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Abstract 

 

Cancer-associated fibroblasts (CAFs) are the dominant cell type in the stroma of solid organ 

cancers, including non-small cell lung cancer (NSCLC). Fibroblast heterogeneity is widely 

recognised in many cancers, with subpopulations of CAFs being identified and potentially 

being indicative of prognosis and treatment efficacy. Here, the subtypes displayed by CAFs 

isolated from human NSCLC resections are initially identified by flow cytometry, using the 

markers FAP, CD29, αSMA, PDPN, CD90, FSP-1 and PDGFRβ, showing five distinct 

subpopulations, CAF-S1-S5. Our findings show that when comparing fibroblasts from tumour 

tissue with that from adjacent lung tissue, CAF-S2 and CAF-S3 are found in the normal tissue 

and marker expression suggests a less activated phenotype whereas CAF-S1, CAF-S4 and CAF-

S5 are predominantly found in the tumour tissue and are positive for a combination of 

markers of fibroblast activation. We focus on these subtypes most associated with fibroblast 

activation, primarily focussing on a previously unreported CAF-S5 subtype, and comparing to 

the previously identified CAF-S1. Both these subsets express FAP and PDPN as markers of 

fibroblast activation, but CAF-S5 lacks expression of the common activation marker αSMA. 

The spatial relevance of these subtypes in a cohort of 163 NSCLC patients was then 

investigated by multiplex immunofluorescence on a tumour micro-array of patient samples, 

revealing CAF-S5 are found further from tumour regions than CAF-S1. To understand the 

functional role of CAF-S5, scRNA sequencing data was used to compare the subset to the 

previously identified CAF-S1, finding that CAF-S5 displays an inflammatory phenotype, 

whereas CAF-S1 displays a contractile phenotype. We demonstrate that presence of either 

the CAF-S1 or CAF-S5 subtype is correlated to worse survival outcome in NSCLC, highlighting 

the importance of the identification of CAF subtypes in NSCLC.  
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Introduction 

 

Lung cancer is the leading cause of cancer death globally (1) and non-small cell lung cancer 

(NSCLC) accounts for approximately 85% of cases (2). Current NSCLC therapies are often 

unsuccessful, with drug resistance leading to treatment failure and disease progression (3). 

The tumour stroma plays a role in this resistance to therapy and has emerged as an important 

target for therapies to combat cancers such as NSCLC (4–7).  

 

The most common cell type of the tumour stroma is the cancer-associated fibroblast (CAF) 

(8). In healthy tissue, fibroblasts are a quiescent structural component of the ECM, and 

become activated in response to wound signals. In their activated state they produce ECM 

components and engage in crosstalk with immune cells to promote wound healing. After the 

healing process is complete, fibroblasts return to a quiescent state and excess fibroblasts are 

removed by apoptosis (9). CAFs on the other hand, are found in an irreversibly activated state. 

They have been found to have an enhanced migratory phenotype over normal activated 

fibroblasts, a greater proliferative ability and an enhanced secretome (10). CAFs have been 

found to play a role in immune evasion, metastasis, invasion, angiogenesis and resistance to 

drug treatment (6,11,12).  

 

Several studies have shown that CAFs represent a heterogeneous population composed of 

functionally distinct subtypes (6,13–18). The phenotype of these subtypes has been 

characterised in some solid organ malignancies, including breast, ovarian, pancreatic and lung 

cancers (14,17–21). Markers frequently used to distinguish these subtypes include -smooth 

muscle actin (SMA), fibroblast activation protein (FAP), podoplanin (PDPN), integrin β1 

(CD29) and fibroblast-specific protein-1 (FSP-1). Two key subtypes of note, previously termed 

CAF-S1 and CAF-S4 in the literature, have been identified in several studies. CAF-S1 display a 

FAPhi phenotype associated with adhesion, wound healing and immunosuppression while 

CAF-S4 which are FAPlow/negative, express higher levels of SMA and are associated with 

invasion and metastasis(7,14,17,22–25). Spatially, CAF-S1 have been found in closer proximity 

to cancer cells. The presence of these subtypes can also indicate prognosis, with CAF-S1 and 
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CAF-S4 being found to promote metastases, and CAF-S1 being an indicator or distant relapse 

in luminal breast cancer (17). 

 

Here, we investigate CAF subtypes present in NSCLC, identifying five subtypes using 

commonly used CAF markers. We focus on the previously unreported CAF-S5 subtype, 

identified primarily by the expression of FAP and PDPN but lacks expression of αSMA. We 

compare the spatial location of CAF-S5 to the previously defined CAF-S1 subtype, and 

investigate the correlation of these subtypes to survival outcome.  
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Methods 

 

Ethics Statement 

Cancer tissue was obtained following approval by NHS Lothian REC and facilitated by NHS 

Lothian SAHSC Bioresource (REC No: 15/ES/0094). All participants provided written informed 

consent. NSCLC tissues lung samples (cancer and non-cancerous lung) were collected from 

patients undergoing surgical resection with curative intent. The tissue microarray was 

approved NHS Lothian REC and facilitated by NHS Lothian SAHSC Bioresource (REC No: 

15/ES/0094) and approved by delegated authority granted to R&D by the NHS Lothian 

Caldicott Guardian (Application number CRD19031) 

 

NSCLC Patient Sample Processing 

CAFs were isolated from NSCLC patient samples as previously described (26). Briefly, tissue 

samples were minced with forceps and incubated for an hour in prewarmed RPMI media 

(Gibco) containing collagenase IV [2 mg/ml] (Sigma) and DNase [0.2 mg/ml] (Sigma). Samples 

were centrifuged at 300 g for 5 minutes and red blood cells were lysed from samples using 

RBC lysis buffer (Roche) in 5 ml for 10 minutes at room temperature. Cells were washed in 

plain RPMI media and then counted in preparation for staining. 

