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Abstract 10 

Mutations do not occur uniformly across genomes but instead show biased associations with 11 
various genomic features, most notably late replication timing. However, it remains contested 12 
which mutation types in human cells relate to DNA replication dynamics and to what extents. 13 
Previous studies have been limited by the absence of cell-type-specific replication timing 14 
profiles and lack of consideration of inter-individual variation. To overcome these limitations, we 15 
performed high-resolution comparisons of mutational landscapes between and within 16 
lymphoblastoid cell lines from 1662 individuals, 151 chronic lymphocytic leukemia patients, and 17 
three colon adenocarcinoma cell lines including two with mismatch repair deficiency. Using cell 18 
type-matched replication timing profiles, we demonstrate how mutational pathways can exhibit 19 
heterogeneous replication timing associations. We further identified global mutation load as a 20 
novel, pervasive determinant of mutational landscape heterogeneity across individuals. 21 
Specifically, elevated mutation load corresponded to increased late replication timing bias as 22 
well as replicative strand asymmetries of clock-like mutations and off-target somatic 23 
hypermutation. The association of somatic hypermutation with DNA replication timing was 24 
further influenced by mutational clustering. Considering these multivariate factors, and by 25 
incorporating mutation phasing at an unprecedented scale, we identified a unique mutational 26 
landscape on the inactive X-chromosome. Overall, we report underappreciated complexity of 27 
mutational pathways and their relationship to replication timing and identify specific factors 28 
underlying differential mutation landscapes among cell types and individuals.  29 

 30 

Introduction 31 

Mutations arise through a compendium of known and unknown mechanisms. These include the 32 
improper repair of DNA damage produced by endogenous or exogenous agents, enzymatic 33 
alterations of DNA, and mismatches introduced during DNA replication. Knowing how, where, 34 
and when mutations occur is central to understanding evolution, aging, and disease. In this 35 
respect, it is well established that mutations are distributed non-randomly at the nucleotide, 36 
regional, and global genomic levels. At the nucleotide level, many mutational pathways are 37 
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biased toward specific nucleotide substitutions and surrounding sequence contexts1. For 38 
example, the spontaneous deamination of 5-methylcytosine to thymine happens almost 39 
exclusively at CpG sites2. On a regional and global scale, variations in mutation rates and 40 
substitution types are associated with various genetic and epigenetic factors including 41 
nucleotide content3,4, chromatin state5–7, three-dimensional genome organization8, transcription 42 
factor binding9,10, and DNA replication timing11–20.  43 

DNA replication timing is the cell type-specific spatiotemporal pattern of genome replication 44 
along S-phase. In eukaryotic cells, DNA replication begins at multiple replication origins that fire 45 
throughout S-phase and mediate bidirectional replication until the entire genome is duplicated. 46 
Late replicating regions of the genome are broadly enriched for single nucleotide variants and 47 
mutations11,12,14–16,21,22. The mechanisms by which mutations accumulate in later replicating 48 
regions of the genome remain incompletely understood, although evidence suggests that 49 
mismatch repair (MMR) attenuates toward the end of S-phase and contributes to these biases 50 
16,23. On the other hand, many classes of mutations and their underlying mutational pathways 51 
are not biased with respect to replication timing12,15, suggesting complex contributions by 52 
different DNA damage and repair pathways.  53 

A powerful method to glean the types and abundances of mutational pathways that shape 54 
mutational landscapes has been the analysis of local (typically trinucleotide) mutation 55 
signatures. Large-scale pan-cancer analyses revealed an extensive diversity of mutation 56 
signatures between and within cancer types1,24–26. Some mutational processes are shared (e.g., 57 
those manifesting as single base substitution (SBS) signatures 1, 5, and 40), and others are 58 
more specific to subsets of cell or cancer types (e.g., MMR deficiency). Previous studies 59 
showed that different mutational processes – and their resulting mutational signatures – have 60 
differential relationships to replication timing10,12,15,27,28. For example, SBS signatures 1, 8, 9, and 61 
17 were shown to be enriched in late replicating regions of the genome, while SBS 5, 21, 40, 62 
and 44 showed either bias to early replication or no bias at all. Another property of mutations 63 
that we and others have previously described is DNA replicative strand asymmetry, in which 64 
certain mutation types tend to occur more often on either the leading or the lagging strands of 65 
replication15,29,30. Replicative strand asymmetry is characteristic of several mutational signatures 66 
(notably SBS 2, 3, 13, and 17), while others are not coupled to asymmetry, e.g., signature SBS 67 
8 is more often observed in late replicating regions but does not show significant replicative 68 
strand asymmetry27. A further relevant pattern is mutational clustering. For example, clusters of 69 
2-10 mutations caused by the combination of APOBEC3B enzyme activity, replicative errors 70 
introduced by DNA Polymerase η, and/or MMR (known as the ‘omikli’ pattern) were shown to be 71 
enriched in early replicating regions of the genome, while non-clustered mutation caused by 72 
similar mechanisms are late-biased31,32.  73 

Previous studies that established how mutational processes relate to DNA replication have 74 
assumed that any given process relates to replication timing and strand bias in a constant way. 75 
However, it is becoming increasingly clear that mutational processes may be heterogeneous not 76 
only in their quantity across cell/cancer types, but also in their relation to replication dynamics 77 
across cell types1,27,28. This complexity has led to conflicting conclusions among different 78 
studies. For example, signature SBS 1 (caused by spontaneous deamination of 5-79 
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methylcytosine to thymine) has been reported by different studies to be biased toward early 80 
replication, late replication, or neither10,15,28. Similarly inconsistent conclusions have been 81 
proposed for SBS 5, 40, and others10,15,28. These conflicting results could be reconciled if 82 
additional, orthogonal factors that vary within and between cell types affect the relationship of 83 
mutational processes to DNA replication timing.  84 

Here, we utilized several complementary cell types and hundreds of individuals to perform high-85 
resolution comparisons of mutation rate, pathways, replicative strand asymmetry, and clustering 86 
with respect to cell-type-specific replication timing. We first revisit the relationship of mutations 87 
and mutational pathways to cell type-specific replication timing patterns. Then, we use two B-88 
cell-types as model systems to identify known and novel factors – and their interactions – that 89 
shape the heterogeneity of the mutational landscape with respect to replication timing and 90 
strand bias. We discover that global mutation load is broadly associated with the proportion of 91 
mutational signatures and their replicative strand asymmetry. We also show that the rate of 92 
mutation clustering is associated with the late replication enrichment of a mutational signature. 93 
Leveraging these findings, we perform a detailed investigation of mutational pathways on the X-94 
chromosome. Specifically, we perform large-scale mutation phasing to determine if the random 95 
and late replication of the inactive X-chromosome influences its mutational landscape. Our 96 
results demonstrate that the relationship between the mutational landscape and DNA replication 97 
is shaped by a myriad of cell line-specific factors such as mutation load, active mutational 98 
processes, mutational clustering, and chromosome inactivation.  99 

