence region, and false positive 
variants detected by orthogonal validation have been removed; 

2 sINS and sDEL stand for short insertion and deletion with size less than 50 bp; 
3 Block Substitutions are variants with length change between REF and ALT. It is not simple addition or 

removal of bases, for example, ATT -> CTTT; 
4 Structural variants benchmark calls include variants not located in benchmark regions; 
5 INS and DEL stand for long insertion and deletion with size over 50 bp. 
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Table 2. Coverage of Quartet benchmark regions on coding region and clinically related 

genes 

Class Total bases 
(bp)  

Small 
variant 

benchmark 
regions of 
Quartet1 

v1.1 (%) 

Small 
variant 

benchmark 
regions of 

HG001 

V4.2.1 (%) 

SV 
benchmark 
regions of 

Quartet 
D5&D6 

v1.1 (%) 

SV 
benchmark 
regions of 
Quartet-F7 

v1.1 (%) 

SV 
benchmark 
regions of 

Quartet-M8 

v1.1 (%) 

SV 
benchmark 
regions of 

HG002 
v0.6 

(Tier1) (%) 

GRCh38 
(chr1-22, 

X) 
3,031,042,417 87.8 82.9 86.5 85.5 85.7 87.8 

Genes 1,827,967,802 90.1 86.4 95.9 95.9 95.9 93.9 

Exons 162,225,069 86.8 83.5 95.8 95.7 95.7 93.3 

ClinVar2 5,713,149 94.4 88.1 97.6 97.9 97.0 94.0 

1 The benchmark regions of the four Quartet reference samples are the same; 
2 Coverage of ClinVar on the genome was used in this study. 
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Supplementary Figures 
 

 
Supplementary Figure 1. Pairwise comparison of (a) SNVs, (b) small indels (c) insertions, (d) 

deletions, (e) duplications, (f) inversions, and (g) translocations called from short-read and long-

read WGS call sets used to establish benchmark calls. Color of each cell corresponds to Jaccard 

index (the number of shared variants divided by the union of two call sets), with high similarity 

in red and low similarity in blue. 
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Supplementary Figure 2. Density plots show differences in (a) sequencing depth, (b) allele 

frequency, (c and d) genotype quality and mapping quality between inconsistent small variants 

across call sets, consistent Mendelian discordant small variants, and reproducible and Mendelian 

concordant small variants.  

 
 

 
Supplementary Figure 3. Workflow of defining benchmark regions for small variants.   
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Supplementary Figure 4. Comparison of three benchmark sets from FDU (our study), NCTR 

(Pan et al.), and XTJU (Jia et al.). (a) Statistics of small variant benchmark sets, (b) Venn diagram 

of SNV benchmark sets, (c) Venn diagram of indel benchmark sets, (d) Venn diagram of DEL 

benchmark sets, and (e) Venn diagram of INS benchmark sets. 
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Supplementary Figure 5. Density plots show differences in (a) allele frequency and (b) reads 

supporting SV, (c and d) between irreproducible SVs, reproducible but Mendelian discordant 

SVs and reproducible and Mendelian concordant SVs. 

 
 
 
 
 
 

 
Supplementary Figure 6. Length distribution of SV benchmark calls for the Quartet DNA 

reference samples.  
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Supplementary Figure 7. Workflow of defining benchmark regions for structural variants.   
 

 
Supplementary Figure 8. (a) Comparison of Mendelian violation rate inside and outside the 

benchmark regions across different variant types. (b) Discordant variants detected by twins (D5 

and D6), Mendelian discordant variants detected by trios (D5-F7-M8 and D6-F7-M8), and 

Mendelian discordant variants detected by Quartet family (D5-D6-F7-M8). 
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Supplementary Figure 9. The scatterplot of the first two eigenvectors generated from PCA 

displayed clustering of the Quartet samples. Four different variant types from 11 batches short-

read sequencing datasets are shown as PCA plots. (a) SNVs; (b) Small indels; (c) Large deletions; 

and (d) Large insertions. 
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Supplementary Figure 10. Variants called outside the benchmark regions showed more severe 

batch effects than variants called inside the benchmark regions. Small variants called inside and 

outside of benchmark regions from 11 batches of short-read sequencing datasets are shown as PCA 

plots. (a) SNVs called inside the benchmark regions; (b) Small indels called inside the benchmark 

regions; (c) SNVs called outside the benchmark regions; and (d) Small indels called outside the 

benchmark regions. 
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Supplementary Tables 
 

Supplementary Table 1. Data from multiple short-read and long-read sequencing platforms were 

obtained to detect and validate small variant and structural variant benchmark calls in the Quartet 

reference samples. 

 Variant 
type Platforms Library prep 

method 
Sequencing 

site Replicates Number of reads 
(million) 

