
Meta-analysis of GWAS for sea lice load in Atlantic salmon 

 

Cáceres P.a, Lopéz P.a,b, Garcia B. a, Cichero D.b, Ødegård J.c, Moen T.c, Yáñez 

J.M. a,d.* 

 

aFacultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 

8820000, Chile 

bBlue Genomics Chile, Puerto Varas, 5550000, Chile 

cAquaGen AS, Trondheim, P.O. Box 1240, Norway 

 dMillennium Nucleus of Austral Invasive Salmonids (INVASAL), Concepción, Chile 

 

*Corresponding author. Tel.: +562 2978 5533 

Email address: jmayanez@uchile.cl 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509902doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509902


Abstract 

Sea lice (Caligus rogercresseyi) is an ectoparasite that causes major production 

losses in the salmon aquaculture industry of the southern hemisphere. Atlantic 

salmon (Salmo salar) is an important salmonid for the aquaculture industry and a 

species which is highly susceptible to sea lice infestation. Genetic variation for 

resistance to sea lice, defined as parasite load, has been found in Atlantic salmon. 

In addition, sea lice load has been shown to be a polygenic trait, controlled by several 

quantitative trait loci (QTL) which have small to medium effect, making them difficult 

to map with sufficient statistical power when sample sizes are limited. The use of 

medium density single nucleotide polymorphisms (SNP) can also adversely affect 

the success of identifying genetic variants significantly associated to sea lice load. 

In order to improve the ability to detect QTL significantly associated to sea lice load, 

we combined genotype imputation from medium- to high SNP-density and performed 

genome-wide association studies (GWAS) across different populations of Atlantic 

salmon. The imputation of genotypes of 6,144 fish challenged against sea lice from 

four year-classes was performed to increase density from 70K SNPs to 600K SNPs. 

A meta-GWAS was then carried out for three different traits: lice count, lice density 

and log-lice density. Using this approach, we detected a genomic region highly 

associated to sea lice load on Atlantic salmon chromosomes (ssa) 3 and 12 

pronounced peaks and several other regions surpassing the significance threshold 

across almost all other chromosomes. We also identified important genes within the 

QTL regions, many of these genes are involved in tissue reparation, such as Mucin-

16-like isoform X2 and Filamentous growth regulator 23-like isoform X1. The QTL 

region on ssa03 also contained cytoskeletal-modifying and immune response 

related genes such as Coronin 1A and Claudin. Our results confirm the highly 

polygenic architecture of sea lice load, but they also show that high experimental 

power can lead to the identification of candidate genes and thus to increased insight 

into the biology of sea lice resistance in Altantic salmon.  
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1. Background 

Within the animal production sector, aquaculture is the industry that grows most 

rapidly, and it is expected to have a large impact on the world's food supply in the 

next decades [1, 2]. In Chile, the salmon industry was established in the early 1980s. 

Since then it has grown rapidly and transformed the country into one of the main 

salmon producing countries the world, harvesting around 435.9 thousand tons of 

Atlantic salmon (Salmo salar) in 2018 [1]. 

Sea lice is the common name given to a group of ectoparasitic copepods of the 

family Caligidae, which parasitize fish in saltwater [3]. This family accounts for more 

than 60% of the parasites reported to affect fish in marine environments [4]. The 

salmon louse, Lepeophtheirus salmonis, is only found in the northern hemisphere, 

predominantly affecting salmonids of the genera Salmo, Oncorhynchus and 

Salvelinus [5]. Coho salmon (Oncorhynchus kisutch) and pink salmon 

(Oncorhynchus gorbuscha) were described to be more resistant to L. salmonis 

infestation than other salmonid species, such as Atlantic salmon and rainbow trout 

(Oncorhynchus mykiss) [6, 7]. L. salmonis was the responsible agent for major 

salmon disease outbreaks in Canada, Faroe Islands, Ireland, Maine (USA), Norway 

and Scotland [3, 8]. In the southern hemisphere, Caligus rogercresseyi is the main 

species affecting salmon aquaculture [9]. Infections by C. rogercresseyi lead to skin 

lesions and osmotic imbalance, which in turn increases the salmons susceptibility to 

secondary bacterial and viral infections [10]. Similarly to L. salmonis, C. 

rogercresseyi seems to affect Atlantic salmon and rainbow trout more than it affects 

coho salmon, as the latter displays a higher ability to rapidly eliminate the parasites 

during infestation [11] as well as low sea lice burden under field conditions [12].  

A common strategy to combat sea lice is through the use of chemical products, but 

this strategy is generally limited by the generation of resistance to the drugs in the 

parasite [13]. One of the alternatives that have been proposed for the control of the 

parasite is selective breeding for decreased parasite load in the host species [2]. 

Selecting animals that are more resistant to parasites or have higher ability to 
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eliminate them leads to increases in productivity and animal welfare, and 

consequently to a lessened environmental impact and reduced costs in the industry 

[14]. 