 100 

Results 101 

A catalogue of somatic mutations in five cell types/lines  102 

We called somatic mutations in five cell types/lines for which matched replication timing data is 103 
either available or was generated here. These cell types included B-lymphoblastoid cell lines 104 
(LCLs), B-cell chronic lymphocytic leukemia (CLL), and three colon cancer cell lines to contrast 105 
with the B-cell-related data.  106 

LCLs are Epstein-Barr virus (EBV) -transformed B-cells and are widely available for many 107 
individuals. We called LCL mutations by comparing 1662 individuals to their genotyped parents 108 
using whole-genome sequence data from six sequencing cohorts (Table 1, Table S1). We 109 
called 885,655 autosomal single nucleotide variant (SNV) mutations in the offspring by 110 
identifying Mendelian errors in parent-offspring allelic inheritance. Autosomal mutation counts 111 
ranged from 66 to 8737 per offspring (median 408; 0.169 mutations/Mb) (Fig 1A, Fig S1A), 112 
consistent with other quantifications of somatic mutations in B-cells33,34. We observed two 113 
prominent modes and a long tail of mutation count across offspring. This is also consistent with 114 
previous mutation calling in the 1000 genomes project (1kGP) offspring and is thought to result 115 
from LCL culture age35 (Fig 1A). Only 0.73% of mutations were functional as predicted by a 116 
SNPeff36 (4.3t) high or moderate variant impact score. Using monozygotic twins, we estimated 117 
the fraction of misidentified parental variants as less than 9.66% (see Methods; Fig S1B-E). 118 
Additionally, we used replicate sequencing of 51 samples to estimate the rate of genotyping 119 
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errors. We found a median of 93.1% of mutations were supported in samples resequenced 120 
once, while 99.8% of mutations were supported at least once in a sample resequenced five 121 
separate times (Fig S1F; Table S1). Together, mutations in LCL are primarily somatic and 122 
reflect LCL biology.  123 

Mutation source 
Number of 
offspring 

or samples 
Platform Approx. 

coverage 

Original 
genome 
version 

Mutation calling 
method 

LCL 

iHART 1028 HiSeq X 
(2 x 150) 

35X hg19 Parent-offspring 

1kGP 602 
NovaSeq 6000 

(2 x 150) 30X hg38 Parent-offspring 

Repeat 
expansion 9 

HiSeq X 
(2 x 150) 30X hg19 Parent-offspring 

Illumina 
platinum 

13 
HiSeq 2000 

(2 x 100) 
50X hg19 Parent-offspring 

This study 12 
HiSeq X 
(2 x 150)  

15X hg38 Parent-offspring 

Polaris 49 
HiSeq X 
(2 x 150) 

30X hg19 Parent-offspring 

CLL CLLE-ES, 
ICGC 

151 HiSeq* NA hg19 Tumor-normal 

HCT116 6 
HiSeq X 
(2 x 150) 

15X hg38 Passage 

HT115 5 HiSeq X  
(2 x 150) 

40X hg38 Passage 

LS180 5 HiSeq X  
(2 x 150) 

40X hg38 Passage 

Table 1. Mutation data sources.  * Further sequencing platform details could not be ascertained.  124 

 125 

To compare LCL mutations to DNA replication timing, we used the same whole-genome 126 
sequencing of the offspring to infer replication timing profiles from read depth fluctuations along 127 
chromosomes37,38. Replication timing is inferred from copy number as early replicating regions 128 
have greater read depth in a population of proliferating cells. We then averaged the data for all 129 
cell lines to create a single “consensus” LCL replication profiles used for downstream analyses. 130 

 131 
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  132 

Fig 1. Mutation rate association with DNA replication timing varies in a cell type-specific manner. 133 
(A-E) Mutation sources and autosomal counts. (F-J) Autosomal mutation counts in 20 replication timing 134 
bins of uniform genome content. (K) Mutation rate correlates to the cell type-specific replication timing in 135 
HCT116 and LCLs. Mutation rate is calculated as the mean number of mutations across all samples of 136 
the same cell type in a 1Mb sliding window with a 0.5Mb step. Mutation rates are normalized to an 137 
autosomal mean of zero and a standard deviation of one to control for the different mutation rates in the 138 
two cell types. (L) Mutation rates correlate most strongly with replication timing profiles of the same 139 
cells/cell type. Correlation values are Pearson’s correlation coefficients.  140 

 141 
To complement the analysis of LCLs, we incorporated mutations derived from 151 CLL patients 142 
(Table 1, Table S1). CLL is a malignancy of exclusively B-cells, rarely involves EBV 143 
infection39,40, and has been studied in depth at the genomic level41. CLL is a late-onset disease; 144 
the mean donor age among samples used in this study was 65.7 years. Tumor-normal mutation 145 
calling and filtering identified 377,605 autosomal mutations with a median of 2,368 mutations 146 
per patient (0.98 mutations/Mb; range: 221-5629; Fig 1B). Of note, due to the primary tumor 147 
source of CLL42, we could not generate a reference CLL replication timing profile and instead 148 
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used LCL replication timing to compare to CLL mutations, given that similar cell types have 149 
conserved replication timing43,44. 150 

As a final point of reference, we incorporated mutational accumulation experiments in three 151 
colon adenocarcinoma cell lines. Two cell lines, HCT116 and LS180, possess microsatellite 152 
instability (MSI) resulting from loss of functional mismatch repair (MMR). The third, HT115, was 153 
microsatellite stable (MSS) with intact MMR. To accumulate mutations, cell lines were 154 
sequentially passaged, and single-cell daughter clones were then isolated, expanded, 155 
sequenced and compared to the original parental clone (Fig 1C-E). Mutations from LS180 and 156 
HT115 were sourced from Petljak et al., 201925. The cell lines were passaged for 44 and 45 157 
days, respectively, and five daughter subclones were isolated from each line. LS180 yielded 158 
14,974 autosomal mutations (range: 749-5310; median: 2601) and HT115 yielded 28,944 159 
(range: 5296-6511; median: 5,572). HCT116 was passaged by us 100 times (approximately one 160 
year) and six daughter subclones were isolated. HCT116 yielded 150,470 autosomal mutations 161 
(range: 15,385-39,469; median: 21,846; 9.74 mutations/Mb). Replication timing profiles for 162 
LS180 and HT115 were produced by sorting and sequencing G1 and S phase cells11,21. An 163 
HCT116 mean reference replication timing profile was generated from the whole genome 164 
sequencing of the six daughter subclones (this was achievable since HCT116 is near diploid) 165 
and further validated by comparison to a profile generated by G1/S sequencing (see Methods). 166 

