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ABSTRACT  

Precision medicine is critically dependent on better methods for diagnosing and staging disease 

and predicting drug response. Histopathology using Hematoxylin and Eosin (H&E) stained tissue - not 

genomics – remains the primary diagnostic modality in cancer. Moreover, recently developed, highly 

multiplexed tissue imaging represents a means of enhancing histology workflows with single cell 

mechanisms. Here we describe an approach for collecting and analyzing H&E and high-plex 

immunofluorescence (IF) images from the same cells in a whole-slide format suitable for translational 

and clinical research and eventual deployment in diagnosis. Using data from 40 human colorectal cancer 

resections (60 million cells) we show that IF and H&E images provide human experts and machine 

learning algorithms with complementary information. We demonstrate the automated generation and 

ranking of computational models, based either on immune infiltration or tumor-intrinsic features, that 

are highly predictive of progression-free survival. When these models are combined, a hazard ratio of 

~0.045 is achieved, demonstrating the ability of multi-modal digital pathology to generate high-

performance and interpretable biomarkers. 
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INTRODUCTION 

The microanatomy of fixed and stained tissues has been studied using light microscopy for over 

two centuries1,2, and immunohistochemistry (IHC) has been in widespread use for 50 years3. 

Histopathology review of hematoxylin and eosin (H&E) stained tissue sections, complemented by IHC 

and exome sequencing, remains the primary approach for diagnosing and managing many diseases, 

particularly cancer4. More recently, a range of computational methods have been developed to 

automatically extract information from H&E images5 and the use of machine learning and artificial 

intelligence approaches (ML/AI) is leading to rapid progress in computer-assisted diagnosis6. However, 

the images in current digital pathology systems – acquired from conventional histology and IHC 

methods – generally lack the molecular precision and depth of quantitative analysis needed to optimally 

predict outcomes, guide the selection of targeted therapies, and enable research into the molecular 

mechanisms of disease (see Wharton et al. for a thorough review)7. 

The transition from H&E-based histopathology to digital technologies8 is occurring concurrently 

with the introduction of methods for obtaining 10-80-plex data from fixed tissue sections (e.g., MxIF, 

CyCIF, CODEX, 4i, mIHC, MIBI, IBEX, and IMC9–15). These high-plex imaging methods enable deep 

morphological and molecular analysis of normal and diseased tissues from humans and animal 

models12,16–19 and generate spatially resolved information that is an ideal complement to other single cell 

methods, such as scRNA sequencing. Whereas some imaging methods require frozen samples, those that 

are compatible with formaldehyde-fixed and paraffin-embedded (FFPE) specimens – the type of 

specimens universally acquired for diagnostic purposes – make it possible to tap into large archives of 

human biopsy and resection specimens20,21. Moreover, whereas many high-plex imaging studies to date 

involve tissue microarrays (TMA; arrays of many 0.3 to 1 mm specimens on a single slide) or the small 

fields of view characteristic of mass-spectrometry based imaging9,11, whole-slide imaging is required for 

clinical research and practice both to achieve sufficient statistical power22 and as an FDA requirement23. 
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Histopathology review of H&E images, a top-down approach, exploits prior knowledge about 

the cellular and acellular structures and morphologies associated with disease to analyze images24. In 

contrast, research using highly multiplexed imaging most commonly relies on a bottom-up approach in 

which cell types are enumerated and neighborhoods associated with disease are identified 

computationally9,11. A substantial opportunity exists to link these approaches in research and diagnostic 

settings, thereby combining standard clinical practice with single cell analysis of the tumor 

microenvironment. An ideal instrument for this purpose should have sufficient plex and resolution to 

distinguish tumor and immune cell types, enable efficient data acquisition with minimal human 

intervention, and, critically, allow the collection of same-cell high-quality H&E images for pathology 

review. A first-principles analysis suggests these requirements can be met with an instrument having 16-

20 IF channels: 7-8 to subtype immune cells, 3-4 to detect and subtype tumor cells, 3-4 to identify 

relevant tissue structures, and 3-4 to examine specific tumor or therapeutic mechanisms (see Extended 

Data Table 1 for example antibody panels) with the possibility of deeper analysis as needed in some 

cases. 

The relative complexity of existing highly multiplexed imaging assays has prevented their wide 

adoption in the clinic; the current standard in clinical research is 5 to 6-plex imaging of tissue sections 

using a Perkin Elmer Vectra Polaris™ (now Akoya PhenoImager HT™) combined in some cases with 

H&E imaging of adjacent sections25,26. Achieving higher plex than this in a diagnostic setting will likely 

require parallel (one-shot) fluorescence acquisition rather than the sequential process developed by 

Gerdes et al.10 and subsequently extended by our group15 and others27. The unrealized possibility of 

visualizing the same cells with both H&E and >6 plex images would also facilitate analytical approaches 

that link molecular data to disease-associated histological features. 

In this paper, we describe an approach to one-shot, whole-slide, 16 to 18-channel 

immunofluorescence (IF) imaging followed by H&E staining and imaging of the same tissue and then 
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explore its use in the generation of spatial biomarkers prognostic of tumor progression. Using FFPE 

specimens from multiple tumor types, we compare the performance of this multimodal “Orion™” 

method, and a commercial-grade instrument that implements it, to established IHC and cyclic data 

acquisition by CyCIF28. We show that joint analysis of H&E and IF same-section images substantially 

improves our ability to identify and interpret image features significantly associated with disease 

progression by facilitating the transfer of anatomical annotation from H&E images (e.g., distinguishing 

normal tissue from a tumor) while labeling H&E images using high-plex data. We also show that 

machine learning (ML) models generated from molecular analysis of high-plex IF images can be 

combined with ML of H&E images to aid in feature identification and interpretation (substantially 

extending previous data on joint analysis of molecular and H&E images)29,30. In combination, the top 

down and bottom up approaches generate potential biomarkers that are highly predictive of progression 

free survival (PFS) in a 40-patient cohort. Of note, our analysis involves a large amount of data by the 

standards of high-plex tissue imaging but the number of patients is too small for validation of a clinical 

test. Thus, the current work should be considered a proof-of-principles study; fortunately, the Orion 

method is scalable to the larger cohorts needed to test and validate biomarkers for clinical use as soon as 

these cohorts can be assembled. 

 

RESULTS 

Constructing and testing the Orion platform. 

We investigated multiple approaches for achieving one-shot high-plex IF followed by H&E 

imaging of the same cells (i.e., from the same tissue section). Because eosin fluoresces strongly in the 

530 - 620 nm range, it proved impractical to perform H&E staining prior to IF. However, board-certified 

pathologists confirmed that “clinical-grade” H&E images could be obtained after one or a small number 

of IF cycles when staining was performed using an industry-standard Ventana automated slide stainer 
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(or a similar machine from other vendors)31. An additional limitation of multiplexed fluorescence 

microscopy is that the overlap in excitation and emission spectra limits the number of fluorophores 

(typically to five to six) that can be accommodated within the bandpass useful for antibody labeling 

(~350 to 800 nm). This can be overcome using tuned emission and excitation filters and spectral 

deconvolution (typically of 6 - 10 channels)32 or by dispersing emitted light using a diffraction grating 

and then performing linear unmixing33,34. However, unmixing of complex spectra (e.g., from an image 

stained with 10 or more fluorophores) has historically resulted in a substantial reduction in sensitivity 

and has not been widely implemented. 

To develop the Orion platform, we tested >100 chemical fluorophores from different sources to 

identify 18 ArgoFluor™ dyes that were compatible with spectral extraction by discrete sampling based 

on the following properties: (i) emission in the 500 - 875 nm range; (ii) high quantum-efficiency; (iii) 

good photostability; and (iv) compatibility with each other in high-plex panels (Extended Data Fig. 1a, 

Extended Data Table 2). ArgoFluor dyes were covalently coupled to commercial antibodies directed 

against lineage markers of immune (e.g., CD4, CD8, CD68), epithelial (cytokeratin, E-cadherin), and 

endothelial (CD31) cells as well as immune checkpoint regulators (PD-1, PD-L1), and cell state markers 

(Ki-67), to generate panels suitable for studying the microenvironment and architecture of epithelial 

tumors and adjacent normal tissue (Extended Data Fig. 1b). An accelerated aging test demonstrated 

excellent reagent stability, estimated to be >5yr at -20ºC storage (Extended Data Fig. 1c). 

With support from an NCI SBIR grant, a commercial-grade Orion instrument was developed. 

The instrument utilizes seven lasers (Fig. 1a and Extended Data Fig. 1d) to illuminate the sample and 

collects the emitted light with 4X to 40X objective lenses (0.2 NA to 0.95 NA). The system employs 

multiple tunable optical filters35 that use a non-orthogonal angle of incidence on thin-film interference 

filters to shift the emission bandpass36. These filters have 90-95% transmission efficiency and enable 

collection of 10 - 15 nm bandpass channels with 1 nm center wavelength (CWL) tuning resolution over 
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a wide range of wavelengths (425 to 895 nm). Narrow bandpass emission channels improve specificity 

and the consequent reduction in signal strength is overcome by using excitation lasers that are ~10 times 

brighter than conventional LED illuminators and a sensitive scientific CMOS detector. Raw image files 

are processed computationally to correct for system aberrations such as geometric distortions and 

camera non-linearity37, followed by spectral extraction to remove crosstalk, thereby isolating individual 

biomarker signals to one per imaging channel. The features of single-cells and regions of tissue are then 

computed using MCMICRO software38. The Orion instrument has an integrated brightfield mode, but 

the H&E images used in this study were also acquired using an Aperio GT450 microscope (Leica 

Biosystems), which is a gold standard for diagnostic applications39 (Fig. 1a).  

