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see that the other genes of significance are TAGLN (transgelin), TPM2 (tropomyosin 2), SPARC 

(secreted protein acidic and cysteine rich) and MYL9 (myosin light chain 9). The upregulated 

genes are C3 (complement C3), SEPP1 (selenoprotein P), C7 (complement C7) and CLU 

(clusterin). The results of these analyses suggest that CAF-S1 and CAF-S5 are distinct CAF 

subtypes.  

 

 

Figure 5: Functional analysis of CAF-S1 and CAF-S5 in NSCLC. (A) PCA plot comparing CAF-S1 and CAF-S5 
fibroblasts from Lambrechts et al. RNA Seq data (20) (n = 12 CAF-S1, n = 5 CAF-S5); (B) Volcano plot showing the 
most significantly up and downregulated genes when comparing CAF-S5 to CAF-S1; (C) Gene sets activated and 
suppressed in CAF-S5 compare to CAF-S1 following gene set enrichment analysis; (D) KEGG pathways activated 
and suppressed in CAF-S5 compared to CAF-S1 following KEGG pathway analysis. 

 

Next, we performed survival analysis on our results from 163 NSCLC tumours, looking at if the 

presence of CAF-S1 and CAF-S5 correlated with recurrence free-survival (RFS) (Fig 6A). This 

revealed that the presence of CAF-S1 or CAF-S5 was correlated with poor 5-year RFS. As it 

was evident some patients expressed both CAF-S1 and CAF-S5, survival analysis was 
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performed to compare those that expressed only one of the two subsets above median level 

with those that expressed both (Fig 6B). This revealed no significant difference between RFS 

rates of the three groups, with all three demonstrating around 50% RFS probability after 5 

years.  

 

To understand why these subsets contributed to poorer overall RFS, we investigated whether 

it was a single marker contributing to this by looking at the RFS of patients when the 

percentage of FAP, PDPN or αSMA in the stroma was above the median of all patients (Fig 

6C). This revealed that there was no single marker causing such significant difference in RFS 

with the subsets present, although FAP did reveal a trend associated with poorer RFS with 

higher FAP expression.  

 

Using the TCGA dataset we analysed the survival of patients who we expect to have greater 

prevalence of CAF-S5 (based on bulk high expression of FAP and PDPN in the patient and low 

αSMA) across four solid organ cancers: hepatocellular cancer, pancreatic adenocarcinoma, 

invasive breast cancer and renal clear cell cancer (Fig 6D). This revealed that the presence of 

these markers indicating CAF-S5 correlated with poor survival probability across these 

cancers.  
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Figure 6: Survival analysis of CAF-S1 and CAF-S5 in NSCLC and other solid organ cancers. (A) Relapse free 
survival analysis of CAF-S1 and CAF-S5 when the proportion of the CAF subset present is greater or less than the 
median proportion expressed across all 163 patients; (B) Comparison of survival when patients only have CAF-
S1 or CAF-S5 present above median levels or both, n=12 CAF-S1 only, n=26 both, n=14 CAF-S5 only; (C) Relapse 
free survival looking at the percentage expression of FAP, PDPN and αSMA individually in the stroma, comparing 
above and below median expression; (D) Survival in other cancers (hepatocellular carcinoma, pancreatic 
adenocarcinoma, invasive breast carcinoma and renal clear cell carcinoma) from the TCGA dataset where each 
patient is defined as displaying a predominant phenotype by looking at FAP (high), PDPN (high) and αSMA (low) 
expression. 
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Discussion 

 

Here we have identified that in NSCLC, CAFs present as a heterogeneous population which 

can be divided into subsets depending on their expression levels of seven fibroblast markers. 

Heterogeneity of CAFs is found both between and within patient samples. Two of the subsets, 

CAF-S2 and CAF-S3, express low levels of these markers used to identify activated fibroblasts, 

with CAF-S2 having low or negative expression across all markers and CAF-S3’s most 

significant difference from CAF-S2 being the upregulated expression of FSP1. This, and the 

finding that there is greater presence of these subsets in non-cancerous lung tissue compared 

to tumour, suggests that these subsets are representative of a more normal, healthy lung 

fibroblast, not one in an activated state. The other subsets identified, CAF-S1, CAF-S4 and 

CAF-S5 are more prevalent in tumour tissue. CAF-S5 is a novel subset, identified here as 

expressing FAPMed CD29Med αSMANeg-Low PDPNMed CD90Low FSP1Low and PDGFRβMed.  