 

Flow Cytometry Sample Preparation  

Cells were collected in suspension post digest and at each passage and were stained with a 

live/dead marker Zombie UV (1:1000, Biolegend) for 30 min at room temperature in DPBS 

(Gibco). Cells were then washed and incubated with FC blocker for 10mins and then stained 

with surface marker antibodies (EpCAM, CD45, CD31, FAP, CD29, Podoplanin and PDGFRβ, 

see Table 1 for details) for 20 mins at 4oC in DPBS supplemented with 2% FBS. After washing 

cells were fixed with Cytofix fixation buffer for 20 mins at 4oC. Cells were then washed in 

Perm/Wash buffer and centrifuged at 300g for 5 mins. Intracellular antibodies (αSMA and 

FSP-1) were diluted in Perm/Wash buffer then added to cells and incubated in the dark for 30 

mins at 4oC. After washing, cells were stored in DPBS with 2% FBS overnight at 4oC before 

data acquisition on a LSR6Fortessa analyser (BD Biosciences). Compensation was carried out 

using single stain control UltraComp eBeads (Invitrogen) and isotype control samples were 

stained using the control antibodies shown in Table 1.  
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Table 1: Antibodies used for flow cytometry staining. 

 

Flow Cytometry Data Analysis  

Flow cytometry data was analysed using FlowJo version 10.7.1. Cells were gated to fibroblast 

populations defined as CD45-, EpCAM- and CD31- cells (full gating strategy shown in Fig S1). 

To reduce file sizes for analysis, fibroblast populations were downsampled to 300 events using 

the Downsample plugin. Samples containing less than 300 fibroblasts were excluded from 

analysis. All sample files were then concatenated and from this file UMaps could be generated 

from the data (27). FlowSOM analysis could then be carried out to determine clusters and 

was run without defining the number of clusters expected to be unbiased (28). MFIs 

calculated were the geometric fluorescence intensity. 

 

Multiplex Immunofluorescence Staining  

A TMA was constructed from consecutive patients undergoing surgery with curative intent at 

a regional thoracic surgery centre over a 2-year period. Following annotation by an 

experienced thoracic pathologist 1mm cores were taken from tumours and non-cancerous 

lung for each patient. TMA construct was linked to demographic clinical data and follow up 

data including both relapse and survival. All patients were treatment naive. TMA slides were 

deparaffinised in Xylene and rehydrated in a series of ethanol dilutions. Using a Leica Bond 

automated staining robot;  after heat-induced antigen retrieval (HIER) of 30min at 100oC, 

tissue slides were exposed to multiple staining cycles each including a 30 minute incubation 

with a protein block (Akoya), 1 hour incubation with the respective primary antibody, 30 

Marker Colour Supplier ul/test Catalogue No. Isotype ul/test Iso Catalogue No. 

CD45 BV605 BioLegend 5 368524 IgG1 M 5 400161 

CD31 BV605 BioLegend 5 303122 IgG1 M 5 400161 

EpCAM BV605 BioLegend 5 324224 IgG2a M 5 400349 

CD90 VioBlue Miltenyi 2 130-119-890 IgG1 M 2 130-113-767 

Zombie UV BioLegend 1 423108 NA NA NA 

FAP APC R&D 5 FAB3715A IgG1 M 5 IC002A 

PDGFRβ AF594 R&D 5 FAB1263T IgG1 M 5 IC002T 

CD29 AF488 BioLegend 5 303016 IgG1 M 5 400129 

PDPN APC-Cy7 BioLegend 5 337030 IgG2a R 2.5 400524 

αSMA AF750 R&D 5 IC1420S IgG2a M 5 IC 003S  

FSP-1 PE BioLegend 5 370004 IgG1 M 5 400139 
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minute incubation with the secondary antibody (Akoya), 10 minute incubation with the 

respective OPAL (Akoya) followed by 20 minute incubation with AR6 buffer (Akoya) at 85oC 

prior to the next staining cycles and finally stained with fluorescent DAPI (Akoya) for 10 

minutes. In between each step, slides were washed with bond wash for 5 minutes.      

 

Primary antibody concentrations and OPAL pairings are shown in Table 2. Antibody-OPAL 

pairings were assigned based on expected biomarker abundance and expected co-expression. 

 

Table 2: Multiplex immunofluorescence antibodies used and their OPAL pairings. 