Genome-wide association studies (GWAS) can be used to identify DNA markers 

associated to traits of importance. This method captures the linkage disequilibrium 

between markers and causative mutations which tend to be inherited together across 

generations [15]. GWAS has been applied to provide insights into the genetic 

architecture of several important traits in Atlantic salmon, including sea lice load [16–

19]. All these studies demonstrated a polygenic architecture of lice load, with no 

genome-wide significant association at any chromosome [16, 19], except for a 

moderate quantitative trait locus (QTL) located in ssa03 which was reported to 

surpass the significance threshold in a recent study [17]. Previous studies have most 

likely failed in detecting significantly associated regions because they used a low to 

moderate number of animals with phenotypes and genotypes ,from 1,498 to 1,119 

[18]. 2,600 and 1,056 [17], 2,559 and 2,404 [19] and medium density SNP panels.  

An effective strategy to increase the statistical power compared to single-population 

GWAS and to decrease the rate of false positives is to use meta-analysis of GWAS. 

In general, this approach may be performed on results from studies of independent 

populations. For instance, summary statistics from single-population GWAS, 

including p-values, direction of SNP effects, and sample sizes, can be used to 

compute an overall Z-score and thus to recalculate GWAS statistics for a meta-

population [20]. This approach has been shown to increase the power to detect QTL 

for polygenic traits in humans [21], and it has also been applied in different livestock 

species, such as dairy cattle [22], pigs [23] and sheep [24]. A very recent study 

identified a QTL for the ability to adapt to to high plant protein diet by applying meta-

analysis of GWAS large yellow croaker, an important aquaculture species [25]. 

Genotype imputation can be used to increase the density of genotype information in 

large populations. This approach infers missing marker information for individuals 

genotyped with low- to medium-density SNP panels by using a reference population 
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genotyped with a high-density SNP panel. To achieve that, the method uses 

haplotypes that are shared between both populations [26, 27]. Genotype imputation 

has two main advantages in genomic applications: reduction of genotyping costs 

(i.e., genotyping at high density is only necessary for the subset of individuals to be 

used as reference) and increase of accuracy in detection of genomic regions 

involved in trait variation [28]. The latter is particularly important for GWAS purposes 

because the inclusion of ultra-dense SNP information may potentially include 

causative mutations for the phenotype of interest, which in turn can be used to 

accelerate the rate of genetic gain if the functional variants are incorporated in the 

genomic prediction of the genetic merit [29, 30]. 

The objective of this study was to use meta-analysis of GWAS combined with high-

density imputed genotypes to increase the statistical power and accuracy to identify 

both QTLs and candidate genes associated with sea lice load traits in Atlantic 

salmon. 

 

2. Material and Methods 

2.1 Origin of animals and sea lice challenges 

The data used in this study were obtained from different year-classes (2012, 2013, 

2016 and 2017) of the AquaGen breeding population, which were challenged against 

C. rogercresseyi. All challenges were performed in the same way. Briefly, all animals 

passed by an acclimation period of 13 days on average prior to challenge and were 

gradually transferred to seawater (32 ppm). After transfer, fish were infested with C. 

rogercresseyi copepodites which had been produced from parasite ovigerous 

females. The fish were infested with a known number of 35 copepodites per animal. 

After a number of days ranging from 2 to 18, sea lice load was measured by counting 

parasites, and weight was also recorded (Table 1). Then, a deinfestation process 

was applied by gradually reducing the salinity until 5 ppm. After that, salinity levels 

were increased again to 31 ppm and a new infestation procedure was initiated 
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followed by a second lice counting, as described previously. All year-classes were 

subjected at least to two different timepoints of lice counting and one year-class 

(2017) was subjected to four measurement timepoints, in two independent 

challenges, i.e. two measurements each.  

2.2 Genotyping  

A total of 6,114 animals from all year-classes evaluated in the sea lice challenges 

were pit-tagged and genotyped using custom ThermoFisher (Affymetrix) SNP arrays 

developed exclusively for AquaGen’s Atlantic salmon populations. These panels 

consisted of different versions of medium-density (MD) SNP arrays, containing 50k, 

60k and 70k SNP markers, which were used for genomic selection purposes and 

updated periodically. In order to perform a “step-wise” genotype imputation, we also 

used genotypic information fromtwo other populations genotyped at 200k and 930k 

SNP densities (HD200 and HD930, respectively). The 200k ThermoFisher (Affymetrix) 

SNP array was used for genotyping 1,480 animals of the 2010 year-class. The 930k 

ThermoFisher (Affymetrix) SNP array was used for genotyping 1,326 parents of the 

2010 year-class and other anteceding animals from previous year-classes [31]. All 

SNPs used in downstream analyses were positioned based on the Atlantic salmon 

reference genome (assembly ICSASG_v2). 

2.3 Quality control and genotype imputation  

Initially, a quality control was performed for each genotyped dataset. For all 

populations genotyped with MD, HD200 and HD930 SNP arrays, the following filters 

were applied independently: call-rate for SNPs < 0.9, minor allele frequency (MAF) 

< 0.01 and Hardy-Weinberg equilibrium (HWE) (Bonferroni corrected p-value < 

0.05). Table 2 shows the number of SNPs before and after quality control for each 

population included in this study. 