 167 

High resolution comparison of mutation rates to DNA replication timing 168 

Given our large catalog of cell line mutations and the high-resolution analysis they enable, we 169 
first sought to refine the relationship of mutation rate to replication timing. We divided the 170 
autosomal replication timing profiles into 20 bins of equal genomic proportions organized from 171 
the earliest replicating fraction to the latest and counted the number of mutations of each 172 
respective cell type within the replication timing range of each bin. While all cell types showed 173 
continuous increases in mutation rate with later replication, these relationships differed 174 
considerably among cell types (Fig 1F-J). Both B-cell-derived cell types, LCL and CLL, showed 175 
exponential-like increases in mutation rate from the earliest to latest replicating bins. In LCL, we 176 
confirmed the exponential-like relationship independently in the two largest population cohorts 177 
(Fig S1H, I). Interestingly, LCL only showed an increase in mutation rate in the second half of S-178 
phase, whereas CLL showed a continuous increase (Fig 1F, G). CLL demonstrated a more 179 
dramatic overall increase in mutation rate, with 4.58-fold more mutations between the latest and 180 
earliest replicating bins (from 2.55% of mutations to 11.67%) than LCL (1.90-fold; Fig 1F, G). 181 
The above differences demonstrate that LCL and CLL mutation landscapes are distinct despite 182 
their shared B-cell type. We also observed strong increases in mutation rate in HT115 and 183 
LS180, with 3.10-fold and 3.18-fold more mutations in the latest replicating bins than the 184 
earliest, respectively (Fig 1I, J). In contrast, HCT116 showed a diminished relationship, with an 185 
only 1.63-fold (3.90% to 6.35%) increase in mutation rate (Fig 1H). The contrast between the 186 
cell types, demonstrated most profoundly when comparing CLL and HCT116, establishes a 187 
wide disparity in how mutation rates relate to DNA replication timing. 188 
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The relationship between replication timing and mutation rates was also apparent visually: 189 
plotting mutation rates as continuous profiles along chromosomes revealed a cell-type-specific 190 
correspondence with replication timing (Fig 1K; S1K). Indeed, the mutation rate in each cell 191 
type was most strongly correlated to its matching replication timing profile (Fig 1L). Overall, our 192 
comprehensive data set comparing mutation rates with matching replication profiles establishes 193 
their global correlation but also the heterogeneity among cell types.  194 

 195 

A heterogeneous relationship between replication timing and mutational signatures  196 

To further probe the heterogeneity by which the mutational landscape relates to replication 197 
timing, we deciphered the underlying mutational pathways in each cell type and investigated 198 
how the rate of each of them varies across the genome in relation to cell type-specific 199 
replication timing programs. Specifically, we asked if the disparity in mutation rates between 200 
early and late replicating regions could be attributed to specific mutational pathways.  201 

We first determined which mutational processes were active in each cell type and in what 202 
proportions. We annotated autosomal mutations in their trinucleotide context and fit COSMIC 203 
v3.2 SBS mutational signatures in each cell type. To prevent signature overfitting, we selected a 204 
subset of signatures for each cell type based on biologically expected mutational pathways. In 205 
CLL, SBS 1, 5, 9 and 40 are established as the predominant mutational signatures1,28,33,45. SBS 206 
1, 5, and 40, are clock-like signatures – highly ubiquitous signatures of unknown etiology that 207 
increase in abundance with age1,46. The proposed etiology of SBS 9 is somatic hypermutation 208 
(SHM), a pathway prominent in, and nearly exclusive to, B cells1,33,34,45. SHM primarily targets 209 
the immunoglobulin heavy chain (IGHV) gene but has abundant off-target activity31,34,47,48. While, 210 
to our knowledge, mutational signature analysis has not been performed in LCL before, we 211 
found that the same signatures (SBS 1, 5, 40, and 9) best explained LCL mutations with a 212 
cosine similarity of 0.96 for LCLs (compared to 0.97 for CLL). In LCL, it is established that SHM 213 
is ongoing after EBV transformation39,49. We found that SHM was present globally in both CLL 214 
and LCL, but the proportion of mutations explained by SBS 9 was higher in LCL (30.0±0.12% of 215 
all autosomal mutations) than in CLL (14.8±0.15%) (Fig 2A, B; Fig S2A). 216 

 217 
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 218 

Fig 2. Mutational signatures association with DNA replication timing varies in a cell-type-specific 219 
manner. (A-E) Proportion of individual mutational signatures contributing to the total pool of autosomal 220 
mutations in each cell type. (F-J) Abundance of mutational signatures in 20 replication timing bins. (K) 221 
The relationship of autosomal mutation counts to replication timing in the high, intermediate, and low LCL 222 
mutation load groups. (L) The relationship of autosomal mutation count to replication timing in CLL 223 
samples stratified by IGHV mutation status. (M-N) Abundance of SHM (M) and clock-like mutations (N) as 224 
a function of replication timing in the LCL mutation load groups and CLL samples by IGHV mutation 225 
status. (O) The distribution of total autosomal mutations in CLL-U samples in high and low mutation load 226 
groups. (P) As in panel O for CLL-M samples. (Q) The distribution of SHM in the CLL-M high and low 227 
groups. 228 

 229 

Mutations in the MSI cell lines HCT116 and LS180 could be explained by combinations of the 230 
six MMR-deficiency (MMRd) signatures: SBS 6, 14, 15, 20, 26, and 441. Along with the common 231 
clock-like SBS 1, 5, and 40, we found MMRd signatures SBS 21 and 44 best explained 232 
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autosomal mutations in both cell lines (cosine similarity of 0.97 in HCT116 and 0.98 in LS180). 233 
The MMRd signatures comprised a similar proportion of autosomal mutations in these two cell 234 
lines (49.5±0.30% and 47.7±0.95%, respectively) (Fig 2C, D; Fig S2A). HT115 is known to 235 
have functional mutations in the exonuclease domain of POLE (DNA polymerase ε). The study 236 
from which we sourced the HT115 data showed all daughter subclones had additional mutations 237 
in the MMR genes PMS2, MSH6, and MSH325. (One daughter subclone also had a 238 
heterozygous POLD1 (DNA polymerase δ subunit) mutation, although it’s signature accounted 239 
for a negligible proportion of genomic mutations25 and was therefore not further considered in 240 
our analysis). SBS 10a-b (POLE mutations), SBS 14 (concurrent MMRd and POLE mutations), 241 
SBS 21 (MMRd), and the common clock-like SBS 1, 5, and 40 best explained HT115 autosomal 242 
mutations (cosine similarity 0.95). The signatures resulting from POLE mutations and MMRd 243 
comprised a total of 53.1±0.63% of autosomal mutations (Fig 2E; Fig S2A).  244 