Primary 

Antibody 

Catalogue No. Antibody 

Dilution 

OPAL Pairing OPAL Dilution Staining Position 

FAP Ab207178 1:100 OPAL 520 1:150 1 

CD90 Ab92574 1:50 OPAL 620 1:100 2 

FSP1 Ab197896 1:4000 OPAL 570 1:150 3 

PDPN Ab236529 1:4000 OPAL 650 1:150 4 

αSMA Ab124964 1:1000 OPAL 690 1:150 5 

PanCK Ab27988 1:200 OPAL 540 1:150 6 

 

Multiplex Immunofluorescence Imaging  

Slides were imaged using a Vectra Polaris. The appropriate exposure time for image 

acquisition was set for each fluorophore by auto exposing on multiple (5-10) tissue areas per 

batch. Following fluorescence whole slide scans, regions of interest were selected for 

multispectral imaging (MSI) at 20x magnification. 

 

Multiplex Immunofluorescence Image Analysis 

MSI images were unmixed in InForm software using representative snapshots of spectral 

library slides imaged at the same magnification. This also allowed for the isolation of auto 

fluorescence. Unmixed images were exported and analysed in Qupath (29). Cell detection was 

performed using StarDist based on a watershed deep-learning algorithm and fluorescent 

threshold of DAPI nuclear staining (30). Following this, phenotyping was performed in a non-

hierarchical manner by creating a composite classifier of single channel classifiers for each 

stain based on a fluorescent threshold. Ultimately, a machine learning algorithm was trained 

on multiple images to detect tumour and stroma areas. For each image the counts of the 
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number of cells classified by each combination of markers was calculated and exported for 

analysis using R.  

 

Single Cell RNA Sequencing Analysis  

Open source data from Lembrechts et al. (20) was analysed using R. The fibroblast data set 

was downloaded and filtered for fibroblasts that could be defined as CAF-S1 or CAF-S5 using 

the definitions of the subtypes established by flow cytometry. Fibroblasts were filtered by 

including those with expression of CD29, PDGFRβ, PDPN and FAP and excluding any that 

expressed FSP1. The remaining fibroblasts were then determined to be CAF-S1 if they 

expressed αSMA above 10 counts, and CAF-S5 if they did not express αSMA. A PCA plot of the 

resulting subset of fibroblasts was created using Orange Data Mining (31). Differential 

expression analysis was then performed in R using the DESeq2 package (32). The top 100 

genes were plotted in a heatmap to assess key differences between the two subtypes and a 

volcano plot generated using the enhanced volcano package (33).  

 

Analysis of Survival Data  

Survival data was collected for the 163 NSCLC patients whose samples were included in the 

TMA analysed by multiplex immunofluorescence, where survival was defined as the number 

of days from surgery to death or follow up. Kaplan-Meier curves were plotted for patients 

who had fibroblasts of phenotype CAF-S1 or CAF-S5 present (determined in QuPath, 

described above) above and below the median number of CAFs present in that subtype. Log-

rank tests were used to determine significance. Plots were also generated for the markers 

FAP, PDPN and αSMA, showing survival when these markers are present above or below 

median expression levels. Analysis was carried out using the survival and survminer packages 

in R.  

 

Analysis of TCGA Data 

Data for liver hepatocellular carcinoma, pancreatic adenocarcinoma, breast invasive 

carcinoma and kidney renal clear cell carcinoma was downloaded from https://tcga-

data.nci.nih.gov. The surv_cutpoint function in R was used to determine the most significant 

cut off for expression level correlated to survival for each cancer for the markers FAP, PDPN 

and αSMA. Using these cut-offs generated patients could be defined as low or high for each 
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marker. Patients were considered to have an overall CAF-S5 like phenotype if they were FAP 

and PDPN high and αSMA low. The survival of these patients was then compared all other 

patients by plotting Kaplan-Meier curves as previously described.  
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Results 

 

To understand the heterogeneity of CAFs in human NSCLC we first looked at the expression 

levels of seven CAF markers using flow cytometry (Fig 1A(i)). As no single fibroblast marker 

exists, fibroblasts were identified as being negative for EpCAM, CD45 and CD31 to exclude 

epithelial, hematopoietic and endothelial cells respectively (Fig 1A(ii)). Fibroblast markers 

FAP, CD29, αSMA, PDPN, CD90, FSP1 and PDGFRβ expression levels were determined and 

compared for tumour and non-cancerous adjacent lung tissue from NSCLC patients (Fig 1B). 

The markers FAP, CD29, αSMA, PDPN, CD90 and PDGFRβ typically showed elevated 

expression in tumour compared to non-cancerous lung tissue, whereas FSP1 showed 

downregulation in tumour compared to non-cancerous lung. Across all markers it was clear 

that there was significant variance between patients, confirming CAF heterogeneity in NSCLC.   