A “step-wise” genotype imputation strategy was implemented, imputing first from MD 

to HD200, and then from HD200 to HD930 as this strategy offers higher accuracy of 

imputation than direct imputation from medium-density to very high-density [32]. 
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Before genotype imputation, an approximation to imputation accuracy validation was 

carried out to remove SNPs imputed with low accuracy using a five-folded cross 

validation scheme for both HD200 and HD930 dataset. First, 296 animals from the 

HD200 population (20% of total) were randomly assigned as validation population and 

the other 1,496 animals (80% of total) were assigned as reference population across 

the five validation groups. The reference animals had 209,579 SNPs and the 

validation individuals had their genotypes masked keeping only 42,963 SNPs that 

were in common in the populations genotyped with the MD SNP array. The 

imputation was performed for each validation group and the accuracy of genotype 

imputation was estimated using the Pearson’s correlation (r²) between imputed and 

observed genotypes. Finally, only SNPs with mean accuracy of imputation (r²) 

greater than 0.8 were selected to the final set of imputable SNPs. For the HD930 

validation, the same strategy was implemented using 20% of animals with 633,254 

SNPs and 80% of animals 200,394 SNPs as reference and validation populations, 

respectively. All imputations were performed using the FImpute v3 software using 

standard parameters [26]. 

2.4 Trait Definitions 

To determine the levels of quantitative genetic variation and heritability of sea lice 

burden, the following trait definitions were used: lice count (LC), lice density (LD) 

and LogLD. LC was recorded on the skin surface of each individual by manual 

counting. LD and LogLD were measured accounting for the surface area of the fish, 

which is determinant for sea lice adherence. Gjerde et al. (2010) defined the lice 

density (LD) as: 

𝐿𝐷 = (
𝐿𝐶 + 1

∛𝐵𝑊2
 ) 

where 𝐵𝑊 is the body weight (g) recorded at the end of the experimental challenge, 

∛𝐵𝑊2 is an approximate measure of the surface area of the fish, and 𝐿𝐶 is the lice 

count as described previously. In order to normalize the counting data, a 

transformation to the natural logarithm was applied (LogLD) as: 
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𝐿𝑜𝑔𝐿𝐷 = 𝐿𝑜𝑔𝑒 (
𝐿𝐶 + 1

∛𝐵𝑊2
 )  

2.5 Single-trait GWAS (stGWAS) 

The single-trait genome wide association analyses (stGWAS) were performed for 

each year-class assuming each lice counting at different timepoints, i.e., two records 

for 2012, 2013 and 2016, and four records for 2017 totalizing 10 records for LC, LD 

and LogLD each. Prior to stGWAS, a genotype quality control was implemented 

using Plink software [33], discarding markers with SNP call-rate (< 0.90), MAF (< 

0.05) and Hardy-Weinberg Equilibrium (< 0.05 / Number of SNPs). After quality 

control, the mlma option available in the software GCTA v. 1.24 [34] was used to 

apply the following linear mixed model for each trait:  

𝑦𝑖𝑗 =  𝜇 + 𝑏1 ∗ 𝐵𝑊𝑗 + 𝑏2 ∗ 𝑆𝑁𝑃𝑖 + 𝑎𝑖𝑗 + 𝑒𝑖𝑗  

where 𝑦𝑖𝑗 is the phenotypic value of the j-th animal, 𝜇 is the fixed effect of the overall 

mean and 𝑏1 and 𝑏2 are regression coefficients and the allele substitution effect for 

SNP respectively, and 𝐵𝑊𝑗 is body weight covariate of j-th animal and 𝑆𝑁𝑃𝑖 is the i-th 

SNP genotype of animal j, coded as 0, 1 and 2 for genotype A1A1, A1A2 and A2A2, 

respectively, 𝑎𝑖𝑗 is the random polygenic effect of the j-th animal ∼ N(0, Gσ𝒂
𝟐), with G 

representing the genomic relationship matrix (GRM) calculated using the imputed 

genotypes and σ𝒂
𝟐 is the genetic variance, and 𝑒𝑖𝑗   is the random residual effect ∼ 

N(0, Iσ𝒆
𝟐), with I representing an identity matrix and σ𝒆

𝟐 the residual variance. The 

GRM was calculated based on the relationship between all animals from a genome-

wide sample of SNPs obtained by using a common-sense weighting scheme [35]. 

The GRM restricted maximum likehood (GREML) implemented in GCTA was used 

to estimate the genetic and residual variances. Heritability (h2) was calculated as h2 

= σ𝒂
𝟐/(σ𝒂

𝟐 + σ𝒆
𝟐). For each SNP, the variance explained was also calculated using the 

following equation [36]: 

𝑉𝑎𝑟(𝑥) = 2 ∗ 𝑀𝐴𝐹𝑥 ∗ (1 − 𝑀𝐴𝐹𝑥) ∗ 𝛽2 
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where 𝑉𝑎𝑟(𝑥) is the variance explained by the SNP 𝑥, 𝑀𝐴𝐹𝑥 is the minor allele 

frequency of SNP𝑥 and 𝛽 is the SNP𝑥 effect. 

2.6 Meta-analysis of stGWAS results (metaGWAS) 

For each trait (LC, LD and LogLD), a meta-analysis of GWAS results using all year-

classes was performed using the METAL software [20]. The p-value, direction of 

effect, and sample size were utilized to implement a sample size weighted analysis, 

with additional genomic control collection performed based on the difference 

between the median test statistic and that expected by chance computing an overall 

Z-score: 

𝑍 =
∑ 𝑧𝑖𝑤𝑖𝑖

√∑ 𝑤𝑖
2

𝑖

 

where 𝑤𝑖 is the square root of the sample size of population i, and 𝑧𝑖 is the Z-score 

for population i calculated as 𝑧𝑖 = 𝜙−1 (
𝑝𝑖

2
) ∆𝑖, where ϕ is the cumulative distribution 

function, and 𝑝𝑖 and ∆𝑖 are the p-value and direction of effect for population i, 

respectively. Manhattan plots were produced for each trait in order to visualize the 

results from the meta-analyses.  