Validating high-plex one-Shot fluorescence imaging. 

To test the Orion approach, we collected images from three sets of FFPE specimens: (i) human 

tonsils, a standard tissue for antibody qualification, (ii) 40 stage I-IV colorectal cancer (CRC) resections 

from the archives of the Brigham and Women’s Hospital Pathology Department (key features of this 

cohort are described in Extended Data Table 3), and (iii) specimens of multiple tumor types available 

on TMA (Extended Data Table 4). We optimized the panel on tonsil and applied it successfully to this 

CRC cohort and to other tissue types represented on the TMA (see Methods). We included a dedicated 

autofluorescence channel (445 nm excitation / 485 nm emission, CWL) that provided valuable 

information on tissue morphology and components of connective tissue structures and blood vessels 

(Fig. 1b)40. This channel was also used to extract autofluorescence from the IF channels and improve 

biomarker signal to noise ratio (SNR). The images in this paper therefore represent 18-plex imaging (16 

antibody channels, autofluorescence and nuclear stain) plus H&E. Inspection of extracted images 

revealed error-free whole-slide imaging of 1,000 or more adjacent tiles (Fig. 1c)41 as well as bright in-

focus staining of cellular and cellular substructures within each tile (Fig. 1d). To quantify the 
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effectiveness of spectral extraction, we imaged serial sections of human tonsil each stained with an 

individual antibody conjugated to a different ArgoFluor fluorophore and then recorded data in all 

channels. Prior to extraction, spectral cross talk between adjacent channels averaged ~35% and this was 

reduced 35-fold to <1% following spectral extraction (Fig. 1e; crosstalk among all channel pairs was 

reduced to <0.5%). When a tissue section was subjected to one-shot 16-plex antibody labeling, we 

observed “cross-talk” only for antibodies that stain targets co-localized on the same types of cells (e.g., 

co-staining of T-cell membranes by antibodies against CD3e and CD4 resulted in a high degree of pixel 

intensity correlation across these two channels; Extended Data Fig. 1e). 

The staining patterns obtained by ArgoFluor-antibody conjugates were similar to those obtained 

by conventional IHC performed on the same specimen using the same antibody clones (see Du et al.42 

for details of approach; Fig. 2a and Extended Data Fig. 2). In addition, when adjacent tissue sections 

from CRC patients were imaged using Orion and the well-established method of cyclic 

immunofluorescence (CyCIF)15 images looked similar and the fractions of cells scoring positive for 

identical markers were highly correlated (Fig. 2b, 2c and Extended Data Fig. 2b shows four examples 

with ρ = 0.8 to 0.9). Furthermore, projection of the high dimensional Orion data using t-SNE 

successfully resolved multiple immune and tumor cell types (Fig. 2d and Extended Data Fig. 2c). We 

conclude that the Orion method generates single cell data that are qualitatively and quantitatively similar 

to data generated by established methods such as IHC and CyCIF. Moreover, Orion is compatible with a 

range of tumor types including carcinomas, lymphomas, gliomas, and sarcomas as well as normal and 

non-neoplastic disease tissues (Extended Data Fig. 3a). 

There are situations in which 16-20 fluorescent channels are likely to be insufficient. We 

therefore performed CyCIF after Orion imaging (but prior to H&E staining). We found that the standard 

CyCIF signal reduction (“bleaching”) procedure15 reduced ArgoFluor intensity by over 95% on average 

(Extended Data Fig. 3b), enabling the collection of multiple rounds of multiplexed imaging data after 
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the original Orion imaging round (Fig. 2e). As additional antibody panels become available, it will also 

be possible to perform sequential rounds of high-plex Orion imaging, although the quality of H&E 

images will decrease as the number of IF cycles increases. 

Integrated analysis of IF and H&E images 

The Orion method enables same-cell H&E and IF comparison (Fig. 3a), as opposed to existing 

methods that require use of adjacent tissue sections. We found that molecular labels obtained from IF 

enabled more complete enumeration of lymphocytes than inspection of H&E images by trained 

pathologists alone; for example, cells in CD4, CD8 T cell and B cell lineages are similar by H&E but 

clearly distinguishable by IF (arrows in Fig. 3a). Conversely, some cells and cell states were more 

readily defined in H&E images based on morphologic features than by immunofluorescence markers; 

this included eosinophils, neutrophils that could not be subtyped in IF images but whose morphology is 

highly characteristic in H&E data, as well as the prophase, metaphase, anaphase and telophase stages of 

mitosis (arrows and dashed lines in Fig. 3b). To quantify the amount of complementary information in 

H&E and IF images, we computed the number of cells (as identified by nuclear segmentation) in the 40-

specimen CRC dataset that could not be assigned a clear identity using IF images and found that it 

varied from 6.5 to 42% of total nuclei (median = 16%) (Fig. 3c). We have previously observed a similar 

fraction of “unidentifiable” cells even with 40-60 plex CyCIF imaging22 and surmised that these cells 

are either negative for all antibody markers included in the panel or have morphologies that are difficult 

to segment43. We therefore used a previously published ML model trained on H&E data44 to identify 

those cells missing labels in Orion IF images (see Methods for details of this model and its performance) 

and found that >50% were predicted to be smooth muscle, stromal fibroblasts, or adipocytes (Fig. 3d). 

These predictions were confirmed by visual inspection of the H&E images by pathologists (Fig. 3e). We 

also identified specimens (e.g., from patient 26, Fig. 3f and Extended Data Fig. 3c) in which a region 
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of epithelium was weakly stained by pan-cytokeratin, E-cadherin, and immune markers making the cells 

difficult to identify by IF. Inspection of H&E images showed that these cells corresponded to a serrated 

adenoma whereas nearby invasive low-grade adenocarcinoma cells stained strongly for pan-cytokeratin 

and E-cadherin. Differential staining of cytokeratin isoforms in serrated adenoma and adenocarcinoma 

has been described previously45 and in specimen C26 we speculate it may also reflect clonal 

heterogeneity. We conclude that the availability of H&E and IF images of the same set of cells 

substantially increases the fraction of cell types and states that can be identified as compared to either 

type of data alone. This is particularly true of cells for which specific molecular markers do not exist 

(e.g., stromal fibroblasts) or are lost due to tumor sub-clonality22 as well as cells that are highly 

elongated or have multiple nuclei and are thus difficult to segment.  

Identifying tumor features predictive of disease progression. 

The classification of cancers for diagnostic purposes using American Joint Committee on Cancer 

(AJCC/UICC-TNM classification) criteria is based primarily on tumor-intrinsic characteristics (tumor, 

lymph node, and metastases, the TNM staging system)46. However, the extent and type of immune 

infiltration also plays a major role in therapeutic response and survival47. In colorectal cancer (CRC) this 

has given rise to a clinical test, the Immunoscore®48, that is predictive of disease progression in 

multicenter cohort studies (as measured by progression-free survival, PFS, or overall survival, OS) and 

of time to recurrence in stage III cancers in a Phase 3 clinical trial49. The Immunoscore uses IHC to 

evaluate the number of CD3 and CD8-positive T cells at the tumor center (CT) and the invasive margin 

(IM; for Immunoscore this is defined as a region encompassing 360 μm on either side of the invasive 

boundary; in this work it is ± 100 μm from the boundary)50,51. The hazard ratio (HR; the difference in 

the rate of progression) between patients with tumors containing few immune cells in both the CT and 

the IM (Immunoscore = 0) and patients with tumors containing many cells in both compartments 
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(Immunoscore = 4) has been reported to be 0.20, (95% CI 0.10–0.38; p < 10-4) in a Cox regression 

model, with increasing score correlating with longer survival52. This is a clinically significant difference 

that can be used to inform key treatment decision: for example, whether or not to deliver chemotherapy 

following surgery (i.e., adjuvant therapy)53. 

Using Orion data, we developed an automated method to recapitulate key aspects of the 

Immunoscore using PFS as measure of survival. First, we detected the tumor-stromal interface and 

generated masks that matched the criteria for CT and IM (± 100 μm around the tumor boundary; Fig. 