   

 

Figure 1: Identifying CAFs in NSCLC by expression of fibroblast markers. (A) The preparation of NSCLC samples 
for analysis of CAFs from NSCLC patient resections for analysis by flow cytometry (ii) or multiplex 
immunofluorescence (iii); (B) Expression levels of FAP, CD29, αSMA, PDPN, CD90, FSP1 and PDGFRβ determined 
by FACS in non-cancerous lung tissue compared to tumour tissue. Individual data points shown (tumour n=9, 
non-cancer n=10) as well as mean ±SEM. Unpaired t-test, *p<0.05. Images created with Biorender.com.   
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To further investigate CAF heterogeneity among NSCLC patients, FlowSOM (28) was used to 

determine phenotypic clusters of CAFs in an unbiased manner. This identified five subsets of 

CAFs across the samples (Fig 2A), which we named CAF-S1 (pink), CAF-S2 (red), CAF-S3 

(green), CAF-S4 (blue) and CAF-S5 (orange) following previous work by other researchers in 

breast and ovarian cancers (17,18,34). These subsets were best identified according to their 

expression levels of FAP and αSMA, as the five subsets could be distinctly identified (Fig 2B), 

whereas when comparing other fibroblast markers it was less clear (Fig 2D). Across nine 

patient samples, significant heterogeneity of CAFs was found, these subsets were not found 

to represent a majority of an individual patient, but rather patients exhibited heterogeneity 

within their CAF population (Fig 2C).  

 

Comparing the expression levels of each CAF marker within the identified subsets, we 

classified each subsets expression profile (using Fig 2E&F) as:  

CAF-S1: FAPHigh CD29Med-High αSMAHigh PDPNHigh CD90Med FSP1Low PDGFRβMed,  

CAF-S2: FAPNeg CD29Neg-Low αSMANeg PDPNNeg CD90Neg FSP1Neg PDGFRβNeg ,  

CAF-S3: FAPLow CD29Med αSMANeg-Low PDPNLow CD90Low FSP1High PDGFRβLow ,  

CAF-S4: FAPNeg-Low CD29High αSMAMed PDPNNeg CD90High FSP1Neg PDGFRβMed-High and  

CAF-S5: FAPMed CD29Med αSMANeg-Low PDPNMed CD90Low FSP1Low PDGFRβMed . 

 

Following dimensionality reduction of the data by uniform manifold approximation and 

projection (UMAP), the fibroblast populations between tumour and non-cancerous samples 

were compared and it was observed that there was overlap between CAFs and NCL fibroblasts 

(Fig 2G). Upon investigating the percentage each CAF subset represented of the total 

fibroblast population in each sample, the proportions across tumour and NCL could be 

assessed (Fig 2H). This revealed that subsets CAF-S2 and CAF-S3 were more representative of 

a normal lung fibroblast than a CAF, and hence we focussed on CAF-S1, CAF-S4 and CAF-S5 

for analysis in NSCLC tumour samples.  
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Figure 2: CAF subsets identified in NSCLC. (A) FlowSOM plot showing identification of five CAF subsets in NSCLC, 
CAF-S1 – S5; (B) Contour plot showing how FAP and αSMA can be used to distinguish CAF subsets in NSCLC; (C) 
Breakdown of CAF subsets in individual NSCLC samples; (D) Expression profiles of the identified CAF subsets 
using the different CAF markers; (E) Heat map showing the relative levels of expression of each CAF marker 
between identified subsets; (F) The expression levels of each marker within each subset. Each point represents 
geometric MFI of that marker for each sample that contained CAFs of that subset. Stats show Tukey’s multiple 
comparisons test results, (*p≤0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001) ; (G) UMAPs showing the clustering 
of the CAF subsets and the comparison of tumour and non-cancerous fibroblasts showing overlap within some 
subsets; (H) Comparison of the percentage of each CAF subset present in non-cancerous lung tissue (NCL) with 
tumour tissue. P-values calculated using unpaired t test.  
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Next, we investigated the spatial location and distribution of CAF subsets in NSCLC by 

multiplex immunofluorescent (MIF) staining of a tissue microarray (TMA) of 163 tumours. 

Tumour cores were stained with PanCK to identify tumour regions and the fibroblast makers 

FAP, PDPN, αSMA, FSP1 and CD90 were used to identify the key CAF subsets identified above 

as being predominant in tumour tissue: CAF-S1, CAF-S4 and CAF-S5. Using the definitions 

established by flow cytometry to characterise a profile for each subset as having markers on 

or off we initially defined subsets as: CAF-S1: FAPON αSMAON FSP1OFF CD90ON PDPNON,  CAF-

S4: FAPOFF αSMAON FSP1OFF CD90ON PDPNOFF, CAF-S5: FAPON αSMAOFF FSP1OFF CD90OFF PDPNON. 

This binary classification allowed for classification of individual cells as each subtype.  