2.7 Identification of QTL and candidate genes 

Lead SNPs were selected based on a genomic threshold with Bonferroni correction 

(0.05 / number of SNPs). All variants with p-value crossing the threshold, were 

considered a lead SNP, and used to search for candidate genes based on proximity 

to the variant. The gene search was performed using BLAST (Basic Local Alignment 

Search Tool) against the Salmo salar reference genome (ICSASG_v2), which is 

publicly available at NCBI (GenBank assembly accession GCA_000233375.4). 

Genes located within 100 kb upstream and downstream of the leading SNPs were 

considered putative candidate genes associated with the trait. 
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3. Results 

3.1 Descriptive statistics  

Summary statistics from each sea lice challenge test, including number of animals, 

mean body weight ± sd, day of counting post infection and LC ± sd are shown in 

Table 1. The differences in days of counting among the challenges can be explained 

by several attempts to understand the kinetic of infestation, mainly focused on 

providing a better understanding on the lice attachment process. However, all LC 

measures were very similar across different year-classes, except for the 2017 in 

which an early time-point was included as the first the counting day (two and three 

days post infestation). 

Table 1. Summary statistics of challenges for sea lice considering number of animals 

(N), body weight (BW) and lice count (LC) for year-classes at different timepoints. 

YC a 2012 2013 2016 2017 

N b 1369 1926 1512 1310 

BW_1c 187.6 ± 47.6 195.2 ± 50.8 123.8 ± 29.6 270.6 ± 65.5 

BW_2 307.3 ± 87.7 214.1 ± 61.2 214.1 ± 46.3 287.5 ± 75.5 

BW_3 - - - 439.4 ± 120.2 

BW_4 - - - 484.7 ± 133.7 

Daysd 17 (18) 10 (8) 13 (13) 2 (3)/12 (12)* 

LC_1e 30.0 ± 11.5 26.3 ± 9.1 31.0 ± 15.7 8.8 ± 4.6 

LC_2 26.1 ± 9.8 27.7 ± 8.8 27.1 ± 15.1 15.4 ± 7.1 

LC_3 - - - 17.1 ± 5.5 

LC_4 - - - 30.3 ± 9.8  

 

a Year-class 
b Number of animals 
c Body weight ± SD for timepoints 1, 2, 3 and 4. 
d Day of counting after first infection (Day of counting after second infection) 
e Lice counting ± SD for timepoints 1, 2, 3 and 4. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509902doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509902


*Two tanks were used 
 

3.2 Genotype imputation  

A total of 167,751 and 393,157 additional SNPs with r² greater than 0.8 were 

obtained after imputation from MD to HD200 and HD930, respectively. Adding up the 

SNPs originally genotyped and the imputed SNPs, it was possible to achieve 

approximately 600k SNPs as the final density (Table 2). For all imputed HD200 and 

HD930 genotypes, quality filters were also applied for each population separately. For 

SNP call-rate (< 0.9), only 2017 year-class had markers removed (3,119 SNPs). 

MAF < 0.05 was the filter that discarded most SNPs as 111,972 (18.4%), 192,623 

(31.7%), 136,896 (22.5%) and 131,951 (21.2%) were removed for 2012, 2013,2016 

and 2017 year-classes, respectively. The HWE filter discarded a lower number of 

markers, 7,453 (1.5%), 49,040(11.8%), 6,170 (1.3%) and 5,165 (1.0%) for 2012, 

2013, 2016 and 2017 year-classes, respectively. The final number of SNPs after 

quality control before running stGWAS was 488,677, 366,387, 465,618 and 530,510 

for 2012, 2013, 2016 and 2017 year-classes, respectively. 

 

Table 2. Number of SNPs before and after quality control, and final number of SNPs 

after imputation to 200k and 930k SNP in each population. 

 

YCa Dens.b Pre-QCc Post-QCd Imputation 

(200k)e 

Imputation 

(930k)f 

Post-QCg 

2010 HD200 217,443 215,379 - -  

2018 HD930 723,653 633,316 - -  

2012 MD 48,779 47,374 208,347 600,196 488,667 

2013 MD 48,779 46,214 208,347 600,196 366,387 

2016 MD 54,341 53,512 209,060 600,491 465,618 

2017 MD 68,145 59,213 227,179 616,898 530,510 

a Year-class 
b Density of SNPs.MD: medium-density; HD200: high-density up to 200K SNPs, HD930: high-
density up to 930K SNP 
c Number of SNPs before quality control of genotypes 
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d Number of SNPs after quality control of genotypes. call-rate < 0.9, minor allele frequency 
(MAF) < 0.01 and Hardy-Weinberg equilibrium (< p-value = 0.05/number of SNPs remaining 
after the two previous filters) 
e Number of SNPs after imputation to 200k using only SNPs with accuracy of imputation 
greater than 0.8 
f Number of SNPs after imputation to 930k using only SNPs with accuracy of imputation 
greater than 0.8 
g. Number of SNPs after quality control of imputed genotypes, the same filter parameters 
used before were applied in this step.  