Having established the main mutational signatures contributing to mutations in each cell 245 
type/line, we analyzed their relation to replication timing by fitting signatures to mutations in 20 246 
autosomal DNA replication timing bins. We combined the contributions of SBS 1, 5, and 40 into 247 
a unified clock-like mutational category, SBS 21 and 44 into an MMRd category for HCT116 and 248 
LS180, and SBS 10a, 10b, 14, and 21 in an MMRd+POLE category for HT115.  249 

Several mutational signatures showed distinct relationships to replication timing. In LCL and 250 
CLL, SHM (SBS9) contribution increased 16.88- and 5.13-fold, respectively, between the 251 
earliest and the latest replication timing fractions (Fig 2F, G). In HCT116 and LS180, MMRd 252 
contribution increased modestly at 1.60- and 1.09-fold more mutations (Fig 2H, I). Compared to 253 
SHM and clock-like mutations, MMRd mutations were more uniformly distributed across the 254 
genome. This is consistent with previous findings that showed mutations in MSI cancers are 255 
less enriched at late replicating parts of the genome16,50. In HT115, MMRd+POLE mutations 256 
were enriched in late replicating regions in a similar pattern to clock-like mutations, at 2.24x 257 
more mutations (Fig 2J). Given the stronger replication timing dependence of the combined 258 
MMRd+POLE signature compared to MMRd alone, it can be inferred that POLE-derived 259 
mutations are specifically enriched in late replicating areas of the genome.  260 

The clock-like category, which explained a substantial proportion of autosomal mutations in all 261 
cell types, showed different relationships to replication timing in each cell type. The strongest 262 
association was observed in LS180, with 3.42-fold more autosomal mutations in the latest 263 
versus earliest replication timing fraction, followed by HT115 (3.12-fold), CLL (3.01-fold), and 264 
HCT116 (1.90-fold) (Fig 2F-J). In contrast, clock-like mutations showed no apparent 265 
relationship to replication timing in LCLs. When considering individual signatures, mutations 266 
contributed by SBS 1 – which represents spontaneous deamination of 5-methylcytosine to 267 
thymine1 – were enriched in late replicating regions in CLL but not in other cell types (Fig S2B). 268 
SBS 5 and 40 were similarly variable among cell types, although their mutational spectra 269 
similarity1 precluded associating each of them separately with replication timing. Taken together, 270 
the relationship between mutation rates and DNA replication timing varies by mutational 271 
pathway and in different ways across cell types. 272 

 273 
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Heterogeneity of mutational replicative strand asymmetry  274 

Another property of mutations and mutational signatures that varies along the genome is their 275 
tendency to occur on the leading or lagging replicative strands. Extending from the results 276 
above, we systematically evaluated the relationships between replicative strand and mutational 277 
rates, stratified by mutational signatures and replication timing.  278 

We used the slope of replication timing profiles in each cell type/line to assign replicative strand 279 
to mutations (Fig 3A): a negative slope on a replication timing profile indicates that the positive 280 
genome strand replicates as the leading strand, while a positive slope implies that the positive 281 
strand replicates as the lagging strand30. Due to uncertainties surrounding the locations of 282 
replication origins and termini (peaks and valleys), we regarded 100Kb on either side of a 283 
replication direction change as undefined strandedness. While the strand-of-origin of any 284 
particular mutation cannot be determined without additional information, the replicative 285 
asymmetry of mutations can be evaluated by parsing mutations based on the genomic strand 286 
and therefore replicative strand of the substituted pyrimidine base15,30,51,52 (Fig 3A; see 287 
Methods). This established approach can determine replicative strand bias based on the ratio 288 
of pyrimidine base substitutions. Accordingly, a positive log2-ratio asymmetry value indicates 289 
greater leading strand bias of a given mutation type, while negative values indicate greater 290 
lagging strand bias.  291 

 292 
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 293 

Fig 3. Mutational replicative strand asymmetry varies with replication timing and mutation load. 294 
(A) Partitioning mutations by replicative strand. Top: negative slope on a replication timing profile 295 
indicates that the positive genome strand replicates as the leading strand, and vice versa for a positive 296 
slope. Bottom: Mutations are partitioned to the leading or the lagging strand based on the genome strand 297 
and replicative strand of the substituted pyrimidine base. (B) Genome-wide autosomal replicative strand 298 
asymmetry for LCL mutational categories. (C) Replicative strand asymmetry for LCL mutational 299 
categories in five replication timing bins of uniform genome content. (D-E) Clock-like mutational 300 
asymmetry in LCL mutation load groups (D) and as a function of replication timing (E). (F-G) SHM 301 
mutational asymmetry in LCL mutation load groups (F) and as a function of replication timing (G). (H-O) 302 
As in panels B and C, the replicative strand asymmetry for the mutational pathways in CLL (H-I), HCT116 303 
(J-K), HT115 (L-M), and LS180 (N-O). For all panels, error bars represent the standard error of replicative 304 
asymmetry. 305 

 306 

We validated strand assignment using four mutational signatures with known replicative strand 307 
asymmetries: POLE exonuclease domain mutations result in elevated C>A and C>T mutation 308 
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on the leading replicative strand30,52,53, as indeed we observed for the POLE mutation signatures 309 
SBS10a (primarily C>A) and SBS 10b (primarily C>T) being significantly enriched on the 310 
leading strand in HT115 (asymmetry values of 0.79±0.07 and 0.73±0.11, respectively; Fig S3A); 311 
in MMRd, C>T mutations are known to be more abundant on the leading strand15,54, consistent 312 
with our observation for SBS 44 (MMRd signature characterized by C>T mutations) being 313 
enriched on the leading strand (asymmetry value of 0.49±0.03 in HCT116 and 0.57±0.13 in 314 
LS180; Fig S3A); similarly, T>C substitutions associated with MMRd are more abundant on the 315 
lagging strand30 and we found SBS 21 (MMRd signature characterized almost exclusively by 316 
T>C mutations) to be enriched on the lagging strand (-1.87±0.07 in HCT116, -1.25±0.17 in 317 
LS180, and -0.45±0.12 in HT115; Fig S3A).  318 