4a). CD3 and CD8 positivity in single cells was determined by Gaussian Mixture Modeling54 with the 

median positive fraction for each marker (CD3 or CD8) in each region (CT or IM) across all 40 CRC 

cases used as the cutoff for assigning a subscore of 0 or 1; the sum of the four subscores was used as the 

final score for Image Feature Model 1 (IFM1; Fig. 4b). The scoring method was intentionally simplified 

to avoid a need for tuning of adjustable parameters but nonetheless yielded a HR = 0.209 (95% CI 

0.094-0.465; p = 10-4) (Fig. 4c), similar to Immunoscore itself. Next, we used the underlying logic of 

Immunoscore to leverage multiple Orion channels. A total of 13 immune focused markers were used to 

generate ~15,000 marker combinations (IFMs), each composed of four markers within the CT and IM 

domains (Fig. 4d). Scores for each CRC case were binarized into high and low scores based on median 

intensities. When HRs were calculated we found that nearly 2,500 IFMs exceeded IFM1 in performance 

(Extended Data Fig. 4a, 4b, and 4c). The optimal model (IFM2) exhibited an HR = 0.0785 (95% CI: 

0.036-0.172, p = 2 x10-06) (Fig. 4d and 4e) and comprised the fractions of α-SMA+ cells in the CT, and 

CD45+, PD-L1+ and CD4+ cells in the IM. Leave-one-out resampling showed that IFM2 was 

significantly better than IFM1 and demonstrated stable ranking with respect to HR (p = 3.4 x 10-14; 

adjusted p value based on the Benjamini-Hochberg Procedure padj = 5.01 x 10-9). 500-fold bootstrapping 

also confirmed a distribution of hazard ratios for IFM2 that was significantly lower than for IFM1 (Fig. 

4f).  
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Histologic review of H&E images showed that IFM2-high tumors that exhibited slow 

progression (e.g., patients C34) had extensive lymphohistiocytic chronic inflammation including large 

lymphoid aggregates and tertiary lymphoid structures (TLS) at the tumor invasive margin (so-called 

“Crohn’s-like lymphoid reaction”)55, whereas IFM2-low tumors had relatively few lymphoid aggregates 

and no TLS (e.g., patients C09) (Fig. 4g and Extended Data Fig. 4d). IFM2-low tumors were also more 

invasive than IFM2-high tumors but scoring was independent of histologic subtypes (e.g., conventional 

vs. mucinous morphology) and did not correlate with histologic grade (low vs. high grade carcinoma). 

Thus, IFM2 is likely to capture hyperactivity of the immune microenvironment around the invasive 

tumor margin and potential inactivation of tumor-associated fibroblasts. More generally, we conclude 

that Orion data can be used to automate previously described image-based biomarkers based on single-

channel IHC and identify new marker combinations that significantly outperform them (see limitations 

sections for further discussion of the differences between the case number used in this paper and the 

number required for clinical validation of a biomarker). 

Identifying new progression markers. 

As an unbiased bottom-up means of identifying new progression models, we used Latent 

Dirichlet Allocation (LDA)56, a probabilistic modeling method that reduces complex assemblies of 

intermixed entities into distinct component communities (“topics”). LDA is widely used in text mining 

and biodiversity studies and can detect recurrent arrangements of words or natural elements while 

accounting for uncertainty and missing data57,58. We separated CRC specimens into tumor and adjacent 

normal tissue using H&E data and an ML/AI model44 and performed LDA at the level of individual IF 

markers on cells in the tumor region (Fig. 5a). This yielded 12 spatial features (topics) that recurred 

across the dataset (the number of topics was optimized by calculating the perplexity; see Methods for 

details) (Extended Data Fig. 5a). Visual inspection of images by a pathologist confirmed that marker 
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probabilities matched those computed for different topics and that the frequency distribution of each 

topic varied, sometimes substantially, among CRC samples (Fig. 5b and Extended Data Fig. 5). The 

strongest correlations between topics and PFS for the 40 CRC cohort were found to be -0.52 (p < 0.001) 

for Topic 7, comprising pan-cytokeratin and E-cadherin positivity, with little contribution from immune 

cells, and +0.57 (p < 0.001) for Topic 11, comprising CD20 positivity with minor contributions from 

CD3, CD4, and CD45 (Fig. 5b-5f and Extended Data Fig. 5). In contrast, topics involving the 

proliferation marker Ki-67+ (Topic 6), PD-L1 positivity (Topic 9), or immune cells markers (CD45+ or 

CD45RO+; Topics 3 and 10) exhibited little or no correlation with survival (Extended Data Fig. 5).  

Given the correlation of Topic 7 with PFS, we constructed a Kaplan-Meier curve for tumors 

having a proportion of Topic 7 below the 25th percentile versus those above this threshold (including all 

cells in the specimen) and observed HR = 0.24 (Fig. 6a; CI 95%: 0.10 – 0.54; p < 10-3). Thus, LDA had 

discovered – via direct analysis of high-plex IF data – a tumor-intrinsic feature distinct from immune 

infiltration that was significantly associated with poor patient survival. One limitation of this, and many 

other models built using ML methods such as LDA is poor interpretability. In the case of Topic 7, the 

primary molecular features were pan-cytokeratin and E-cadherin positivity, but Topic 8 was similar in 

composition while exhibiting no correlation with PFS (r = 0.01; Fig. 5c and Extended Data Fig. 5). To 

identify the tumor histomorphology corresponding to these topics we transferred labels from IF to the 

same section H&E images, trained a convolutional neural network (CNN) on the H&E data, and 

inspected the highest scoring tumor regions (Extended Data Fig. 6a). In the case of Topic 7 these were 

readily identifiable as regions of poorly differentiated/high-grade tumor with stromal invasion (Fig. 6a 

and 6b). In contrast, Topic 8 consisted predominantly of intestinal mucosa with a largely normal 

morphology and some areas of well-differentiated tumor (Fig. 6b and Extended Data Fig. 6b). When 

we inspected Orion and CyCIF images of specimens with a high proportion of Topic 7 (e.g., patient 

C06, Extended Data Fig. 7) we found that the E-cadherin to pan-cytokeratin ratios were low relative to 
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normal mucosa or Topic 8 (Na,K-ATPase expression was also low). These are features of cells 

undergoing an epithelial-mesenchymal transition (EMT), which is associated in CRC with progression 

and metastasis59. However, some features of EMT were not observed in Topic 7-positive cells: 

proliferation index was high (40-50% Ki67 and PCNA positivity) and staining for the EMT marker and 

transcription factor ZEB1 was low (when assessed using CyCIF data)60. Thus, even though the 

molecular and morphological features of Topic 7 were consistent with each other, H&E morphology 

was more readily interpretable with respect to long established features of CRC progression. It has been 

observed previously that interpretability increases confidence in a potential biomarker and substantially 

improves its chances of clinical translation61.  

Only about one-third of patients scored high for IFM1 and low for IFM3 (the combination 

correlated with the longest PFS; Fig. 6d), so we reasoned that it would be effective to combine the two 

models. Using the composite model (IFM4), we observed near perfect discrimination between 

progressing and non-progressing CRC patients with HR = 0.045; (95% CI = 0.021 to 0.098; p = 1.4 x 

10-6) (Fig. 6e). This demonstrates that immunological and tumor-intrinsic features of cancers arising 

from top-down and bottom-up analysis can be effectively combined to generate prognostic models with 

high predictive value. Of note, no parameter tuning (e.g., setting thresholds for positivity) was involved 

in the generation of IFMs 1-3 or the highly performative IFM4 hybrid model. Experience with 

Immunoscore shows that parameter tuning using larger cohorts of patients can further boost 

performance. 

 

DISCUSSION 

In this paper, we describe an approach to multimodal tissue imaging that combines high-plex, 

subcellular resolution IF with conventional H&E imaging of the same cells. The approach required 

developing a new Orion platform whose staining and imaging workflow uniquely enables single-shot 
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high-plex IF data acquisition while preserving the sample for high-quality same-section H&E imaging. 

We show that multimodal tissue imaging has substantial benefits for human observers and machine-

learned models; most obviously, it facilities the use of extensive historical knowledge about tissue 

microanatomy based on histopathological analysis of H&E images in the interpretation of molecular 

data derived from multiplexed molecular imaging. Moreover, human experts and ML algorithms can 

exploit H&E images to classify cell types and states that are not readily identifiable in multiplexed data. 

H&E and autofluorescence imaging are also effective at characterizing acellular structures that organize 

tissues at mesoscales (e.g., the elastic lamina of the vessel wall). Conversely, by overlaying molecular 

data on H&E images it is possible to discriminate cell types that have similar morphologies but different 

functions. The ability of molecular data to label cell types in H&E images should substantially improve 

supervised learning for ML/AI modeling7,62 and the use of H&E data to analyze ML models trained on 

molecular data. The topic of “black box” versus interpretable AI is a major point of discussion in 

medicine in general63, but in the case of pathology it is highly likely that interpretability will improve 

uptake, facilitate further research, and potentially improve reproducibility. 

The Orion instrument currently supports up to 20-plex data acquisition (including DNA and one 

or more autofluorescence channels), but we find that 18-plex data collection is more robust – hence its 

use in this paper. It is nonetheless likely that several additional channels can be added to the method as 

we identify fluorophores more optimally matched to available lasers and optical elements. It is also 

possible to perform cyclic image acquisition (CyCIF) after Orion, increasing the number of molecular 

channels dramatically. However, H&E staining must be performed after all IF is complete, and H&E 

image quality goes down as the number of IF cycles increases. In the applications that we describe, 

implementing a performative image-based prognostic test required only a subset of the antibody 

channels and it is therefore likely that high-plex IF (possibly two cycles of Orion) will be most 
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important for exploratory and research studies and somewhat lower-plex imaging suitable for deployed 

image-based diagnostics, with attendant reductions in test complexity and cost.  