 

3.3 Genetic parameters 

Heritability estimates calculated using the SNP-based GRM constructed with about 

~500.000 markers for each population ranged from 0.06 ± 0.02 to 0.23 ± 0.04 for 

LC, 0.02 ± 0.01 to 0.29 ± 0.04 for LD and 0.10 ± 0.03 to 0.36 ± 0.03 for LogLD as 

show in Table 3. 

Table 3. Genetic parameters of every year class for all traits evaluated in the meta-

analysis. 

YCa Traitb V(e)c V(g)d h2e 

 2012 LC_18 118.70 ± 5.38 7.73 ± 3.49 0.06 ± 0.02 

 LC_18 79.78 ± 3.89 17.41 ± 4.02 0.17 ± 0.03 

 LD_18 0.12 ± 0.005 0.01 ± 0.004 0.11 ± 0.03 

 LD_18 0.05 ± 0.003 0.02 ± 0.004 0.29 ± 0.04 

 LogLD_18 0.13 ± 0.006 0.01 ± 0.005 0.10 ± 0.03 

  LogLD_18 0.14 ± 0.007 0.04 ± 0.009 0.24 ± 0.04 

 2013 LC_10 56.42 ± 2.30 12.91 ± 2.47 0.18 ± 0.03 

 LC_8 62.62 ± 2.35 6.53 ± 1.78 0.09 ± 0.02 

 LD_10 0.06 ± 0.002 0.01 ± 0.002 0.15 ± 0.03 

 LD_8 0.05 ± 0.002 0.006e- ± 0.001 0.10 ± 0.02 

 LogLD_10 0.20 ± 0.009 0.084 ± 0.012 0.28 ± 0.03 

  LogLD_8 0.20 ± 0.009 0.11 ± 0.01 0.36 ± 0.03 

 2016 LC_13 187.38 ± 8.61 45.09 ± 9.014 0.19 ± 0.03 

 LC_13 177.26 ± 8.07 38.50 ± 8.11 0.17 ± 0.03 

 LD_13 0.31 ± 0.01 0.07 ± 0.01 0.19 ± 0.03 

 LD_13 0.14 ± 0.006 0.03 ± 0.006 0.18 ± 0.03 

 LogLD_13 0.22 ± 0.01 0.095 ± 0.015 0.29 ± 0.03 

  LogLD_13 0.25±0.011 0.06 ± 0.012 0.19 ± 0.03 
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 2017 LC_2 28.59 ± 1.49 6.90 ± 1.56 0.19 ± 0.04 

  LC_12 59.45 ± 3.15 18.29 ± 3.56 0.23 ± 0.04 

  LC_3 45.80 ± 2.31 9.16 ± 2.22 0.16 ± 0.03 

  LC_12 103.51 ± 5.48 30.58 ± 6.15 0.22 ± 0.04 

  LD_2 0.01 ± 0.001 0.004 ± 9e-4 0.19 ± 0.04 

  LD_12 0.03 ± 0.001 0.01 ± 0.002 0.22 ± 0.04 

  LD_3 0.014 ± 7e-4 0.002 ± 7e-4 0.16 ± 0.03 

  LD_12 0.03 ± 0.001 0.008 ± 0.001 0.22 ± 0.04 

 LogLD_2 0.32 ± 0.017 0.08 ± 0.018 0.21 ± 0.04 

  LogLD_12 0.24 ± 0.012 0.06 ± 0.013 0.21 ± 0.03 

  LogLD_3 0.12 ± 0.006 0.02 ± 0.005 0.15 ± 0.03 

  LogLD_12 0.11 ± 0.006 0.032 ± 0.006 0.21 ± 0.04 

a Year-class 
b Trait. LC: lice count; LD: lice density; LogLD: Log of lice density. Numbers after the 
underscore mean the correlative counting timepoint during the challenge tets (from 1 to 4). 
c Residual variance ± SD 
d Genetic variance ± SD 
e Heritability ± SD 

 

3.4 stGWAS and metaGWAS 

For all stGWAS in each population, there were only few SNPs that surpassed the 

genome-wide significance threshold, no major quantitative trait loci were identified 

on each particular population when running stGWAS. For LC, the lowest p-value was 

observed at 18 day post infestation of the 2012 year-class on ssa17 (p-value=1.25e-

07). For LD and LogLD, the lowest p-values were also observed at 18 day post-

infestation of the 2012 year-class, but in this case on ssa26 (p-value=7.52e-09 and 

1.23e-08, respectively). The Manhattan plots of stGWAS for every year-class and trait 

are shown in Supplementary Figure 1. Few SNPs explaining between 1 to 4 percent 

of the fraction of additive genetic variance (Supplementary Table 1). 