 

The MIF results showed clear staining of the fibroblasts markers in only the stromal regions, 

with the tumour regions stained by PanCK (Fig 3A). As an initial investigation into the staining 

profile of each fibroblast marker used, the percentage of stromal cells positive for each 

marker was investigated across disease subtypes. This revealed the level of heterogeneity 

between patients across subtypes, with the greatest range in expression levels shown in FAP 

and PDPN expression (Fig 3B). PDPN expression also showed significant difference in 

expression levels between adenocarcinoma and squamous cell carcinoma, showing higher 

percentage positivity of PDPN in squamous cell carcinoma patients. It was also observed that 

staining for CD90 was low, with very few cells classed as CD90+ across different classes of 

NSCLC (Fig 3B). Therefore CD90 was not be used as a marker to characterise the CAF subsets, 

as differentiation of CAF-S1, CAF-S4 and CAF-S5 remined possible. The final definitions used 

for the MIF analysis were therefore: CAF-S1: FAPON αSMAON FSP1OFF PDPNON, CAF-S4: FAPOFF 

αSMAON FSP1OFF PDPNOFF, CAF-S5: FAPON αSMAOFF FSP1OFF PDPNON.  
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Figure 3: Multiplex immunofluorescence staining of CAFs in NSCLC. (A) Representative images showing the 
expression pattern of CAF markers FAP, αSMA, PDPN, FSP1 and CD90 relative to cancer cells identified by PanCK 
staining in a NSCLC tumour sample, scale bar 100um; (B) The percentage of stromal cells positive for CAF markers 
in different categories of NSCLC. Stats show Tukey’s multiple comparisons test results, *p ≤ 0.05. N=163. 

 

Following segmentation of cells and tissue types in QuPath (Fig 4A), CAFs could be categorised 

into subsets depending on the markers they expressed. To understand the distribution of the 

CAF subsets, we investigated whether different subsets dominated in different types of NSCLC 

by calculating the percentage of stromal cells that were each CAF subset for adenocarcinoma, 

squamous cell carcinoma and other NSCLC subtypes (Fig 4B). This revealed that CAF-S1 and 

CAF-S5 were both upregulated in squamous cell carcinoma compared to adenocarcinoma, 

whereas CAF-S4 was upregulated in adenocarcinoma. This raised questions about the 

similarities of CAF-S1 and CAF-S5, as they showed the same trend. We first considered 

whether there was a spatial difference between the two subtypes, as we had previously 

observed that αSMA staining was dominant near tumour regions (Fig 3A), and the key 

difference between the two subtypes is the lack of αSMA expression on CAF-S5 compared to 

CAF-S1. The spatial distribution was quantified by calculating the distance from each CAF to 

the nearest tumour region (Fig 4C). This showed that CAF-S5 were more likely to be found 

further from tumour regions than CAF-S1.  
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Figure 4: Spatial location of CAF subsets in NSCLC. (A) Segmentation strategy implemented in QuPath to define 
tissue class as tumour or stroma and to individually segment cells for classification; (B) Quantification of distance 
of fibroblasts of each class from their nearest tumour region. Data points represent individual fibroblasts from 
163 tumour samples; (C) The percentage of stromal cells that are in each CAF subset. Statistics show Tukey’s 
multiple comparisons test results (*p≤0.05, **p ≤ 0.01); (D) Representative images showing the spatial location 
of CAF-S1 and CAF-S5 in squamous cell and adenocarcinoma. 

 

To further understand the distinction between CAF-S1 and CAF-S5, single cell RNA sequencing 

data, available from Lambrechts et al. (20) was analysed to reveal functional differences. 

Initially, principal component analysis was performed on a selection of CAFs identified using 

the previously stated definitions to check if clustering of the two subtypes was observed (Fig 

5A), which was found to be the case. From our previous results, we know that the main 

classification difference between CAF-S1 and CAF-S5 is the expression of αSMA, with CAF-S1 

highly expressing this and CAF-S5 having negative to low expression levels of it. When plotting 

a heatmap of the top 100 differentially expressed genes, we observed that CAF-S1 and CAF-

S5 do cluster separately, further reassuring that they are distinct subtypes (Fig 5B). When 

investigating the most downregulated genes in CAF-S5 when compared to CAF-S1 (Fig 5C) we 
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see that the other genes of significance are TAGLN (transgelin), TPM2 (tropomyosin 2), SPARC 

(secreted protein acidic and cysteine rich) and MYL9 (myosin light chain 9). The upregulated 

genes are C3 (complement C3), SEPP1 (selenoprotein P), C7 (complement C7) and CLU 

(clusterin). The results of these analyses suggest that CAF-S1 and CAF-S5 are distinct CAF 

subtypes.  

 

 

Figure 5: Functional analysis of CAF-S1 and CAF-S5 in NSCLC. (A) PCA plot comparing CAF-S1 and CAF-S5 
fibroblasts from Lambrechts et al. RNA Seq data (20) (n = 12 CAF-S1, n = 5 CAF-S5); (B) Volcano plot showing the 
most significantly up and downregulated genes when comparing CAF-S5 to CAF-S1; (C) Gene sets activated and 
suppressed in CAF-S5 compare to CAF-S1 following gene set enrichment analysis; (D) KEGG pathways activated 
and suppressed in CAF-S5 compared to CAF-S1 following KEGG pathway analysis. 

 

Next, we performed survival analysis on our results from 163 NSCLC tumours, looking at if the 

presence of CAF-S1 and CAF-S5 correlated with recurrence free-survival (RFS) (Fig 6A). This 

revealed that the presence of CAF-S1 or CAF-S5 was correlated with poor 5-year RFS. As it 

was evident some patients expressed both CAF-S1 and CAF-S5, survival analysis was 
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performed to compare those that expressed only one of the two subsets above median level 

with those that expressed both (Fig 6B). This revealed no significant difference between RFS 

rates of the three groups, with all three demonstrating around 50% RFS probability after 5 

years.  