It is not surprising that multiplexed molecular data from IF images adds information to H&E 

imaging. More surprising are the many cell types and structures that are difficult to identify in 

multiplexed images and readily identified in H&E images by histopathologists or the ML algorithms 

they train. This includes acellular structures, cell types for which good markers are not readily available, 

highly elongated and multi-nucleated cells that are difficult to segment with existing algorithms (e.g., 

muscle), and – most remarkably – tumor cells themselves. Many tumor types lack a definitive cell-type 

marker, and even when such markers are available, some cells in a tumor express these markers poorly 

likely due to sub-clonal heterogeneity. In contrast, pathologists are skilled at identifying dysplastic and 

transformed cells in H&E images. Therefore, H&E images are potentially more reliable than molecular 

images for the identification of some types of tumor cells. Conversely, many immune cell types cannot 

be reliably differentiated using H&E images, and their presence can also be difficult to discern when 

cells are crowded; the use of IF lineage markers provide critical new information in these cases.  

The complementary strengths of H&E and IF imaging can be exploited by ML/AI algorithms 

that are increasingly used to process tissue images in clinical and research settings62. For example, we 

show that models trained to recognize disease-associated structures in H&E images, which is an area of 

intensive development in digital pathology64, can improve the analysis and interpretation of multiplexed 

IF data. The converse is also true: IF images can be used to automatically label structures in H&E 

images (e.g., immune cell types) to assist in supervised learning on these images. This is a significant 

development because the labor associated with labeling of images – currently by human experts – is a 

major barrier to the development of better ML models. Combined H&E and IF images will be of 

immediate use in ML-assisted human-in-the loop environments that represent the state of the art in 

image interpretation in a research setting65. 
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 We find demonstrate the use of automated image processing on H&E and molecular data to 

identify image features prognostic of tumor progression66. For example, Immunoscore is a pathology-

driven (top-down) clinical test that uses H&E and IHC data on the distribution of specific immune cell 

types at the tumor margin to predict outcome for patients with CRC. In this paper, we reproduced the 

logic of Immunoscore on a cohort of 40 CRC patients and using automated scripts show that it is 

possible to substantially improve upon it using additional immune markers (in terms of Hazard Ratios 

computed from PFS data; see limitations section below)67. In a distinct but complementary bottom-up 

approach, we used a spatially sensitive statistical model (LDA) of IF data to identify cell neighborhoods 

significantly associated with CRC progression. The top-performing feature in this case is tumor-cell 

intrinsic and is based on the distributions of cytokeratin and E-cadherin, two epithelial cell markers. 

Precisely why this is a prognostic feature is unclear from the IF data alone: other features involving 

similar markers are not predictive. However, inspection of corresponding H&E data (and training of an 

ML model) showed that LDA had identified local tumor morphologies typical of poorly 

differentiated/high-grade tumor with stromal invasion, increasing our confidence in the model. Because 

the features in the tumor-intrinsic model were distinct from and uncorrelated with the immune markers 

in Immunoscore, combining the two sets of features significantly improved the hazard ratio relative to 

either model used alone. We therefore anticipate that many opportunities will emerge for joint learning 

from H&E and IF data using adversarial, reinforcement, and other types of ML/AI modeling for 

research purposes, development of novel biomarkers, and analysis of clinical H&E data at scale6. The 

immediate availability of Orion as a commercial platform and our use of open-source software and 

OME (Open Microscopy Environment)68 and MITI (Minimum Information about Tissue Imaging)69 

compliant data standards makes the approach we describe readily available to other investigators. 

 

Limitations 
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The images in this paper represent one of the largest datasets collected to date using high-plex IF 

methods – 40 whole-slide CRC sections (representing 7.8 x 105 individual image tiles and ca. 6.2 x 107 

segmented cells) and the only high-plex multimodal image collection currently available. However, the 

prognostic image feature models (IFMs) that we derive from these data cannot not be regarded as 

validated biomarkers or clinical tests70. Systematic metanalysis has identified a range of factors that 

negatively impact the reliability and value of prognostic biomarkers71, particularly those based on new 

technology and multiplexed assays72. In the current work, specific limitations relative to REMARK 

recommendations73 include a relatively small cohort size, the absence of pre-registeration74, the 

acquisition of specimens from a single institution, and the use of leave-one out cross-validation rather 

than validation on an independent cohort. In particular, given the limited number of specimens analyzed 

in the current study as compared to conventional practice in histopathology-based biomarker studies (in 

which 500-1,000 cases is not uncommon) we are not able to fully control for all relevant covariates (e.g., 

depth of invasion, age, race, clinical stage etc.). These and other concerns will be addressable as we gain 

access to larger and more diverse collections of tissue blocks from which fresh sections can be cut and 

multi-modal imaging performed. With all of the advantages attendant to automated data acquisition and 

ML-based image analysis we anticipate that it will be feasible to progress in a few years to validated 

clinical tests that can be added to colorectal cancer treatment guidelines53, substantially improving 

opportunities for personalized therapy. 
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DATA AVAILABILITY (FOR REVIEWERS – TO BE UPDATED UPON PUBLICATION)  

In keeping with the policies of the NCI Human Tumor Atlas Network (HTAN), all primary image and 

feature data described in this manuscript will be available via the HTAN data portal at https://htan-

portal-nextjs.vercel.app/. However, it currently takes several months for data to appear on this portal; we 
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have therefore made all data available via S3 and GitHub using links found at 

https://labsyspharm.github.io/orion-crc/. Reviewers are directed in particular to images in the cloud-

based MINERVA viewer with which it is possible to zoom and pan on H&E and high-plex data; we 

include a test implementation of an interactive lens that makes it possible to switch between H&E and

Orion IF data (screenshot below).We expect this tool to be available for all of the data in the current 

paper by the time it goes to press. 

Browser-based MINERV
image viewer with an H&
to IF interactive lens. See
Rashid et al. for more 
information on the softw
(DOI: 10.1038/s41551-0
00789-8). The lensing 
feature is in developmen
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data in this manuscript, 
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MATERIALS AND METHODS 

Ethics and tissue cohort 

Our research complies with all relevant ethical regulations and was reviewed and approved by the 

Institutional Review Boards (IRB) at Brigham and Women’s Hospital (BWH), Harvard Medical School 

(HMS), and Dana Farber Cancer Institute (DFCI). Formaldehyde-fixed and paraffin-embedded (FFPE) 

tissue samples were used after diagnosis and informed written patient consent under Dana-Farber 

Cancer Institute IRB protocol 17-000. The study is compliant with all relevant ethical regulations 

regarding research involving human tissue specimens.  

Tissue preparation. 

Blocks of FFPE tonsil (AMSBIO, cat# 6022CS) and lung adenocarcinoma (AMSBIO, cat# 28004) and 

colorectal adenocarcinoma from the BWH Pathology Department archives were cut at 5 µm thickness 

using a rotary microtome and the sections were mounted onto Superfrost™ Plus microscope glass slides 

(Thermo Fisher, Catalog No.12-550-15). The slides were dried at 37°C overnight and baked at 59°C for 

one hour. Slides were stored at 4°C until use.  

Fluorophores for Orion™ imaging. 

The Orion™ instrument is designed to work with an optimized set of fluorophores from RareCyte, 

branded as ArgoFluor™ dyes whose emission peaks cover the spectrum from green to far-red 

(Extended Data Table 2). Although the instrument can also be used with other commercially available 

dyes, the ArgoFluor™ dyes have been strategically chosen based on a combination of properties that 

include resistance to photobleaching, narrow excitation and emission spectra, and high quantum 

efficiency. To date, the company has optimized 18 ArgoFluor™ dyes, with others in development.  

Immunofluorescence antibodies. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.28.509927doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509927
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 23 

Antibodies were obtained in carrier-free PBS and conjugated directly to either biotin for α-SMA, 

digoxygenin for pan-cytokeratin or to ArgoFluor™ dyes (RareCyte, Inc.) using amine conjugation 

chemistry. After determining labeling efficiency using absorbance spectroscopy, the conjugated 

antibodies were diluted in PBS-Antibody Stabilizer (CANDOR Bioscience GmbH, Catalog No. 130050) 

to a concentration of 200 µg/mL. Antibodies used in immunofluorescence studies are listed in the 

Extended Data Table 2. 

Immunofluorescence staining.  