For the metaGWAS, a substantial increase in the significance level for SNP-trait 

association was observed on all chromosomes (Figure 1). A pronounced significant 

peak was identified for all traits on ssa03, with p-values of 1.85e-22, 9.75e-24 and 

2.45e-31 for LC, LD and LogLD, respectively. Smaller consistent peaks were also 

observed on ssa12 (p-values of 1.10e-19, 8.79e-20 and 5.73e-19 for LC, LD and LogLD, 

respectively), ssa18 (p-values of 5.71e-15, 1.11e-12 and 4.45e-14 for LC, LD and 
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LogLD, respectively) and ssa22 (p-values of 7.928e-16, 2.356e-15 and 1.060e-12 for 

LC, LD and LogLD, respectively). In addition, it is important to mention that 

significant markers were widely distributed across almost all the chromosomes for 

all traits. These results highlight the polygenic architecture of sea lice load in Atlantic 

salmon, but also show that potential QTLs with minor to moderate effects may be 

also affecting these traits. 

 

3.5 Candidate genes 

A summary of the main top markers found in the QTL regions are in Table 4, and 

the full list of genes located within 100 kb upstream and downstream of the lead SNP 

is available in Supplementary Table 2. Some lead SNPs for LC are close to important 

candidate genes, including Mucin-16-like isoform X2 and Filamentous growth 

regulator 23-like isoform X1 on ssa03, and Fibroblast growth factor receptor-like 1 

on ssa12. Some of these genes were already associated with sea lice load variation 

in previous studies performed in an independent population in Atlantic salmon [17].  

For LD, a lead SNP was found near to a Coronin 1A and Claudin 4 genes between 

72,636,574 and 72,647,185 bp position on ssa03. Both genes are related to the 

immune system and cytoskeleton modification. The same SNP at ssa03 overlapped 

the serine/threonine-protein phosphatase alpha-2 isoform-like gene, which was also 

associated with sea lice resistance on GWAS and functional studies in Atlantic 

salmon [19, 37]. Additionally in the same chromosome, other 2 SNPs intercepted an 

exonic region of the centrosomal protein of 112 kDa at 78,079,260 bpp, which is 

related to microtubules formation on mammalian cells [38]. Other lead SNPs were 

found on ssa10 at 2,632,647 bp, overlapped the gene of GTP binding protein 6, and 

on ssa12 at 15,513,054 bp near to an exonic region of the alpha-2-macroglobulin-

like gene, which is a proteinase regulator [39].  

For LogLD, a lead SNP overlapped the gene of metalloproteinase inhibitor 2 (timp2) 

at 86,314,119 bp on ssa03 and is nearby to GDP-L-fucose synthetase gene. The 

metalloproteinases inhibitor may participate in a wide range of processes, such as 
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activation and release of cytokines, inhibition of growth factors from extracellular 

matrix and favoring of cells migration to the wound area [40]. Another lead SNP on 

the same chromosome is close to somatostatin receptor type 5-like at 72,684,148 

bp. On ssa09, a lead SNP is nearby E3 ubiquitin-protein ligase (trim8), which was 

identified as a candidate gene for sea lice resistance in a previous study [19]. A lead 

SNP on ssa12 intercepted an exonic region of ral guanine nucleotide dissociation 

stimulator-like 1 at 15,628,486 bp and, at the same chromosome, a SNP is near to 

the filaggrin-2-like gene that participates in cell to cell adhesion and structure of 

epidermis [41]. 

4. Discussion 

We found low to moderate (0.02 ± 0.01 to 0.36 ± 0.03) heritabilities for LC, LD and 

LogLD traits considering all data sets. These results agree with previous studies in 

which sea lice resistance is defined as parasite burden. Previous studies have 

estimated heritabilities using genomic information with SNP panel densities from 60K 

to 200K [10, 17, 19, 42–48]. The use of imputed information increased heritability 

values for body weight traits as was observed in Nile tilapia [49, 50] using the same 

population from medium to ultra high density and for sea lice trait [51], using low 

density to high density imputed genotypes. 

Previous studies identified loci and candidate genes associated with sea lice 

resistance traits in Atlantic salmon [17, 19, 52], but  the medium-density SNP panels 

and limited sample size used in these studies may have hindered the identification 

of genes truly associated to these traits. These GWAS were performed with 

moderate sample size using a maximum of ~2,600 animals, and using only medium 

density SNP panels[10, 16, 18]. .  

In order to increase stadistical power and accuracy for detecting association 

between SNPs and the traits of interest, we imputed genotypes to high-density and 

then performed meta-analysis of GWAS. The imputation was performed from 

medium-density SNP arrays (50, 60 and 70K) to high-density at two different levels, 

~200K and ~500K, using markers previously selected based on expected accuracy 
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of imputation higher than 0.80. The genotype imputation may help to increase GWAS 

resolution allowing fine-mapping of the sea lice load traits. However, as shown for 

stGWAS for all year-classes (Supplementary Figure 1), few SNPs surpassed the 

genome-wide significance threshold, similar to previous GWAS results for the same 

traits performed in independent populations, in which no evidence of major effect 

QTLs for sea lice load traits was found [19]. 

The metaGWAS effectively increased significance of genomic regions identified in 

our study. This approach was applied to leverage multiple summary statistics from 

stGWAS performed on the same traits using different populations (year-classes) and 

increasing the sample size. In addition to increasing sample size, the metaGWAS 

strategy helps to reduce the number of false positives because most of effect sizes 

usually detected in GWAS are small and inconsistent across different studies or 

populations [53]. 