 

To understand why these subsets contributed to poorer overall RFS, we investigated whether 

it was a single marker contributing to this by looking at the RFS of patients when the 

percentage of FAP, PDPN or αSMA in the stroma was above the median of all patients (Fig 

6C). This revealed that there was no single marker causing such significant difference in RFS 

with the subsets present, although FAP did reveal a trend associated with poorer RFS with 

higher FAP expression.  

 

Using the TCGA dataset we analysed the survival of patients who we expect to have greater 

prevalence of CAF-S5 (based on bulk high expression of FAP and PDPN in the patient and low 

αSMA) across four solid organ cancers: hepatocellular cancer, pancreatic adenocarcinoma, 

invasive breast cancer and renal clear cell cancer (Fig 6D). This revealed that the presence of 

these markers indicating CAF-S5 correlated with poor survival probability across these 

cancers.  
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Figure 6: Survival analysis of CAF-S1 and CAF-S5 in NSCLC and other solid organ cancers. (A) Relapse free 
survival analysis of CAF-S1 and CAF-S5 when the proportion of the CAF subset present is greater or less than the 
median proportion expressed across all 163 patients; (B) Comparison of survival when patients only have CAF-
S1 or CAF-S5 present above median levels or both, n=12 CAF-S1 only, n=26 both, n=14 CAF-S5 only; (C) Relapse 
free survival looking at the percentage expression of FAP, PDPN and αSMA individually in the stroma, comparing 
above and below median expression; (D) Survival in other cancers (hepatocellular carcinoma, pancreatic 
adenocarcinoma, invasive breast carcinoma and renal clear cell carcinoma) from the TCGA dataset where each 
patient is defined as displaying a predominant phenotype by looking at FAP (high), PDPN (high) and αSMA (low) 
expression. 
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Discussion 

 

Here we have identified that in NSCLC, CAFs present as a heterogeneous population which 

can be divided into subsets depending on their expression levels of seven fibroblast markers. 

Heterogeneity of CAFs is found both between and within patient samples. Two of the subsets, 

CAF-S2 and CAF-S3, express low levels of these markers used to identify activated fibroblasts, 

with CAF-S2 having low or negative expression across all markers and CAF-S3’s most 

significant difference from CAF-S2 being the upregulated expression of FSP1. This, and the 

finding that there is greater presence of these subsets in non-cancerous lung tissue compared 

to tumour, suggests that these subsets are representative of a more normal, healthy lung 

fibroblast, not one in an activated state. The other subsets identified, CAF-S1, CAF-S4 and 

CAF-S5 are more prevalent in tumour tissue. CAF-S5 is a novel subset, identified here as 

expressing FAPMed CD29Med αSMANeg-Low PDPNMed CD90Low FSP1Low and PDGFRβMed.  

 

These fibroblast markers can also be used to identify CAF subsets through multiplex 

immunofluorescence imaging when the definitions outlined from the flow cytometry analysis 

are converted to binary definitions. The three subsets identified as more prevalent in the 

tumour (CAF-S1, CAF-S4 and CAF-S5) were investigated by staining for CAF markers FAP, 

αSMA, PDPN, CD90 and FSP1. Assessing the distribution of each marker across different tissue 

classes revealed differences between adenocarcinoma and squamous cell carcinoma, notably 

the expression of PDPN being higher in squamous cell carcinoma. The expression of PDPN has 

been linked to poor prognosis in cancer, and is hypothesised to play roles in invasion, 

epithelial to mesenchymal transition (EMT) and metastasis (35,36). The expression of PDPN 

on CAFs has been investigated in other studies, with one finding that PDPN positivity was 

correlated with greater invasiveness in lung adenocarcinomas (37). It would therefore be 

expected PDPN+ CAF subsets (CAF-S1 and CAF-S5) would be associated with poorer long-term 

survival, and this was indeed found in our study when assessing RFS.  

 

Comparing the proportions of CAF subsets between NSCLC subtypes, we observed a higher 

proportion of CAF-S1 and CAF-S5 present in squamous cell carcinoma, and a higher 

proportion of CAF-S4 present in adenocarcinoma. This distribution is likely due to the 

expression of PDPN in CAF-S1 and CAF-S5 as previously discussed.  
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To further characterise differences between CAF-S1 and CAF-S5, and to ensure that they were 

distinct populations, we analysed the single cell RNA sequencing dataset for NSCLC, published 

by Lambrechts et al (20). A subset of fibroblasts defined as CAF-S1 or CAF-S5 by our 

established criteria were compared. As the defining difference between the two subsets is 

the expression of αSMA, the main predicted difference was that CAF-S5 would not be a 

contractile phenotype. This was further confirmed by the finding that genes such as TAGLN 

and TPM2 were downregulated in CAF-S5, as they would contribute to contractility also, and 

that contractile pathways were supressed (Fig S2). The upregulation of complement genes C3 

and C7 suggests that CAF-S5 are an inflammatory subset while CAF-S1 are a contractile subset. 