Slides were de-paraffinized and subjected to antigen retrieval for 5 minutes at 95°C followed by 5 

minutes at 107°C, using pH8.5 EZ-AR 2 Elegance buffer (BioGenex, Catalog No. HK547-XAK). To 

reduce tissue autofluorescence, slides were placed in a transparent reservoir containing 4.5% H2O2 and 

24 mM NaOH in PBS and illuminated with white light for 60 minutes followed by 365 nm light for 30 

minutes at room temperature as previously described15. Slides were rinsed with surfactant wash buffer 

(0.025% Triton X-100 in PBS), placed in a humidified stain tray, and incubated in Image-iT™ FX 

Signal Enhancer (Thermo Fisher, Catalog No. I36933) for 15 minutes at room temperature. After rinsing 

with surfactant wash buffer, the slides were placed in a humidity tray and stained with the panel of fluor- 

and hapten-labeled primary antibodies in PBS-Antibody Stabilizer (CANDOR Bioscience GmbH, 

Catalog No.130 050) containing 5% mouse serum and 5% rabbit serum for 2 hours at room temperature. 

Slides were then rinsed again with surfactant wash buffer and placed in a humidified stain tray and 

incubated with Hoechst 33342 (Thermo Fisher Catalog no. H3570), ArgoFluor™ 845 mouse-anti-DIG, 

and ArgoFluor™ 875-conjugated streptavidin in PBS-Antibody Stabilizer containing 10% goat serum 

for 30 minutes at room temperature. The slides were then rinsed a final time with surfactant wash buffer 

and PBS, coverslipped with ArgoFluor™ Mounting Media (RareCyte, Inc.) and dried overnight. 

ArgoFluor™-antibody conjugate stability testing. 
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Antibody accelerated-aging studies were performed to determine ArgoFluor™-antibody conjugation 

stability. Reagent stability was measured using the ratio of quantitative metrics obtained with the 

accelerated condition (21.6ºC) to those obtained with the storage condition (-20ºC). Tissue validation 

(Orion IF): Single-cell mean fluorescence intensity (MFI) data obtained by imaging FFPE tonsil stained 

with the ArgoFluor™ conjugate was gated using a Gaussian mixture model to obtain the percent of 

positive cells and S:B values (S and B refer to the MFI of cells with values above (S, Signal) and below 

(B, Background) the gated threshold). Fluor stability (Orion IF): Single bead MFI data was obtained by 

imaging Ig-capture beads incubated with (S) or without (B) the ArgoFluor™ conjugate. Binding 

stability (Flow Cytometry): Intensity data from peripheral blood mononuclear cells (PBMC) stained 

with the ArgoFluor conjugated antibody was manually gated to obtain % Positive and S:B values (S and 

B refer to the MFI of cells with values above (S) and below (B) the gated threshold). 

The Orion method and instrumentation. 

The Orion instrument was designed with the following performance goals: (1) whole-slide imaging; (2) 

rapid single-pass data collection; (3) sub-cellular imaging resolution; (4) sufficient immunoprofiling 

depth; (5) bright-field imaging; (6) optical and mechanical stability for accurate image tile stitching; and 

(7) compatibility with established image data standards and formats. ArgoFluor™-conjugated antibodies 

along with Hoechst dye and tissue autofluorescence were excited by seven laser lines, ranging from 405 

to 730 nm (Extended Data Table 2). To separate the overlapping emission spectra, images were 

captured through a set of nine bandpass filters, which can achieve a tunable narrow band detection 

window (10 - 15 nm) throughout the spectrum from 425 nm to 894 nm. For a specific sample, the 

detection bands were chosen to optimize color separation, implemented with RareCyte Inc.’s Artemis™ 

software. Tuning of these filters is based on the well-known fact that the spectrum of a thin-film 

interference filter shifts toward shorter wavelengths when the angle of incidence shifts away from 0 
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degrees (orthogonal to the filter surface). The filters were motorized such that any narrow band of 10 - 

15 nm can be achieved across the entire fluorescence spectrum. Narrow bandpass emission channels 

improve specificity; the resulting lower signal is overcome by using high power excitation lasers, which 

yield power at the sample plane ranging from 270 to 600 mW, more than 10 times greater than a typical 

fluorescence microscope. 

One-shot antibody IF imaging with the Orion instrument. 

Whole slides were scanned using the Orion instrument using acquisition settings optimized for the 

specific antibody panels. Briefly, acquisition channel parameters were defined for each biomarker plus 

an additional channel dedicated to tissue autofluorescence, and included excitation laser, emission center 

wavelength (CWL), and exposure times. The nuclear channel was scanned at low resolution to identify 

tissue boundaries, followed by surface mapping at 20x to find the tissue in the z-axis. Whole tissue was 

acquired at 20x following the surface map within the specified tissue boundaries by collecting all 

channels for a single field of view (FOV) before proceeding to the next partially overlapping FOV. Raw 

image files were processed to correct for system aberrations, then signal from individual targets were 

isolated to separate channels using the Spectral Matrix obtained with control samples, followed by 

stitching of FOVs to generate a continuous open microscopy environment (OME) pyramid TIFF image.  

Same Section H&E staining and imaging.  

After Orion imaging was complete, slides were de-coverslipped by immersion in 1x PBS at 37°C until 

the coverslips fell away from the slide. Slides were rinsed in distilled water for 2 minutes, then stained 

by a routine regressive H&E protocol using Harris Hematoxylin (Leica, Catalog No. 3801575) and 

alcoholic eosin Y (Epredia, Catalog No. 71211). Coverslipping was performed with toluene-based 

mounting media (Thermo Scientific, Catalog No. 4112). After drying for 24 hours, slides were scanned 

on an Orion system in brightfield mode, using the same scan area used for IF image acquisition. H&E 
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images were also acquired using an Aperio GT450 microscope (Leica Biosystems), and the H&E 

images were registered to the IF images using ASHLAR41 and PALOM software 

(https://github.com/Yu-AnChen/palom). 

Pathology annotation of H&E images performed after Orion immunofluorescence imaging. 

H&E images were annotated by a board-certified anatomic pathologist (SC and SS). The histologic 

features of each tissue section were defined and labeled in OMERO PathViewer software on whole slide 

images according to morphologic criteria75 including normal mucosa, hyperplastic mucosa, 

adenomatous mucosa (tubular or serrated), invasive adenocarcinoma (tumor), lymphovascular invasion 

(LVI), peri-neural invasion (PNI), secondary lymphoid structures/Peyer’s patches (SLS), tertiary 

lymphoid structures (TLS), lymphoid aggregates (without identifiable germinal center formation), 

lymph nodes. Tertiary lymphoid structures were morphologically defined by the presence of a lymphoid 

aggregate with germinal center formation and an anatomic distribution and appearance inconsistent with 

a secondary lymphoid structure (Peyer’s patch or lymph node).  

CyCIF imaging. 

Tissue-based cyclic immunofluorescence (CyCIF) was performed as previously described15 following 

the methods available in protocols.io (dx.doi.org/10.17504/protocols.io.bjiukkew). Data from specimens 

C1-C17 was acquired as previously reported22 and computed cell counts were compared in this study 

with cell counts derived from Orion images of adjacent sections from the same specimens. A BOND RX 

Automated Slide Stainer was used to bake FFPE slides at 60°C for 30 minutes. Dewaxing was 

performed using Bond Dewax solution at 72°C, and antigen retrieval was performed using BOND 

Epitope Retrieval Solution 1 (Leica Biosystems) at 100°C for 20 minutes. Slides then underwent 

multiple cycles of antibody incubation, imaging, and fluorophore inactivation to perform the CyCIF 

process. All antibodies were incubated overnight at 4°C in the dark. Slides were stained with Hoechst 
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33342 for 10 minutes at room temperature in the dark following antibody incubation in every cycle. 

Coverslips were wet-mounted using 200µL of 10% Glycerol in PBS prior to imaging. Images were 

taken using a 20x objective (0.75 NA) on a CyteFinder™ slide scanning fluorescence instrument 

(RareCyte Inc. Seattle WA). Fluorophores were inactivated by incubating slides in a 4.5% H2O2, 24mM 

NaOH in PBS solution and placing under an LED light source for 1 hr. For CyCIF after Orion imaging, 

slides were immersed in 1x PBS at 37°C until the coverslips fell away from the slide. The standard 

CyCIF method was subsequently performed on these slides. 

Immunohistochemistry. 

FFPE sections were de-paraffinized, dehydrated, and endogenous peroxidase activity was blocked. 

Antigen retrieval was performed for 20 minutes at 100°C, at pH9, using BOND Epitope Retrieval 

Solution 2 (Leica Biosystems). Detection was achieved using a Bond Polymer Refine Detection® DAB 

chromogen kit and counterstained with hematoxylin. Slides were scanned using a RareCyte CyteFinder 

instrument. Primary antibodies used in immunohistochemistry are listed in Extended Data Table 2. 

Orion image processing data quantification 

Image stitching and segmentation. Image data processing was performed using MCMICRO modules38. 

Briefly, stitched, registered, illumination and geometric distortion corrected images were generated by 

the Orion platform. Single-cell segmentation was performed with UNMICST2 and cell masks were 

generated by 5-pixel dilation of the nucleus masks. Mean intensity of each channel and morphological 

features were quantified for each cell masks. Image and data analysis was performed using customized 

scripts in Python, ImageJ and MATLAB. All code is available on GitHub 

(https://github.com/labsyspharm/orion-crc). 