The difference in the number of genome-wide statistically significant markers 

associated with sea lice load traits between stGWAS and metaGWAS was 

remarkable. Overall, the increase in significant SNPs was consistent across all traits, 

for LC, LD and Log LD we found 2,340, 1,872 and 2,204 SNPs who cross the 

genomic significant threshold, respectively. However, there were also significant 

SNPs in the stGWAS analyses that were not confirmed in the metaGWAS. If the 

SNP association is not confirmed in the metaGWAS, we may assume that the prior 

association identified by GWAS is only relevant to the year-class in which is detected 

or might be a false positive.  

We found approximately 2,000 genome-wide significant markers dispersed in almost 

all chromosomes, and these markers may be tagging important genetic variants 

controlling sea lice load in Atlantic salmon. This result was expected given that sea 

lice load has been previously described as a polygenic trait in this species [43, 52, 

54]. A pronounced peak comprised by highly significant markers on ssa03 was found 

for all traits analyzed, suggesting that part of the genetic variation in sea lice load is 

due to a low to moderate effect QTL on this chromosome. This region on ssa03 is 
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consistent with previous results from GWAS performed for similar traits in different 

populations [19, 37]. 

The lead SNP in ssa03 is nearby the metalloproteinase inhibitor 2 (timp2). Several 

metalloproteinases were associated with functional response to sea lice infestation 

[40, 55, 56], participating in important innate response processes including 

inflammation and tissue remodeling. Within the same region, another lead SNP is 

near to cytohesin-1 (cyh1) gene which is an abundant protein of immune cells, 

participating on cell binding and adhesion [57]. A related protein potentially 

associated to sea lice response, the serine/threonine-protein phosphatase alpha-2 

isoform-like, was also detected on ssa03, and described to be playing an important 

role in cell growth and signaling [58]. A comparative transcriptomic analysis between 

healthy skin and skin where sea lice was attached in Atlantic salmon showed 

significant differences on the expression ratio of this protein [40, 54]. Genes related 

to this protein were also identified in GWAS for sea lice load traits in an 

experimentally challenged rainbow trout population [19].  

At the same chromosome, we identified novel candidate genes, such as Claudin and 

Coronin between 72,636,574 and 72,647,185 bp. The SNPs close to these genes 

are strongly associated with sea lice load. Claudins are cell-to-cell adhesion 

molecules located at the tight junctions between cells in epithelial cell sheets, 

creating a physical barrier against the external environment [59]. The tight junctions 

between epithelial cells act as a selective permeable barrier that regulates the 

movement of solutes between fluid compartments, thus, they are important 

determinants of ion selectivity and general permeability of the epithelia [60]. The 

Coronin is a conserved actin binding protein that promotes cellular processes that 

rely on rapid remodeling of the actin cytoskeleton, including endocytosis and cell 

motility [61]. 

Significant SNPs were also found at different chromosomes close to widely 

characterized genes involved in tissue repair, such as the Fibroblast growth factor 

receptor-like 1 on ssa12 [62], Collagen alpha-1 (IV) chain-like on ssa13 and Collagen 
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alpha-6 (IV) chain-like [63] on ssa18. These tissue repair genes were described in 

genomics and functional studies focused on host response against sea lice 

infestation and have great importance in tissue reaction to the parasite in coho 

salmon, a species considered highly resistant to sea lice infestation [64]. Collagen 

and fibroblast growth factor genes could be related to the response of fish to skin 

wounds, as described by [65]. These molecules are involved in processes of 

proliferation of filamentous cells and sealing the cutaneous wound, followed by 

leukocyte infiltration and epidermal thickening and hyperplasia[11] . The skin wound 

maturation occurs through increased epidermal layers and thickness and migration 

of cells rather than proliferation of cells [65]. After the inflammation, a concerted 

action of different cell types occurs, all coordinated by a complex network of growth 

factors and other regulators. Enzymes, such as metalloproteinases [66], are able to 

destroy components of the extracellular matrix that are involved in both inflammation 

and tissue repair. 

Although our study provides valuable insights about genomic regions associated to 

sea lice resistance in Atlantic salmon, it is still unclear how the whole mechanism of 

defense works for this species.. Coho salmon, a species considered highly resistant 

to sea lice, shows quick inflammatory response and epithelial hyperplasia generating 

an efficient mechanism that may reduce up to 90% of lice loads in two weeks [11]. 

The inflammatory response seems to be mild or incomplete in Atlantic salmon with 

low neutrophils mobilization at the site of infection [67]. For this reason, 

understanding how the infection is fought in resistant species (e.g., coho salmon) 

may help to unravel the high susceptibility of other species (e.g., Atlantic salmon and 

rainbow trout).  

 

It is also important to mention that all challenges were performed in controlled 

conditions. There is a possibility that under field conditions , such as with sea cages, 

the response mechanisms may act or interact distinctly to controlled conditions given 

by experimental challenges. Another hypothesis is that, under controlled conditions, 

host factors (e.g., susceptibility, attractiveness, selectivity) [68] are being evaluated 
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instead of the true ability of hosts to eliminate the parasites. For this reason, more 

studies regarding the kinetics of sea lice in Atlantic salmon under sea conditions are 

needed for distinguishing the different host and environmental factors affecting sea 

lice load, from the actual variation of individual response against the infection. 