 

RFS probability was found to be worse when CAF-S1 or CAF-S5 were present above median 

levels in NSCLC patients, despite undergoing curative resection. When considering the three 

markers used to identify these subsets (FAP, PDPN, αSMA), we found that in our cohort each 

marker did not predict RFS independently, it was only when they were considered as co-

expressing in the stroma (as identified by CAF subsets) that RFS was impacted. As both CAF-

S1 and CAF-S5 contribute to poor overall survival, this suggests that CAFs co-expressing FAP 

and PDPN are indicative of poor survival outcome in NSCLC.  

 

To further understand the influence of the novel CAF-S5 subset on survival in other cancers 

we analysed the TCGA dataset for multiple solid organ cancers (liver, pancreatic, breast and 

renal clear cell). As this is bulk sequencing data we considered patients with increased 

expression of FAP and PDPN and low αSMA likely to have a dominant phenotype of CAF-S5. 

For these cancers there was decreased survival probability when CAF-S5 was dominant, 

compared to all other patients in the cohort. It has previously been shown that patients 

expressing the CAF-S1 phenotype in breast cancer have increased survival probability 

compared to groups (17). Our analysis suggests the CAF-S5 subset should be considered as a 

marker of poor prognosis across multiple solid organ malignancies and highlights the 

importance of the CAF-S5 subset as a predictor of poor outcome.  
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Conclusions 

 

We have identified five subsets of CAFs in NSCLC, including a previously undefined CAF subset 

CAF-S5. We have shown that CAF-S1, CAF-S4 and CAF-S5 are the most distinct to tumour 

tissue compared to non-cancerous tissue. CAF-S1 and CAF-S5 have been shown to be distinct 

populations, with CAF-S1 being FAP+, PDPN+ and αSMA+ and CAF-S5 being FAP+, PDPN+ and 

αSMA- , and concluding that CAF-S1 display a contractile phenotype whereas CAF-S5 display 

an inflammatory one. Their presence was shown to contribute to poorer overall RFS in NSCLC 

and suggests a poor prognosis across multiple cancer types.  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509919doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509919
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Funding: This work was supported by a Cancer Research UK [CRUK Clinician Scientist 

Fellowship A24867] to ARA; LM is supported by EPSRC Centre for Doctoral Training in Medical 

Imaging [EP/L016559/1]. LK is supported by a GlaxoSmithKline-NPL studentship. 

 

Acknowledgements: We would like to thank all the staff at the department of Thoracic 

Surgery, Royal infirmary of Edinburgh. We are grateful for assistance from CIR Flow Cytometry 

and Shared University Research Facilities, University of Edinburgh. We also thank Irene Young 

and Katie Hamilton for undertaking patient consents.  

 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509919doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509919
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

References 

1.  Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global 

Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 

36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209–49.  

2.  Molina JR. Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and 

Survivorship. Mayo Clin Proc. 2008;83(5):584–94. 

3.  Iglesias VS, Giuranno L, Dubois LJ, Theys J, Vooijs M. Drug resistance in non-small cell 

lung cancer: A potential for NOTCH targeting? Front Oncol. 2018;8:267.  

4.  Bremnes RM, Dønnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, et al. The role of 

tumor stroma in cancer progression and prognosis: Emphasis on carcinoma-associated 

fibroblasts and non-small cell lung cancer. J Thorac Oncol. 2011;6(1):209–17.  

5.  Castells M, Thibault B, Delord J-P, Couderc B. Implication of Tumor Microenvironment 

in Chemoresistance: Tumor-Associated Stromal Cells Protect Tumor Cells from Cell 

Death. Int J Mol Sci. 2012;13(12):9545–71.  

6.  Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, et al. Three subtypes of 

lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell. 2021 Nov 

8;39(11):1531-1547.e10.  

7.  Dominguez CX, Müller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, et al. Single-Cell 

RNA Sequencing Reveals Stromal Evolution into LRRC15 + Myofi broblasts as a 

Determinant of Patient Response to Cancer Immunotherapy. Cancer Discov. 

2020;10:232–53.  

8.  Santi A, Kugeratski FG, Zanivan S. Cancer Associated Fibroblasts: The Architects of 

Stroma Remodeling. Proteomics. 2018 Mar 1;18(5–6).  

9.  Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A 

framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev 

Cancer. 2020;20(3):174-86.  

10.  Kalluri R. The biology and function of fibroblasts in cancer. Nature Reviews Cancer. 

2016 Sep;16(9):582-98. 

11.  Monteran L, Erez N. The dark side of fibroblasts: Cancer-associated fibroblasts as 

mediators of immunosuppression in the tumor microenvironment. Front Immunol. 

2019;10:1–15.  

12.  Joshi RS, Kanugula SS, Sudhir S, Pereira MP, Jain S, Aghi MK. The Role of Cancer-

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509919doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509919
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Associated Fibroblasts in Tumor Progression. Cancers. 2021;13(6):1399. 

13.  Mhaidly R, Mechta-Grigoriou F. Fibroblast heterogeneity in tumor micro-environment: 

Role in immunosuppression and new therapies. Semin Immunol. 2020;48:101417.  