 

Analysis of channel crosstalk 
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Single-plex tonsil images. Tonsil FFPE sections stained with single antibody-ArgoFluor underwent 

standard acquisition and extraction process using the Orion instrument. The pixel intensities of all 18 

channels from 17 samples were used to quantify bleed through of a given antibody-ArgoFluor complex 

to the other channels before and after spectral extraction. 

18-plex tonsil image. Pearson’s correlation coefficients between all channel pairs were computed using 

pixel intensities in the 18-plex tonsil image before and after spectral extraction. 

 

Computational analysis of Orion images and derivation of image feature models 

IFM computation from Orion data. IFM1 was designed to replicate the logic of the Immunoscore 

method and was calculated in a semi-automated manner using Orion data. In brief, quantitative data of 

tumor and immune markers (pan-cytokeratin, CD3e, and CD8a) were gated for high and low cells using 

a Gaussian Mixture Model (GMM) and confirmed by inspection. After gating, the pan-cytokeratin+ cells 

were then used to generate tumor masks using a K-Nearest Neighbor (KNN) model (kernel size = 25 

cells). The tumor margins were derived from tumor masks by expanding 100 microns in either direction 

from the point of stroma-tumor contact. The CD3+ and CD8+ fraction, defined as marker positive cells 

divided by the total of all successfully segmented cells of all types in either the tumor center (TC) or 

invasive margin (IM). Tumor and margins were enumerated independently in each sample. The median 

values of all samples were used as a cutoff to defined a subscore as follows: below the median scored as 

0 and above the median scored as 1. The final IFM1 value was calculated by adding together the 

subscores for CD3 and CD8 positive cells in the TC and IM regions (see Fig. 4b for a flow diagram). 

The IFM1 score therefore ranged from 0 (CD3+ and CD8+ low in both regions) to 4 (CD3+ and CD8+ 

high in both regions). Similar logic was used to generated other combinations of IFMs. 13 selected 

immune markers (CD3, CD8, CD45, CD45RO, CD68, CD163, CD4, CD20, α-SMA, FOXP3, PD-1, 

PD-L1) were gated as described above, and 26 parameters (each marker in the tumor or tumor/stromal 
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interface regions) were generated. The complete combination of 4 out 26 parameters was tested against 

PFS days for Hazard Ratio (HR). IFM2 was the 3rd best IFM among those combinations, excluding the 

1st and 2nd best combinations which had some of the same markers as IFM1  (i.e., CD3 and CD8); the 

difference in performance between the top performing models was insignificant. 

Leave-one-out (LOO) test and bootstrapping analysis for IFM2. In the  LOO test, the ranks of IFM1 and 

IFM2 were recalculated with the 40 set of samples (n = 39); each set left out one sample from the 

original cohort. The collections of ranks from IFM1 and IFM2 were then tested with pairwise t-test. For 

bootstrapping, the 500 set of randomly selected samples were used to recalculate the hazard ratios of 

IFM1 and IFM2 as described above. The collections of hazard ratios from IFM1 and IFM2 were then 

tested with the pairwise t-test. To adjust for multiple hypotheses, the Benjamini-Hochberg Procedure 

was used with FDR = 0.1. 

Latent Dirichlet Allocation for IFM3 and IFM4. Latent Dirichlet Allocation (LDA) was used to compute 

spatial neighborhoods as described22. First, each sample was divided into “grids” of 200 microns2, and 

marker frequency was calculated in each grid. The summarized probabilities of all samples were then 

used to generate the LDA model with 12 topics using collapsed Gibbs sampling in MATLAB. The 

optimal topic number was determined via varying numbers (between 8 to 16) of topics and evaluating 

the goodness-of-fit by calculating the perplexity of a held-out set. After fitting a global LDA model, the 

individual samples were then applied with the same models to assign topics at the single-cell level. 

Convolutional Neural Network to identify IFM3 in H&E images 

The transfer learning of a GoogLeNet model was done as follows. First, the patch images of 224 x 224 

pixels2 were generated from post-Orion H&E images, and the LDA topics were assigned to each patch 

using Orion data. To exclude low confidence training data, only patches with more than 20 cells and the 

percentage of the dominant topic over 60% were used. The selected patches were than separated into 

training, validation, and test sets as the ratio 0.6:0.2:0.2. The training was done with MATLAB (version 
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2019b) and the results are shown in Extended data Fig. 6a. Scripts and training data are available at 

https://github.com/labsyspharm/orion-crc. 

 

A publicly available DenseNet161 model (https://doi.org/10.1101/2021.12.23.474029) trained with the 

100K CRC H&E dataset (https://doi.org/10.5281/zenodo.1214456) was used to classify the post-Orion 

H&E image patches (112 µm2) for all the CRC samples. WSI patch prediction was performed with 

TIAToolbox v1.1.0 (https://doi.org/10.1101/2021.12.23.474029) on a Windows PC with Nvidia 

GeForce GTX 1080 graphics card and using batch size = 32. Model performance was reported as F1 = 

0.992. As described in the training dataset, there are 9 output classes: adipose (ADI), background 

(BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon 

mucosa (NORM), cancer-associated stroma (STR), colorectal adenocarcinoma epithelium (TUM). 

Scripts for reproducing the inference results can be found at https://github.com/labsyspharm/orion-crc). 

 

Outcome analysis 

Outcome analysis was performed using Kaplan-Meyer estimation and log-rank test utilizing the 

MatSurv function in MATLAB76. Cutoffs for IFM1, IFM2, and IFM3 were selected at the median value 

of the entire cohort, and cutoff for IFM4 were selected based on IFM1 & IFM3 as described. Hazard 

ratios and confidence intervals were calculated with the log-rank approach: HR = (Oa/Ea)/(Ob/Eb), 

where Oa & Ob are the observed events in each group and Ea & Eb are the number of expected events78.  

 

DATA AVAILABILITY (AT PUBLICATION – SEE INFORMATION FOR REVIEWERS 

ABOVE) 

Data used in the preparation of this manuscript are detailed in the Source Data file provided with the 

manuscript. All image and derived data are available without restriction via the NCI Human Tumor 
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Atlas Network (HTAN) Portal (https://htan-portal-nextjs.vercel.app/) in accordance with NCI Moonshot 

Policies.  

CODE AVAILABILITY 

Code used in this manuscript is available under an MIT open source license at the following repository: 

https://github.com/labsyspharm/orion-crc. 
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Fig. 1 | Same-section immunofluorescence and H&E using the Orion™ Platform. 

a, Schematic of one-shot 16 to 20-channel multiplexed immunofluorescence imaging with the Orion™ 

method followed by Hematoxylin and Eosin (H&E) staining of the same section using an automated 

slide stainer and scanning of the H&E-stained slide in transillumination (brightfield) mode. This method 

of discriminating the emission spectra of fluorophores is repeated using seven excitation lasers spaced 

across the spectrum (see Extended Data Fig. 1a and Methods section). Using polychroic mirrors and 

tunable optical filters, emission spectra are extracted to discriminate up 20 channels including signal 

from fluorophore-labelled antibodies (15-20 in most experiments), the nuclear stain Hoechst 33342, and 

tissue intrinsic autofluorescence. b, Left panels: Orion multiplexed immunofluorescence image showing 

CD31, α-SMA, Hoechst (DNA), and signal from the tissue autofluorescence channel (AF) from a 

colorectal cancer FFPE specimen (C04); this highlights an artery outside of the tumor region with red 

blood cells in the vessel lumen and elastic fibers in the internal and external elastic lamina of the vessel 

wall, numerous smaller vessels (arterioles), and stromal collagen fibers (inset displays arterioles). Right 

panels: images of the H&E staining from the same tissue section (histologic landmarks are indicated). 

Scalebars 50 µm. c, Orion multiplexed immunofluorescence image (showing CD45, pan-cytokeratin, 

CD31, and α-SMA) from a whole tissue FFPE section of a colorectal cancer (C04) and matched H&E 

from the same section. Holes in the images are regions of tissue (‘cores’) removed in the construction of 

TMAs. Scalebar 5 mm. d, Zoom-in views of the regions indicated by arrowheads in panel c; marker 

combinations indicated. Scalebar 20 µm. e, Intensities of fluorochromes (columns in heatmaps) in each 

Orion channel (rows in heatmaps) prior to (top) and after (bottom) spectral extraction. The extraction 

matrix was determined from control samples scanned using the same acquisition settings that were used 

for the full panel. The control samples included: unstained lung tissue (for the autofluorescence 

channel), tonsil tissue stained with Hoechst, and tonsil tissue stained in single-plex with ArgoFluor-
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conjugates used in the panel (for the biomarker channels). The values in each column were normalized 

to the maximum value in the column. 

 

Fig. 2 | Qualifying 16-plex single-shot Orion antibody panel. 

a, Panels of images from FFPE tonsil sections showing single-antibody immunohistochemistry (IHC) 

for pan-cytokeratin, Ki-67, CD8a, CD163, and the matching channels extracted from 16-plex Orion 

immunofluorescence (IF) images (H&E stain was performed on the same section as the Orion imaging). 