Discovery 

Small 
variants 

Illumina 
HiSeq XTen PCR WUX 4 samples 

x 3 reps 388.5 

Illumina 
HiSeq XTen PCR NVG 4 samples 

x 3 reps 328.7 

Illumina 
HiSeq XTen1 PCR ARD 4 samples 

x 3 reps 307.9 

MGI-
SEQ2000 PCR BGI 4 samples 

x 3 reps 725.3 

Illumina 
NovaSeq PCR-free BRG 4 samples 

x 3 reps 613.6 

Illumina 
NovaSeq PCR-free ARD 4 samples 

x 3 reps 581.6 

Illumina 
NovaSeq PCR-free ARD 4 samples 

x 3 reps 683.8 

Illumina 
NovaSeq PCR WUX 4 samples 

x 3 reps 327.3 

DNB-
SEQT7 PCR-free WGE 4 samples 

x 3 reps 533.1 

Structural 
variants 

Nanopore PCR-free GRM 4 samples 
x 1 rep 26.8 

PacBio 
Sequel CLR PCR-free NOM 4 samples 

x 1 rep 33 

PacBio 
Sequel II 

CLR 
PCR-free ARD 4 samples 

x 1 rep 5.3 

Validation 

Small 
variants 

PacBio 
Sequel II 

CCS2 
PCR-free GRM 4 samples 

x 1 rep 11.7 

PMRA - BIO 4 samples 
x 16 reps - 

Structural 
variants 

10x 
Genomics PCR BIO 4 samples 

x 1 rep 320 

BioNano PCR-free NOM 4 samples 
x 1 rep - 

PacBio 
Sequel II 

CCS2 
PCR-free GRM 4 samples 

x 1 rep 11.7 

Illumina 
HiSeq XTen1 PCR ARD 4 samples 

x 3 reps 307.9 

1 The same short-read WGS datasets used to construct small variant benchmark calls and validate structural variants 
benchmark calls; 

2 The same PacBio CCS datasets used to validate both small variant and structural variant benchmark calls. 
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Supplementary Table 2. Mapping and calling statistics of short-read sequencing datasets. 

See attachment 

 

Supplementary Table 3. Statistics of long-read raw sequencing datasets. 

See attachment 

 

Supplementary Table 4. Mapping statistics of long-read sequencing datasets. 

See attachment 

 

Supplementary Table 5. Statistics of de novo and somatic small variants for the Quartet. 

See attachment 

 

Supplementary Table 6. Validation of small variants by PacBio CCS, which are reproducible 

among call sets and Mendelian consistent in the Quartet family.  
Sample Quartet-D5 Quartet-D6 Quartet-F7 Quartet-M8 
SNV 3,619,318 3,619,318 3,600,213 3,617,331 

Validated SNV 3,573,763 3,573,902 3,552,137 3,572,106 
SNV validation rate 98.7% 98.7% 98.7% 98.7% 

Small indel 621,877 621,877 613,525 619,129 
Validated small indel 589,272 591,277 580,938 589,073 

Small indel validation rate 94.8% 95.1% 94.9% 95.1% 
 

Supplementary Table 7. Validation of small variants by PMRA, which are reproducible 

among call sets and Mendelian consistent in the Quartet family.  
Sample Quartet-D5/D6 Quartet-F7 Quartet-M8 

PMRA consistent sites 793,024 793,024 793,024 
Validated sites 790,293 790,274 790,290 
Validation rate 99.7% 99.7% 99.7% 

 

Supplementary Table 8. Statistics of de novo SVs for the Quartet family. 
Class Chr Start End SV type Size F7 M8 D5 D6 
Twin-
shared 

chr14 105,982,942  105,984,761  DEL 1,819 0/0 0/0 0/1 0/1 
chr14 105,989,116  105,989,116  INS 67 0/0 0/0 0/1 0/1 

Twin-
specific 

chr12 85,821,376  85,821,376  INS 55 0/0 0/0 0/0 0/1 
chr7 2,492,258  2,492,347  DEL 89 0/0 0/0 0/1 0/0 
chr8 86,407,355  86,409,907  DEL 2,552 0/0 0/0 0/1 0/0 
chrX 129,048,461  129,048,537  DEL 76 0/0 0/0 0/0 0/1 
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Supplementary Table 9. Validation of SV benchmark calls by Illumina short-reads, 10x 

Genomics, BioNano, and assembly PacBio reads. 

Sample Type 
Total number 
in benchmark 

calls 

Illumina 
short-
reads 

Assembly 
PacBio 
datasets 

10x 
Genomics BioNano 

Union of 
supported 

SVs  

Validation 
rate (%) 

D5/D6 

INS<1Kb 7216 3231 5852 0 98 6241 86.5 
INS>1Kb 734 89 655 0 94 676 92.1 
DEL<1Kb 6352 3602 5310 1987 3 5671 89.3 
DEL>1Kb 703 587 636 0 0 680 96.7 

F7 

INS<1Kb 7353 3311 4933 0 110 5857 79.7 
INS>1Kb 755 100 576 0 113 626 82.9 
DEL<1Kb 6287 4149 4137 2668 34 5395 85.8 
DEL>1Kb 703 645 412 612 89 678 96.4 

M8 

INS<1Kb 7161 3273 4692 0 108 5650 78.9 
INS>1Kb 717 91 555 0 95 597 83.3 
DEL<1Kb 6324 4205 4337 2578 31 5451 86.2 
DEL>1Kb 691 635 410 584 83 655 94.8 

 

 

Supplementary Table 10. Datasets for proficiency test analysis and batch effect analysis. 

Batch 
Library 

preparation 
method 

Sequencing platforms Sequencing 
labs 

Replicates of the four 
Quartet samples 

Median 
coverage 

Median 
insert 
size 

1 PCR Illumina NovaSeq 6000 BRG 1 34x 321 
2 PCR Illumina NovaSeq 6000 GAC 1 27x 279 
3 PCR Illumina NovaSeq 6000 NVG 1 25x 290 
4 PCR Illumina NovaSeq 6000 WUX 1 26x 412 
5 PCR BGI-SEQ500 BGI 3 40x 234 
6 PCR Illumina XTen WUX 3 35x 396 
7 PCR-free DNB-SEQT5 BGI 3 50x 350 
8 PCR-free Illumina NovaSeq 6000 KM 1 33x 206 
9 PCR-free Illumina NovaSeq 6000 WUX 1 30x 401 
10 PCR-free DNB-SEQT7 WUX 1 30x 259 
11 PCR-free DNB-SEQT7 WGE 1 35x 359 
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