Having demonstrated the effective assignment of replicative strand asymmetry of mutations, we 319 
characterized genome-wide replicative strand asymmetry for mutational pathways in the five cell 320 
types/lines. Clock-like mutations showed leading strand asymmetry in HT115, yet lagging strand 321 
asymmetry in HCT116 and LS180, and no strand asymmetry in LCL and CLL (Fig 3B, H, J, L, 322 
N). These were surprising results, especially since a previous study that used mutations pooled 323 
from many cancer types reported that the clock-like signatures SBS 1 and 5 do not show any 324 
strand assymetry15. MMRd showed minor lagging strand asymmetry in HCT116 and LS180, 325 
which can be explained by the combined abundances and opposing replicative strand 326 
asymmetries of SBS 21 and 44 (Fig 3J, N; Fig S3A). On the other hand, the POLE+MMRd 327 
mutational pathway in HT115 showed substantial leading strand asymmetry, which could be 328 
attributed to the overpowering replicative strand asymmetries of POLE mutations over MMRd 329 
(Fig 3L; Fig S3A). Finally, SHM showed lagging strand asymmetry in LCL and CLL (Fig 3B, H; 330 
Fig S3A), consistent with previous studies15,30.  331 

We next evaluated the replicative asymmetry of mutational pathways with respect to replication 332 
timing. Due to the lower number of mutations assigned to a given strand, we analyzed five 333 
instead of 20 genomic bins. Replicative strand asymmetry of clock-like mutations did not change 334 
between the replication timing fractions in all cell types except for HCT116, where greater 335 
lagging strand asymmetry was evident in the middle replicating fractions (Fig 3C, I, K, M, O). 336 
Thus, as with mutations in general (above), the relationship of the clock-like category to 337 
replication timing was variable across cell types/lines. Lagging strand asymmetry for MMRd 338 
mutations in HCT116 and LS180 also did not change between replication fractions (Fig 3K, O). 339 
However, the asymmetry for the individual MMRd signatures SBS 21 and 44 showed the 340 
strongest lagging and leading strand asymmetry values respectively in the middle replicating 341 
fractions (Fig S3B). A similar trend was observed for SHM and POLEd+MMRd (Fig 3C, I, M). 342 
This mid-S-phase pattern of greater asymmetry was found in the individual signatures SBS10a, 343 
10b, and 14 (Fig S3B). By removing 500Kb regions flanking slope directionality changes, we 344 
ruled out that these mid-S enrichment patterns were due to uncertainty in calling replication 345 
origin and terminus locations and hence replication direction in their vicinity (Fig S3C). Taken 346 
together, mutational signatures and pathways showed variable replicative strand asymmetry 347 
patterns with respect to replication timing. Importantly, these cell-type-specific asymmetry 348 
patterns were distinct from the mutation rate patterns described above. More generally, our 349 
analyses so far reaffirm and extend previous findings that the relationship between mutational 350 
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pathways and replication timing is heterogeneous across cell types and provide a foundation for 351 
the more detailed investigations to follow. 352 

 353 

Mutation load and SHM modulate the mutational landscape  354 

Having demonstrated variability in how mutation rate fluctuations relate to replication timing, we 355 
sought to identify additional factors that differ between and within cell types and that could 356 
further account for such heterogeneity. For this, we focused on LCL and CLL due to their 357 
inclusion of multiple samples and shared mutational pathways. A major difference between 358 
these two cell types is the elevated mutation load (also known as mutation burden) of CLL, as 359 
defined by the total number of autosomal mutations per sample (Fig 1A, B). We thus asked if 360 
mutation load itself relates to the distribution of mutations with respect to replication timing. To 361 
test this, we began by dividing the LCL offspring (which were more numerous than the CLL 362 
samples available here; we return to CLL below) into three groups based on the number of 363 
autosomal mutations, such that each group contained a similar (~295,500) total number of 364 
mutations (Fig S4A). A “low mutation load” group contained ≤489 mutations per offspring (1066 365 
offspring); a “high mutation load” group had ≥1104 mutations per offspring (174 offspring); and 366 
an “intermediate mutation load” group contained the remaining 422 offspring. We observed that 367 
the relationship of mutation rate to replication timing was substantially more pronounced in the 368 
high mutation load group, with 4.17-fold more mutations in the latest replicating fraction than the 369 
earliest (Fig 2K). In comparison, the intermediate mutation load group showed a less dramatic 370 
increase with 1.85-fold more mutations in the latest fraction, while the low mutation load group 371 
did not show enrichment at all for mutations in late replicating parts of the genome (0.98-fold 372 
difference). Importantly, this result was not attributed to statistical power, as all groups had a 373 
similar and sufficient number of mutations analyzed. This pattern was also evident for individual 374 
offspring, where greater mutation load corresponded to consistently later replication timing bias, 375 
including when offspring were down sampled to only 80 mutations to control for possible power 376 
differences among samples (Fig 4A-C). Thus, LCLs with a greater number of autosomal 377 
mutations exhibited an inherently stronger enrichment of mutations in late-replicating genomic 378 
regions. 379 
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 380 

Fig 4. Individual LCL late replication timing bias and candidate gene associations. (A) Replication 381 
timing bias, calculated as the linear slope of mutation percentages in four replication timing bins, 382 
increases with mutation load across individuals. (B) PCA of the percentage of mutations in four replication 383 
timing bins calculated for panel A. PC1 corresponds to mutation load. (C) Down sampling of individual 384 
LCL samples to 80 genome-wide mutations. Red dots indicate the mean slope of 1000 iterations of 385 
samplings for each mutation load. Error bars represent the standard deviation of samplings. (D) 386 
Association of mutated gene frequency to late replication timing bias of individual samples (as shown in 387 
panel A) corrected for mutation load. Black line indicates the Bonferroni-corrected p<0.05 divided by 388 
number of tested genes. The top 11 most significant genes are highlighted. (E) Selected genes from 389 
panel D showing mutation status in individual LCLs.  390 

 391 

We asked if these differences between mutation load groups are related to particular mutational 392 
signatures. Accordingly, we fit SHM and clock-like mutational signatures to the stratified LCL 393 
mutation load groups. We found that the proportion of mutations attributed to SHM decreased 394 
from 43.46±0.22% of mutations in the high mutation load group to 25.74±0.19% and further 395 
down to 21.01±0.18% in the intermediate and low mutation load groups, respectively. This trend 396 
was also observable in individual samples, as SHM contribution correlated, albeit modestly, with 397 
mutation load (Pearson’s r = 0.34, p<1x10-16). Therefore, the high global mutation count in LCLs 398 
is disproportionately driven by SHM. With respect to replication timing, the high mutation load 399 
group showed the greatest enrichment in late-replicating regions for both SHM and the clock-400 
like category, with 15.1-fold and 1.57-fold more mutations in the latest replicating fraction 401 
compared to the earliest, respectively (Fig 2M, N; Fig S4B). This relationship was less 402 
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pronounced in the intermediate mutation load group, with a 4.69-fold increase in SHM 403 
abundance and a 1.22-fold increase in clock-like abundance. The low mutation load group 404 
showed enrichment for neither SHM nor clock-like mutations in late replicating regions of the 405 
genome (Fig 2N). Together, these findings indicate that the distribution of mutations, most 406 
prominently of SHM origin, varies in LCLs in accordance with mutation load. 407 