Scalebars 50 µm. b, Orion IF images and cyclic immunofluorescence (CyCIF) images from neighboring 

sections of an FFPE colorectal adenocarcinoma; Scalebars 50 µm. The CyCIF images were done with 

2x2 binning while Orion images were obtained with no binning. c, Plots of the fraction of cells positive 

for the indicated markers from whole slide Orion IF and CyCIF images acquired from neighboring 

sections from 16 FFPE colorectal cancer specimens. Pearson correlation coefficients are indicated. d, t-

distributed stochastic neighbor embedding (t-SNE) plots of cells derived from CyCIF (left panels) and 

Orion IF images (right panels) of a FFPE colorectal cancer specimen (C01) with the fluorescence 

intensities of immune (CD45, pan-cytokeratin, CD8a, α-SMA) markers overlaid on the plots as heat 

maps. e, Same-slide Orion and CyCIF experiment. The tonsil samples were first processed with 16-

panel Orion antibodies; PD-L1, CD4, CD8a, Ki-67, and α-SMA are shown. After imaging, fluorophores 

were inactivated by bleaching using the standard CyCIF protocol, then three-cycles of four-channel 

CyCIF staining and imaging were performed using the antibodies indicated. 

 

Fig. 3 | Combined H&E and Orion to identify cell/tissue types.  

a, Representative images of Orion IF and same-section H&E from an area of normal colon (from 

colorectal cancer resection specimen C02). Scalebars 50 µm. b, Cell types not specifically identified by 

markers in the Orion panel but readily recognized in H&E images including eosinophils, neutrophils, 
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and cells undergoing mitoses (selected cells of each type denoted by arrowheads and dashed lines). 

Scalebars 10 µm. c, Spatial maps of the positions of cells (~15% of total cells) that were not detected by 

the Orion IF panel in a colorectal cancer specimen overlaid onto the corresponding H&E image 

(specimen: C01); red dots denote cells with identifiable nucleus but not subtyped using the antibody 

panel. d, Upper panel: Spatial map of nine tissue classes determined from the H&E image using a 

convolutional neural network (CNN) model for various cell types as indicated44. Lower panel: Percent 

of total of “unidentifiable” cells assigned to a specific tissue class by the CNN applied to the H&E 

image. e, Example same-section Orion IF and H&E images from areas enriched for ‘non-detected’ cells; 

examples include areas predicted to be rich in stroma and smooth muscle; Scalebars 100 µm. f, Orion IF 

and H&E images from colorectal cancer resection specimen C26, showing an area of serrated adenoma 

with low pan-cytokeratin expression (markers as indicated). Whole slide image indicating the location of 

this region is shown in Extended Data Fig. 3c. Scalebars 300 µm. 

 

Fig. 4 | Recapitulating and extending the Immunoscore tissue immune test using Orion images. 

a, Map of tumor center and invasive-margin compartments for specimen C04 overlaid on an H&E image 

with the density of CD3+ cells shown as a contour map (yellow) and the positions of CD8+ T cells as 

blue dots. The arrow indicates the zoom-in images shown below. Lower panel shows selected channels 

from a portion of the Orion image for C04 spanning the invasive boundary (denoted by green shading). 

b, Flow chart for the calculation of Image Feature Model 1 (IFM1) that recapitulates key features of the 

Immunoscore test. c, Upper panel: Box-and-whisker plots for progression-free survival (PFS) for 40 

CRC patients based on actual IFM1 scores (midline = median, box limits = Q1 (25th percentile)/Q3 

(75th percentile), whiskers = 1.5 inter-quartile range (IQR), dots = outliers (>1.5IQR) or scores stratified 

into two classes as follows, low: score ≤ 2, high: score = 3 or 4 (pairwise two-tailed t-test p = 0.002. 

Lower panel: Kaplan Meier plots computed using IFM1 binary classes (HR, hazards ratio; 95% 
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confidence interval; logrank p-value). d, Flow chart for calculation of additional models that use the 

underlying logic of Immunoscore but considering 13 markers. The image processing steps are the same 

as in panel a. The rank positions of IFM1 and IFM2 are shown relative to all other 14,950 combinations 

of parameters that were considered. e, (Left) Box-and-whisker plots for PFS for 40 CRC patients based 

on IFM2 scores. (Right) Kaplan Meier plots computed using IFM2 binary classes stratified into two 

classes as follows, low: score ≤ 2, high: score = 3 or 4 (HR, hazards ratio; 95% confidence interval; 

logrank p-value). f. Plots of leave-one-out cross-validation of ranks from IFM1 and IFM2 (unadjusted p 

= 3.35 x 10-14 and adjusted using the Benjamini-Hochberg Procedure; p=5.0 x 10-9) and bootstrapping of 

hazard ratios from IFM1 and IFM2 (unadjusted p = 1.94 x 10-25 and adjusted p = 2.91 x 10-20). Detailed 

analysis was described in the methods section and pairwise two-tailed t-test were used unless otherwise 

mentioned. g, Representative Orion IF images of cases with high IFM2 (score = 4 in specimen C34) and 

low IFM2 (score = 0 in specimen C09). IF images show DNA, pan-cytokeratin, α-SMA, CD45, and PD-

L1; Scalebars 100 µm. 

 

Fig. 5 | Bottom-up development of a tumor-intrinsic image feature model. 

a, Positions in specimen C39 of three selected topics identified using Latent Dirichlet Allocation (LDA). 

Topic locations are overlaid on an H&E image; Scalebar 5 mm. b, Left: Markers making up selected 

LDA topics as shown with size of the text proportional to the frequency of the marker but with colored 

text scaled by 50% for clarity; Radar plot indicating the fraction of cells positive for each marker in 

Topic 7, 8, and 11 (data for all others topics show in Extended Data Fig. 5). c, Immunofluorescence 

images showing expression of pan-cytokeratin, α-SMA, CD45, and CD20 for the indicated LDA topics. 

The position of each image frame is denoted by the yellow boxes in panel a. Scalebars 100 µm. d, 

Pearson correlation plots of progression-free survival (PFS) and Fraction of Topic 7, 8 and 11 in 40 

CRC patients. Topic 11 corresponded to TLS, whose presence is known to correlate with good 
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outcome77. e, Fraction of Topics 7, 8, and 11 in colorectal cancer specimens C1-C40. f, Box-and-

whisker plots showing fractions of Topic 7, 8, and 11 positive cells for indicated markers; midline = 

median, box limits = Q1 (25th percentile)/Q3 (75th percentile), whiskers = 1.5 inter-quartile range 

(IQR), dots = outliers (>1.5IQR)). Pairwise t-test p values indicated. 

 

Fig. 6 | LDA Topic 7 corresponds to aggressive tumor regions and is correlated with poor 

outcomes. 

a, Kaplan Meier plots of PFS for 40 CRC patients based on the fraction of Topic 7 present in the tumor 

domain and stratified as follows: high class: over 11% of topic 7 cells over all cells; and low class: under 

11% of topic 7 cells over all cells (HR, hazards ratio; 95% confidence interval; logrank p-value). b, 

Representative images of Topic 7 extracted from all specimens using a convolutional neural network 

(GoogLeNet) trained on LDA data. c, Spatial map of LDA Topic 7 and H&E image from colorectal 

cancer sample C02. d, Plot of fraction of Topic 7 (IFM3) versus IFM1 score for 40 CRC patients. e, 

Kaplan Meier plots of PFS for 40 CRC patients stratified using IFM4 which was binarized as follows: 

class 1: IFM1 high and Topic 7 (IFM3) low group; class 2: all other patients – i.e., either low IFM1 

and/or high Topic 7 (IFM3) (HR, hazards ratio; 95% confidence interval; logrank p-value). 

 

SUPPLEMENTARY INFORMATION 

EXTENDED DATA FIGURE LEGENDS 

Extended Data Fig. 1 | Features of the fluorophores, signal extraction, antibodies, and 

instrumentation used in the Orion™ Method. 

a, Emission spectra of the ArgoFluor dyes used in this study with overlaid filter profiles. Each row 

shows fluorophores excited using the same laser (denoted by the colored vertical line). From left to right 

within each laser row: 405 laser (Hoechst 33342); 445 laser (Autofluorescence); 470 laser (ArgoFluor 
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515, ArgoFluor 555L); 520 laser (ArgoFluor 535, ArgoFluor 550); 555 laser (ArgoFluor 572, ArgoFluor 

584, ArgoFluor 602, ArgoFluor 624, ArgoFluor 660L); 640 laser (ArgoFluor 662, ArgoFluor 686, 

ArgoFluor 706, ArgoFluor 730); 730 laser (ArgoFluor 760, ArgoFluor 795, ArgoFluor 845, ArgoFluor 

875). For the 405-laser data collection, tonsil tissue stained with Hoechst 33342 was used as the sample. 