 

These fibroblast markers can also be used to identify CAF subsets through multiplex 

immunofluorescence imaging when the definitions outlined from the flow cytometry analysis 

are converted to binary definitions. The three subsets identified as more prevalent in the 

tumour (CAF-S1, CAF-S4 and CAF-S5) were investigated by staining for CAF markers FAP, 

αSMA, PDPN, CD90 and FSP1. Assessing the distribution of each marker across different tissue 

classes revealed differences between adenocarcinoma and squamous cell carcinoma, notably 

the expression of PDPN being higher in squamous cell carcinoma. The expression of PDPN has 

been linked to poor prognosis in cancer, and is hypothesised to play roles in invasion, 

epithelial to mesenchymal transition (EMT) and metastasis (35,36). The expression of PDPN 

on CAFs has been investigated in other studies, with one finding that PDPN positivity was 

correlated with greater invasiveness in lung adenocarcinomas (37). It would therefore be 

expected PDPN+ CAF subsets (CAF-S1 and CAF-S5) would be associated with poorer long-term 

survival, and this was indeed found in our study when assessing RFS.  

 

Comparing the proportions of CAF subsets between NSCLC subtypes, we observed a higher 

proportion of CAF-S1 and CAF-S5 present in squamous cell carcinoma, and a higher 

proportion of CAF-S4 present in adenocarcinoma. This distribution is likely due to the 

expression of PDPN in CAF-S1 and CAF-S5 as previously discussed.  
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To further characterise differences between CAF-S1 and CAF-S5, and to ensure that they were 

distinct populations, we analysed the single cell RNA sequencing dataset for NSCLC, published 

by Lambrechts et al (20). A subset of fibroblasts defined as CAF-S1 or CAF-S5 by our 

established criteria were compared. As the defining difference between the two subsets is 

the expression of αSMA, the main predicted difference was that CAF-S5 would not be a 

contractile phenotype. This was further confirmed by the finding that genes such as TAGLN 

and TPM2 were downregulated in CAF-S5, as they would contribute to contractility also, and 

that contractile pathways were supressed (Fig S2). The upregulation of complement genes C3 

and C7 suggests that CAF-S5 are an inflammatory subset while CAF-S1 are a contractile subset. 

 

RFS probability was found to be worse when CAF-S1 or CAF-S5 were present above median 

levels in NSCLC patients, despite undergoing curative resection. When considering the three 

markers used to identify these subsets (FAP, PDPN, αSMA), we found that in our cohort each 

marker did not predict RFS independently, it was only when they were considered as co-

expressing in the stroma (as identified by CAF subsets) that RFS was impacted. As both CAF-

S1 and CAF-S5 contribute to poor overall survival, this suggests that CAFs co-expressing FAP 

and PDPN are indicative of poor survival outcome in NSCLC.  

 

To further understand the influence of the novel CAF-S5 subset on survival in other cancers 

we analysed the TCGA dataset for multiple solid organ cancers (liver, pancreatic, breast and 

renal clear cell). As this is bulk sequencing data we considered patients with increased 

expression of FAP and PDPN and low αSMA likely to have a dominant phenotype of CAF-S5. 

For these cancers there was decreased survival probability when CAF-S5 was dominant, 

compared to all other patients in the cohort. It has previously been shown that patients 

expressing the CAF-S1 phenotype in breast cancer have increased survival probability 

compared to groups (17). Our analysis suggests the CAF-S5 subset should be considered as a 

marker of poor prognosis across multiple solid organ malignancies and highlights the 

importance of the CAF-S5 subset as a predictor of poor outcome.  
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Conclusions 

 

We have identified five subsets of CAFs in NSCLC, including a previously undefined CAF subset 

CAF-S5. We have shown that CAF-S1, CAF-S4 and CAF-S5 are the most distinct to tumour 

tissue compared to non-cancerous tissue. CAF-S1 and CAF-S5 have been shown to be distinct 

populations, with CAF-S1 being FAP+, PDPN+ and αSMA+ and CAF-S5 being FAP+, PDPN+ and 

αSMA- , and concluding that CAF-S1 display a contractile phenotype whereas CAF-S5 display 

an inflammatory one. Their presence was shown to contribute to poorer overall RFS in NSCLC 

and suggests a poor prognosis across multiple cancer types.  
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Supplementary Figures 

 

Figure S1: Gating strategy used to identify fibroblasts. Fibroblasts were defined as single, live 

cells which were EpCAM, CD45 and CD31 negative. 
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Figure S2: Gene set and pathways identified as enriched. (A) Gene sets activated and 

suppressed in CAF-S5 compare to CAF-S1 following gene set enrichment analysis; (B) KEGG 

pathways activated and suppressed in CAF-S5 compared to CAF-S1 following KEGG pathway 

analysis. 
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