CLL samples provided an opportunity to further investigate how mutation load and signature 408 
proportions shape the mutational landscape. Since CLL comprises two subtypes that differ by 409 
the mutational status of IGHV and therefore by mutation load, we first separated CLL samples 410 
by subtype. CLL tumor samples with a mutated IGHV (CLL-M) are known to have undergone 411 
SHM, and patients have a higher survival rate than those with an unmutated IGHV (CLL-U)55. 412 
The CLL samples used in this study included both CLL-M and CLL-U, but the IGHV mutation 413 
status of individuals was unreported. We therefore devised a way to use mutational signature 414 
analysis as an alternative means of inferring SHM activity and thus CLL subtype. Accordingly, 415 
we fit the CLL mutational signatures (SBS 1, 5, 9, and 40) to the autosomal mutations in 416 
individual samples. We assigned 80 samples with a consistent >2% SHM contribution over 417 
1000 bootstrap samples as CLL-M, and another 68 samples with a consistent 0% SHM 418 
contribution as CLL-U (Fig S4C). Three remaining samples were ambiguous and not analyzed 419 
further. The CLL-M group contained a median of 2,620 autosomal mutations per sample 420 
(216,451 total mutations; Fig S4D), while the CLL-U group contained a median of 1,986 421 
autosomal mutations per sample (138,113 total mutations). This was a significant difference in 422 
mutation burden between the two CLL subtypes (two-tailed t-test: p = 1.63x10-5). In CLL-M 423 
samples, a median of 25.4±0.04% of all mutations (591 mutations per sample) were contributed 424 
by SHM, which can fully account for their increased global mutation count.  425 

Mutations in CLL-M and CLL-U samples showed exponential-like increases with replication 426 
timing (Fig 2L). This effect was slightly stronger in CLL-M (5.54-fold more mutations in the latest 427 
replicating fraction than the earliest) than in CLL-U (4.05-fold). More specifically, in CLL-M, as in 428 
LCLs, SHM contribution was greatly enriched in late replicating regions, with 18.9-fold more 429 
mutations in the latest replicating fraction than the earliest (Fig 2M; Fig S4F). This distribution of 430 
SHM mutations in CLL-M comprised the strongest enrichment of mutations in late replicating 431 
regions that we observed in all our analyses so far. For clock-like mutations, CLL-M and CLL-U 432 
showed similar replication timing relationships with 3.32- and 3.69-fold more mutations, 433 
respectively, in the latest replicating fraction than the earliest (Fig 2N).  434 

Having CLL subdivided by IGHV mutation status, we could then compare high and low mutation 435 
load (as for LCL above). We divided CLL-M and CLL-U into two groups each, based on 436 
autosomal mutation load. CLL-M samples with higher mutation loads (28 samples with ≥3,011 437 
mutations) showed greater enrichment for all mutations in late replicating regions (Fig 2P). 438 
Among CLL-M samples, higher mutation load corresponded to greater SHM contribution 439 
(20.6±0.30% versus 25.24±0.32%) and greater SHM enrichment in later replicating regions (Fig 440 
2Q). CLL-U did not show a pronounced change in mutation enrichment in late replicating 441 
regions based on mutation load (Fig 2O), likely due to the diminished variability in mutation load 442 
among CLL-U samples (Fig S4D). Thus, we again observe that the distribution of SHM 443 
mutations varies in accordance with mutation load. 444 
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We next asked if the influence of global mutation load on the mutational landscape extends to 445 
replicative strand asymmetry. We used the stratification of LCL offspring by autosomal 446 
mutational load and reevaluated strand asymmetry for the clock-like and SHM mutational 447 
categories. There was substantial lagging strand asymmetry for the low mutation load group for 448 
clock-like mutations, and a more modest leading strand asymmetry for the high mutation load 449 
group (Fig 3D). SHM mutations also showed pronounced differences, but with greater genome-450 
wide lagging strand asymmetry in the high mutation load group compared to the low mutation 451 
load group (Fig 3F). With respect to replication timing, while there were no significant 452 
differences between groups for clock-like mutations (Fig 3E; S3D), SHM asymmetry differed 453 
considerably across the mutation load groups although only within the middle fractions of 454 
replication timing (Fig 3G; Fig S3D). Specifically, in the middle replicating quintile, lagging 455 
strand asymmetry was greater in the high mutation load group. Thus, while SHM contribution to 456 
LCL mutations was more pronounced in late replicating regions, lagging strand asymmetry 457 
appeared to increase more in mid-S replicating regions with higher mutation load. 458 

Taken together, we identified global mutation load as a novel cell line-specific factor that 459 
associates with the distribution of mutations along the genome and with respect to replication 460 
timing. In both LCL and CLL-M, elevated mutation load corresponded to increased SHM 461 
abundance genome-wide and in late replicating regions specifically. This finding has important 462 
implications for interpreting how mutation signatures relate to DNA replication timing, as these 463 
relationships may vary based on the mutation loads of individual samples.  464 

A natural explanation for the association between mutation load and replication timing bias is 465 
that mutation of a trans-acting factor elevates late replication timing bias, and this factor is more 466 
frequently mutated in high mutation load samples (either as a direct cause of their high mutation 467 
load, or in association with the elevated number of mutations). We tested this in LCLs by 468 
associating mutations at the level of genes with individuals’ mutational late replication timing 469 
bias, while controlling for mutation load (Fig 4A). It is essential to control for mutation load as 470 
the nominal number of mutations in any region would be higher with greater mutation load 471 
irrespective of replication timing dynamics. We identified several candidates significantly 472 
associated with late replication mutational bias, including several linked to cancer risk such as 473 
CSMD3 and CTNNA2 (Fig 4D,E). Of particular interest was BCL6 (B-cell lymphoma 6), a 474 
transcription factor that promotes proliferation of B-cells after the onset of SHM by repressing 475 
genes that would otherwise arrest the cell cycle as a result of elevated DNA damage56.  476 