For the 445-laser data collection, unstained lung tissue was used. Single color Ig-capture beads 

generated by incubation with antibodies conjugated to the indicated ArgoFluor dye were used as the 

sample for all other collections. For each sample, data was collected into multiple Orion channels 

spanning a wide range of wavelengths (in 2 nm center wavelength increments). b, Channel images of 

FFPE tonsil section stained, imaged, and processed with Orion platform showing distinct spatial patterns 

with minimal channel crosstalk. c, Stability of fluorophore and of epitope recognition in solution and in 

tissues is shown for ArgoFluor 572 conjugated anti-CD4 antibody. Quantitative stability metrics were 

generated from three different assays to compare reagents stored at an accelerated aging condition 

(+21.6ºC) to reagents stored at the recommended condition (-20ºC) based on the Arrhenius equation 

(storage for 3.5 months at the accelerated aging condition is equivalent to 5 years at the recommended 

storage condition). Fluorochrome stability: The intensity of Ig-capture beads incubated with (signal) or 

without (background) antibody was measured from images scanned with the Orion system. The 

histogram overlay shows the intensity distribution for unlabeled beads (orange) and for beads incubated 

with antibody stored for 3.5 months at -20ºC (red) or +21.6ºC (blue). The mean fluorescence intensity 

(MFI) was obtained from these distributions, as well as the MFI signal-to-background (S:B) ratios. The 

dot plots show accelerated-to-real time CD4 MFI ratios (left plot) and S:B ratios (right plot) across 7 

computed time points. Antibody binding stability: Human peripheral blood mononuclear cells (PBMC) 

were stained with accelerated-aged (blue) or real-time-aged (red) ArgoFluor 572 conjugated anti-CD4 

antibody and analyzed using flow cytometry (3.5-month real-time / 5-year accelerated time point shown 

in histogram. The MFI was obtained for the positive (signal) and negative (background) populations, 
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allowing derivation of S:B ratios. The dot plots show accelerated-to-real time CD4 MFI ratios (left) and 

S:B ratios (right) across 7 time points. For tissue-based antibody stability testing, images of serial 

sections from FFPE tonsil stained with real-time aged (top)z and accelerated-aged (bottom) antibodies 

were obtained using the Orion system. Single cell segmentation and intensity measurements were 

obtained with QuPath software, and a Gaussian mixture model threshold was applied to determine 

positive cells (signal) from negative cells (background) to determine S:B for both conditions. These 

methods demonstrate equivalent performance for both storage conditions in the three assays (S:B ratio 

of 0.93 for the 3.5-month real-time / 5-year accelerated time point). d, Schematic of the Orion optical 

system. The Orion imaging system has fluorescence and brightfield imaging modes. Fluorescence 

imaging: The Orion system is a class 1 LASER product which uses 7-color LASER illumination (one at 

a time) to illuminate a sample on a microscope slide. The illumination beam emanates from the source in 

a fiber optic cable, then shaped with beam conditioning optics, and redirected via a beam splitter and 

path folding mirrors through an objective lens which focuses it onto the sample. Excitation light passing 

through the sample is stopped by a beam block preventing damage to the transmitted light source. Laser-

excited fluorophores in the sample emit light that is collected by the objective lens. This light is 

redirected via the beam splitter and path folding mirrors through a tube lens for focusing, fixed and 

rotatable compensation elements for optical corrections, and a tunable emission filter prior to collection 

by a sCMOS camera. Brightfield imaging: The Orion system utilizes LED transillumination of the 

sample on the microscope slide. Chromogenic stains in the sample absorb a portion of the light, and the 

remainder is collected by the objective lens. The light follows the same path as the fluorescence 

emission described above, with the exception that a window is used instead of an emission filter. e, 

Validation of minimal channel crosstalk in 18-plex tonsil image after spectral extraction. Pearson’s 

correlation coefficients between all channel pairs were calculated using the paired pixel intensities. 
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Square boxes with colored borders denote excitation lasers. High correlation coefficients were only 

found in channel pairs that contains target markers that are in close proximity. 

 

Extended Data Fig. 2 | Qualifying 16-plex single-shot Orion antibody panel relative to 

immunohistochemistry and Cyclic Immunofluorescence (CyCIF). 

a, Panels of images from FFPE tonsil sections showing single-antibody immunohistochemistry (IHC) 

for the indicated markers and matching channels extracted from the 16-plex Orion immunofluorescence 

(IF) images (H&E stain was performed on the same section as the Orion imaging). Scalebars 50 µm. b, 

Plots of the fraction of positive for the indicated markers (CD45, CD68, CD20, CD4) from whole slide 

Orion IF and CyCIF images acquired from neighboring sections from 16 FFPE colorectal cancer 

specimens. Pearson correlation coefficients are indicated. c, t-distributed stochastic neighbor embedding 

(t-SNE) plots of cells from Orion IF image (specimen: C01). Log transformed marker intensities (CD31, 

CD20, E-cadherin, Ki-67, pan-cytokeratin, α-SMA) were used to color the dots in each panel. 

 

Extended Data Fig. 3 | Orion imaging of a different disease histologies and CyCIF following Orion 

imaging. 

a, 16-plex (18 channel) Orion image from a tissue microarray (TMA) containing normal and diseased 

human tissues including inflammatory and neoplastic diseases (Examples highlighted are lung squamous 

cell carcinoma, prostate adenocarcinoma, ovarian cancer, and breast; DNA, pan-cytokeratin, KI-67, α-

SMA, CD45 and CD31 are displayed. scalebars 2 mm and 400 µm, as indicated. b, Left panel: Orion 

image of normal colon showing E-cadherin, CD11b, CD45, CD163, Ki-67, and DNA (Sytox) signal. 

Right panel: same area of normal colon following inactivation of Orion fluorophores (see Methods). c, 

Orion IF image from colorectal cancer resection specimen C26, showing an area of serrated adenoma 
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with low pan-cytokeratin expression (markers as indicated). Higher magnification inset as indicated by 

the box is shown in Fig. 3f. Scalebar 3 mm.  

 

Extended Data Fig. 4 | Assessment of individual markers to Image Feature Models of patient 

prognosis derived from Orion immunofluorescence images. 

a, Upper: Ranking of 1/hazard ratio (HR) for each Image Feature Model (IFM1 to IFM14,950) 

calculated by determining the frequency of cells positive for one or more of 13 markers in Orion IF 

images lying within (tumor center: CT) or outside of a region 100 µm from the tumor invasive margin 

(IM) model (n = 40 patients). Ranking position of IFM1 is indicated. IFM2 showed an HR = 0.0785 

(95% CI: 0.0358-0.172, p = 1.91 x10-06). Lower: Full heat map showing the selected markers at the 

tumor or margin in each combination. A total 14,950 combinations were generated as the set of 4 out of 

26 parameters (13 markers in 2 regions). b, Enrichment plots showing enrichment scores (ES) for 

positive cells denoted by the indicated markers (and their location in the tumor or at the tumor margin) 

based on the 16-plex Orion images, indicating whether the marker/location feature is enriched in the 

image feature models linked to the best hazard ratios. The green lines represent the running ES for a 

given marker/location as the analysis proceeds down the ranked list. The value at the peak is the final 

ES. c, Regression line scatter plot showing fraction of positive cells for indicated markers from the 

Orion 16-plex images vs. progression-free survival (PFS, days) for 40 patients with colorectal cancer. 

Each dot represents measurements from a single patient. R2 for each plot is displayed. d, Representative 

Orion IF images of cases with high IFM2 (IS = 4 in specimen C34) and low IFM2 (IS = 0 in specimen 

C09). IF images show DNA, pan-cytokeratin, α-SMA, CD45, and PD-L1; Scalebars 200 and 300 µm as 

indicated. Higher magnification regions of interest are shown in Fig. 4g. 

 

Extended Data Fig. 5 | Cellular neighborhoods in colorectal cancer resections. 
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a, Latent Dirichlet Allocation (LDA) probabilistic modeling was used to analyze Orion 

immunofluorescence data from 40 colorectal cancer specimens to reduce cell populations into 

neighborhoods (“topics”) defined by patterns of single-cell marker expression. The analysis identified 

12 topics that recurred across the dataset. Within each box is the LDA plot for the indicated topic (top) 

and a regression line scatter plot indicating the fraction of each tumor composed of the indicated LDA 

topic and the relationship to progression-free survival (PFS, days). Each dot represents measurements 

from a single patient. R2 for each plot is displayed. b, Bar plot depicting the proportional distribution of 

the LDA Topics in the 40 colorectal cancer specimens.  

 

Extended Data Fig. 6 | Evaluation of the performance of a Convolution Neural Network used to 

identify cellular neighborhood Topic 7 from H&E images of colorectal cancer. 

a, Confusion matrix table showing performance of GoogLeNet convolutional neural network (CNN) 

trained using H&E data from Latent Dirichlet Allocation (LDA) Topic 7 and its performance in 

identifying Topic 7 cells from H&E data. Topic 0 contains the rest of the topics (3, 5, 6, 9, 10, 11, 12). 

Target class (ground truth) was assigned from LDA analysis of Orion images and Output class 

(predicted) was assigned by the GoogLeNet CNN. b, Gallery of representative H&E images of true 

positives for topic 8; Scalebars 50 µm. 

 

Extended Data Fig. 7 | Additional biomarkers of Topic 7 from CyCIF images. 

The sample C06 was selected based on the high fraction of Topic 7 cells from the Orion data. The 

CyCIF images obtained from the same specimen, but a different section are displayed. 
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Extended Data Figure 7
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