Still, the genes found in the present study, which are putatively associated to the 

variation of response to sea lice infestation in Atlantic salmon, confirms that 

inflammatory, cell mobilization and tissue repair processes are biological functions 

that could be determinant on individual variation of sea lice burden in this species 

[56, 69]. 

Conclusion 

The meta-analysis using genotypes imputed to high-density helped to detect SNPs 

significantly associated to sea lice load in Atlantic salmon. Our results confirm that 

sea lice load related traits are polygenic in nature. Nevertheless, we found several 

putative candidate genes which may be contributing to the genetic variance of sea 

lice load in this species. Tissue repair, cytoskeletal modification and immune 

response ay be playing an important role in the individual variation of sea lice burden 

in experimentally challenged Atlantic salmon populations.  
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Figure 1. Manhattan plots of meta-analysis of GWAS for lice count (A), lice density 

(B) and Logarithm of lice density (C) traits. The blue and red lines indicate the 

chromosome- and genome-wide significance thresholds, respectively.  

 

 

 

 

 

 

Table 4. Summary of top markers associated with sea lice traits on meta-analysis. 

 

Trait a P-value b CHR c Pos d Protein e 

LC 1.85E-22 3 7685474

7 

GPTase IMAP family member 8-like  

 4.14E-11 3 7026040 Filamentous growth regulator 23-like isoform 

X1 

Mucin-16-like isoform X2 

Involucrin-like 

 1.89E-15 11 5892305

9 

microtubule-associated serine/threonine-

protein kinase 

Tf2-1 polyprotein 

 1.10E-19 12 1563708

8 

Tf2-1 

Fibroblast growth factor receptor-like 1 

 9.94E-09 13 4828240 Carbonic anhydrase 6-like 

Collagen alpha-1(IV) chain-like 

 2.68E-14 19 1564611

9 

Metalloproteinase-16 isoform X (1,2,3,4) 

 7.96E-09 19 7173430

1 

Tf2-1 poliprotein 

LD 1.62E-08 2 2217155

7 

neural-cadherin-like 

 6.248e-22 3 7263203

1 

Coronin-1A 

Claudin-4 

serine/threonine-protein phosphatase 

alpha-2 isoform-like  

 8.228e-22 3 8629825

1 

E3 ubiquitin-protein ligase rnf213-alpha 

 3.757e-18 3 7822376

9 

Centrosomal protein of 112 kDa  

 5.98E-11 4 5450820

8 

protein phosphatase 1E 

rab5 GDP/GTP exchange factor isoform X3 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509902doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509902


 2.87E-15 10 6602531

1 

moesin-like 

alpha-ketoglutarate-dependent dioxygenase 

alkB homolog 3 

 3.99E-13 10 2698859 adhesion G protein-coupled receptor L2 

isoform X17 

latrophilin-3 isoform X14 

 1.13E-13 11 5892305

9 

microtubule-associated serine/threonine-

protein kinase 2-like isoform X7 

 8.79E-20 12 1563708

8 

transposon Tf2-1 polyprotein 

fibroblast growth factor receptor-like 1 

isoform X1 

 5.92E-09 15 1020430

3 

E3 ubiquitin/ISG15 ligase TRIM25-like 

tripartite motif-containing protein 47-like 

 2.68E-08 16 8196661

8 

interleukin-1 receptor accessory protein-like 

1-B 

 6.93E-11 17 3033195

7 

actin cytoskeleton-regulatory complex 

protein pan1-like 

Log LD 2.45E-31 3 8629825

1 

Timp2 Metalloproteinase inhibitor 2 

GDP-L-fucose synthetase 

transposon Tf2-1 polyprotein 

fibroblast growth factor receptor-like 1 

isoform X1 

 9.17E-10 3 8680933 leucine-rich repeat-containing G-protein 

coupled receptor 4-like 

transcription factor PU.1-like 

myosin-binding protein C, cardiac-type-like 

isoform X6 

 3.87E-15 5 4899836

1 

transposon Tf2-1 polyprotein 

RNA-directed DNA polymerase homolog 

fibroblast growth factor receptor-like 1 

isoform X1 

 4.45E-14 18 7658606 alpha-ketoglutarate-dependent dioxygenase 

alkB homolog 3 

moesin-like 

 2.65E-10 18 4716533

6 

adhesion G protein-coupled receptor L2 

isoform X17 

latrophilin-3-like, partial 

 7.23E-10 20 6758593

6 

pleckstrin homology domain-containing 

family H member 1-like 

transposon Tf2-1 polyprotein  

 3.64E-15 21 5030928 semaphorin-3C-like 

platelet glycoprotein 4-like 

 1.24E-13 21 5157027

1 

protein THEMIS-like  

receptor-type tyrosine-protein phosphatase 

kappa-like isoform X2 

 2.32E-08 25 2327815

4 

SH3 and PX domain-containing protein 2B 

isoform X4 

tripartite motif-containing protein 16-like 

 1.06E-10 26 2545642

7 

ubiquitin carboxyl-terminal hydrolase 36 

isoform X3 

metalloproteinase inhibitor 2-like 
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a. Lice count (LC), Lice Density (LD) and Log Lice Density (LogLD) traits 

b. P-value of the marker on meta-analysis  

c. Chromosome  

d. Position of the marker 

e. Genes detected on 100 kb windows 
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