We identified 345 mutations within the BCL6 gene among 192 of the 1662 LCLs. In the high 477 
mutation load group, BCL6 mutations were found in 52.3% of samples compared to only 17.8% 478 
and 2.1% in the low and intermediate mutation load group, respectively. This could not be 479 
explained by differences in sample mutation load, as high mutation load samples had on 480 
average 6.1-fold more mutations than low mutation load samples whereas BCL6 mutations 481 
were 24.9-fold more common. We additionally found BCL6 mutations in 20.7% of the 906 482 
samples with a late replication timing bias (Fig 4A) compared to 5.7% among samples with 483 
early or no replication timing bias. Differences in sample mutation load was again ruled out, as 484 
samples with a late replication timing bias had on average 1.58-fold more mutations globally 485 
whereas BCL6 mutations were 3.63-fold more common. Mutations in the BCL6 gene were also 486 
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found in 26.5% of CLL samples and were far more common in CLL-M (48.8% of samples) than 487 
CLL-U (1.5%). Of note, BCL6 is a COSMIC (v96) census driver of CLL57 though our results 488 
suggest this gene is more important for CLL-M.   489 

Functional mutations of BCL6 were rare (as with all genes) as only two were discovered in LCL 490 
and one in CLL, though other mutations may still affect the regulation of BCL6. An attractive 491 
possibility is that BCL6 mutations arise in LCL culture and promote both a higher mutation load 492 
as well as an altered mutational landscape manifesting in late replication mutational bias. 493 
Moreover, such mutations may be selected for during LCL culture, consistent with their higher 494 
prevalence in older cell lines (although we cannot discriminate between mutation load and 495 
culture age as being causally linked to BCL6 mutation prevalence). If this were the case, BCL6 496 
could be the equivalent of BCOR (BCL6 corepressor) mutations that are selected for in iPS cell 497 
culture58; indeed, BCOR functions together with BCL6 to repress cell cycle arrest in cells with 498 
active SHM. Further research will be required to characterize the role of BCL6 (and other 499 
genes) in the proliferation and mutational landscape of LCLs. 500 

 501 

SHM entails two mutational modes with distinct replication timing and clustering 502 

SHM initiates with the deamination of cytosine into deoxyuracil via activation-induced cytidine 503 
deaminase (AID) operating on ssDNA59,60. Left unrepaired, C>U deamination converts to C>T 504 
mutations during DNA replication61. Alternately, the initial deamination can be repaired by non-505 
canonical MMR, which includes DNA synthesis by the low fidelity DNA polymerase η 506 
(POLH)31,61. POLH synthesis produces proximal A>G and A>C substitutions, the characteristics 507 
of SBS 9 and therefore SHM1,62. It has previously been shown that a subset of SHM-context 508 
mutations in B-lymphocyte cancers (T>C and T>G substitutions with a 3’ A or 3’ T context) 509 
cluster at promoters and enhancers of actively transcribed genes and are enriched within 100bp 510 
of C>N mutations31. Additionally, pooling mutations of SHM origin across many cancer types 511 
showed that non-clustered mutations are more enriched than clustered mutations in late 512 
replicating regions31,32. This indicates that a given mutation pathway, like SHM, could entail 513 
distinct mutational modes, each with different relationships to replication timing and other 514 
genomic features. It is also conceivable that the presence of such modes would differ across 515 
cell types, potentially explaining why SHM is more enriched in late replicating regions in CLL 516 
than in LCL.  517 

To test the role of SHM clustering in determining late replication bias, we clustered SHM-context 518 
mutations in LCL and CLL by considering two or more SHM-context mutations falling within 519 
500bp of each other as a cluster. We identified 26,759 such clusters in LCLs and 2,624 in CLL, 520 
encompassing 37.01% and 7.50% of total SHM-context mutations, respectively. Although there 521 
was a nominal increase in cluster number and proportion with replication timing (Fig S5A-D), 522 
when controlling for the correlation of mutation rates with replication timing (see Methods) we 523 
found that, first, clustering in LCL and CLL was significantly elevated (p<1x10-100) in every 524 
replication timing fraction (Fig S5A-D), and second, clustering was relatively more abundant in 525 
early replication timing fractions (Fig S5E-H). Reciprocally, non-clustered mutations were more 526 
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abundant in late replication timing fractions (Fig S5I, J). Reduced SHM mutation clustering in 527 
CLL thus relates to their greater bias towards late replication.  528 

When controlling for gene content across replication timing fractions (and considering each 529 
mutation within clusters individually), we found that clustered mutations were significantly closer 530 
to genes compared to non-clustered mutations, in both LCL (p<1x10-246) and CLL (p<1x10-55). 531 
This was reminiscent of the gene-enriched omikli pattern of cancer mutation clusters32. Because 532 
genes and clustered mutations are both enriched in early replicating regions of the genome, we 533 
compared gene proximity in replication timing bins, controlling for gene content. For the earliest 534 
replicating 75% of the genome, clustered mutations in LCL and CLL were significantly more 535 
proximal to genes (p<1x10-10) than non-clustered mutations (Fig S5K-N). Surprisingly, in the 536 
latest 25% of the genome, we observed the opposite pattern with non-clustered mutations 537 
significantly more proximal to genes (p<1x10-10). A yet distinct pattern was observed with 538 
regards to C>N mutations, which in the latest replicating fractions were closer to clustered 539 
mutations than they were to non-clustered mutations (Fig S5O-R). The differing distributions of 540 
clustered and non-clustered mutations in relation to genes and C>N mutations further support 541 
the notion that there are two distinct SHM mutational modes, representing more than one 542 
mutational mechanism that would otherwise be grouped together.  543 

 544 

Unique mutational processes on the inactive X-chromosome  545 

We described above multiple factors that shape, in a cell-type-specific manner, how mutations 546 
accumulate along the genome and with respect to replication timing: replication timing patterns; 547 
different mutational processes (as manifested in mutational signatures) and their replicative 548 
strand asymmetries; and mutation clustering. Individual, cell line-specific factors such as global 549 
mutation load further influence the mutational landscape including the extents of late replication 550 
bias and replicative strand asymmetry. As a case in point, we examined these factors from the 551 
perspective of the unique biology of chromosome inactivation. The inactive X-chromosome (Xi) 552 
in females replicates late in S-phase with no discernable replication timing pattern63, which is 553 
distinct from the active X-chromosome (Xa), the male X-chromosome, and autosomes. This, 554 
and the tight link between replication dynamics and the mutational landscape led us to predict 555 
that the Xi would also have unusual mutational properties. Consistently, in some cancers, Xi has 556 
been inferred to have a higher mutation rate than Xa and the male X-chromosome8,64. In our 557 
female LCL offspring and CLL samples, we also found that the X-chromosome demonstrated 558 
significantly higher mutation rate than autosomes (Fig S6A, B). Interestingly, the female X-559 
chromosome also showed a significantly greater abundance of SHM compared to autosomes 560 
(Fig S6C, D; see further below).  561 