14.  Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, et al. 

Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic 

cancer. J Exp Med. 2017;214(3):579–96.  

15.  Chen PY, Wei WF, Wu HZ, Fan LS, Wang W. Cancer-Associated Fibroblast 

Heterogeneity: A Factor That Cannot Be Ignored in Immune Microenvironment 

Remodeling. Front Immunol. 2021;12:2760.  

16.  Costa A, Kieffer Y, Scholer-dahirel A, Soumelis V, Vincent-salomon A, Costa A, et al. 

Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast 

Cancer Article Fibroblast Heterogeneity and Immunosuppressive Environment in 

Human Breast Cancer. Cancer Cell. 2018;33(3):463-479.e10.  

17.  Pelon F, Bourachot B, Kieffer Y, Magagna I, Mermet-Meillon F, Bonnet I, et al. Cancer-

associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast 

cancer through complementary mechanisms. Nat Commun. 2020;11(1):1-20.  

18.  Givel AM, Kieffer Y, Scholer-Dahirel A, Sirven P, Cardon M, Pelon F, et al. MiR200-

regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in 

ovarian cancers. Nat Commun. 2018;9(1):1-20 

19.  Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast 

Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer 

Cell. 2018;33(3):463-479.e10.  

20.  Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al. Phenotype 

molding of stromal cells in the lung tumor microenvironment. Nat Med. 

2018;24(8):1277–89.  

21.  Grout JA, Sirven P, Leader AM, Maskey S, Hector E, Puisieux I, et al. Spatial positioning 

and matrix programs of cancer-associated fibroblasts promote T cell exclusion in 

human lung tumors. Cancer Discov. 2022; CD-21-1714. 

22.  Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, et al. Spatially 

and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by 

single cell RNA sequencing. Nature communications. 2018 Dec 4;9(1):1-3. 

23.  Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-Species 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509919doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509919
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting 

Cancer-Associated Fibroblasts Antigen-Presenting CAFs in PDAC. Cancer Discov. 

2019;9:1102–25.  

24.  Li H, Courtois ET, Sengupta D, Tan Y, Hao Chen K, Jie Lin Goh J, et al. Reference 

component analysis of single-cell transcriptomes elucidates cellular heterogeneity in 

human colorectal tumors. Nature genetics. 2017 May;49(5):708-18.  

25.  Neuzillet C, Tijeras-Raballand A, Ragulan C, Cros J, Patil Y, Martinet M, et al. Inter- and 

intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic 

ductal adenocarcinoma. J Pathol. 2019 May 1;248(1):51–65.  

26.  O’Connor RA, Chauhan V, Mathieson L, Titmarsh H, Koppensteiner L, Young I, et al. T 

cells drive negative feedback mechanisms in cancer associated fibroblasts , promoting 

expression of co-inhibitory ligands , CD73 and IL-27 in non-small cell lung cancer. 

Oncoimmunology. 2021;10(1).  

27.  McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection 

for Dimension Reduction. arXiv preprint arXiv:1802.03426. 2018 Feb 9.  

28.  Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et 

al. FlowSOM: Using self-organizing maps for visualization and interpretation of 

cytometry data. Cytom Part A. 2015;87(7):636–45.  

29.  Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. 

QuPath: Open source software for digital pathology image analysis. Sci Reports 2017 

71. 2017;7(1):1–7.  

30.  Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-Convex Polygons. 

International Conference on Medical Image Computing and Computer-Assisted 

Intervention 2018 (pp. 265-273).  

31.  Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, et al. Orange: Data 

Mining Toolbox in Python. J Mach Learn Res. 2013;14:2349–53.  

32.  Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21.  

33.  Blighe K, Rana S, Lewis M. EnhancedVolcano: Publication-ready volcano plots with 

enhanced colouring and labeling. R package version 1.14.0. R package version 1.14.0; 

2022. Available from: https://github.com/kevinblighe/EnhancedVolcano 

34.  Mhaidly R, Mechta-Grigoriou F. Role of cancer-associated fibroblast subpopulations in 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509919doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509919
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

immune infiltration, as a new means of treatment in cancer. Immunol Rev. 

2021;302(1):259–72.  

35.  Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the 

immune system, and cancer. Frontiers in immunology. 2012;3:283.  

36.  Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion 

in the absence of epithelial-mesenchymal transition: Podoplanin-mediated remodeling 

of the actin cytoskeleton. Cancer Cell. 2006;9(4):261–72.  

37.  Kawase A, Ishii G, Nagai K, Ito T, Nagano T, Murata Y, et al. Podoplanin expression by 

cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. 

International journal of cancer. 2008;123(5):1053-9.  

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509919doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509919
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Supplementary Figures 

 

Figure S1: Gating strategy used to identify fibroblasts. Fibroblasts were defined as single, live 

cells which were EpCAM, CD45 and CD31 negative. 
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Figure S2: Gene set and pathways identified as enriched. (A) Gene sets activated and 

suppressed in CAF-S5 compare to CAF-S1 following gene set enrichment analysis; (B) KEGG 

pathways activated and suppressed in CAF-S5 compared to CAF-S1 following KEGG pathway 

analysis. 
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