The large-scale, family-based configuration of our LCL samples provides unprecedented power 562 
to phase mutations and separately investigate the mutational landscapes of Xa and Xi. This is in 563 
contrast to previous studies that investigated Xi mutations by male-female comparisons or with 564 
limited expression-phased mutations8,64. Xi has been to shown to be clonally propagated65–67 565 
and is therefore expected to be detectable in at least a subset of the 746 female LCL offspring. 566 
While phasing inherited variants enables discriminating parental chromosome pairs, functional 567 
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data is required in order to identify the inactive X-chromosome. To this end, we devised an 568 
approach using the replication timing data itself, as inferred from sequencing read depth: due to 569 
its later replication, the Xi is expected to demonstrate a significantly lower median copy number 570 
compared to the Xa (Fig 5A). Indeed, female X-chromosomes showed greater parental copy 571 
number disparity than autosomes, which we used as a benchmark for assigning X-chromosome 572 
identity (specifically, for samples with greater than the 95th percentile disparity on chromosome 573 
14 – the autosome with the closest number of phaseable inherited variants to the X-574 
chromosome; Fig 5B, C). This approach yielded reproducible Xi assignments in 17 of 17 575 
replicate sequenced offspring for which assignments could be made. In addition, paternal Xi 576 
identity for NA12878 was consistent with RNA expression analyses68,69 and with our previous 577 
classification for this cell line63. Thus, the inactive X-chromosome can be identified, and 578 
mutations it harbors can be called, from the same genome sequence data. Accordingly, we 579 
identified the Xi in 542 of 746 female offspring (72.65%), of which 293 were paternally X-580 
inactivated and 249 were maternally X-inactivated (Fig 5D). 581 

 582 
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 583 

Fig 5. Unique mutational processes on the inactive X-chromosome. (A) Identification of Xi parental 584 
identity and mutation phasing. (B) The absolute parental read depth disparity in LCL female offspring on 585 
chromosome 14. Disparity was calculated as the absolute difference of paternal and maternal median 586 
read depth of inherited phaseable variants divided by their combined median depth. (C) The elevated 587 
absolute parental read depth disparity on the X-chromosome in female LCL offspring. Xi was identified in 588 
females with a disparity greater than the 95th percentile value from chromosome 14. (D) Xi parental 589 
identity classification among females with an identifiable Xi as described in panel (C). Xi is the parental 590 
homolog with the lower read depth. (E) The number of phased X-chromosome mutations in females with 591 
an identifiable Xi. (F) Xa and Xi mutation rate compared to maternal and paternal homologous autosomes 592 
with the most similar number of inherited phaseable variants to chromosome X. Mutation rate was 593 
calculated as the number of phased mutations normalized by the number of inherited phaseable variants 594 
on each chromosome homolog pair. P-values were calculated from a two-tailed t-test. (G) Proportions of 595 
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mutational pathways on maternal and paternal homologous autosomes and Xa/Xi. (H) As in panel (F), the 596 
mutation rate of phased mutations in high and low autosomal mutation load groups. (I) As in panel (G), 597 
the proportions of mutational pathways in high and low autosomal mutation load groups. (J) Pearson 598 
correlations of Xa and Xi regional mutation rate (calculated as in Fig 1K and further normalized by the 599 
number of inherited phaseable sites in each window) to male X-chromosome replication timing. (K-O) 600 
Abundance of mutational pathways on the X-chromosome in five replication timing bins: SHM abundance 601 
for Xa/Xi mutations (K), Xi mutations in the high and low autosomal mutation load groups (L), and CLL-M 602 
male and female patients (M); Clock-like mutation abundance for Xa/Xi mutations in the high autosomal 603 
mutation load groups (N) and CLL-M male and female patients (O). In all panels, error bars represent the 604 
standard error of signature fit. 605 

 606 

Being able to phase the X-chromosomes across a large set of cell lines, we systematically 607 
quantified how mutation rate and mutational processes differed between Xa and Xi. We phased 608 
mutations by identifying mutant alleles on the same sequencing read or mate-pair as a 609 
phaseable inherited variant (Fig 5A). Among the 542 females with an identifiable Xi, we phased 610 
6005 (19.75%) X-chromosome mutations, of which 3844 (64.01%) were assigned to the Xi (Fig 611 
5E). This comprises, to our knowledge, the largest collection of Xi- and Xa-parsed mutations. 612 
We confirmed that the mutation rate of Xi was 1.78-fold higher (p<1x10-5) than that of Xa and 613 
significantly higher than any autosome (p<1x10-6) (Fig 5F; Fig S6E); the mutation rate of Xa 614 
was not significantly different from that of autosomes (Fig 5F). With regards to mutational 615 
processes, the proportions of mutations explained by SHM (34.36±2.49%) and the clock-like 616 
mutational category (65.64±5.94%) were similar between the Xa and autosomes (Fig 5G; Fig 617 
S6F). On the Xi, however, only 27.16±2.38% of mutations were attributable to the clock-like 618 
category, while 72.84±2.27% were attributable to SHM (Fig 5G). The elevated mutation rate on 619 
the Xi can thus be predominantly attributed to SHM.  620 

Given our observation that mutation load relates to SHM enrichment in late-replicating genomic 621 
regions, we hypothesized that increased overall mutation load in a cell line would correspond to 622 
disproportionately greater Xi mutation rate and SHM abundance. We split the 542 LCL offspring 623 
with an identifiable Xi into a low mutation load group with less than 832 autosomal mutations 624 
(433 offspring), and a high mutation load group (remaining 109 offspring). Each group contained 625 
approximately 157,000 autosomal mutations. As predicted, X-chromosome mutations were 626 
proportionally more abundant in the high mutation load group, comprising 11.10% of mutations 627 
compared to 8.25% in the low mutation load group. Using phased mutations, we further found 628 
that 67.33% of X-chromosome mutations in the high mutation load group were located on the 629 
Xi, compared to only 58.14% in the low group (Fig 5H). As a control, Xa showed the same 630 
mutation rate as autosomes in both groups (Fig 5H). This confirms that Xi have an elevated 631 
mutation load compared to Xa or autosomes. As further hypothesized, we found that SHM 632 
abundance on the Xi was strongly elevated in the high mutation load group, at 81.72±2.71% of 633 
Xi mutations compared to 53.37±3.44% in the low mutation rate group (Fig 5I). In addition, SHM 634 
abundance on the Xi was higher than on the Xa, comprising 38.92% more mutations on Xi than 635 
Xa in the high load group, compared to 30.33% in the low group. Taken together, X-636 
chromosome inactivation is associated with an elevated mutation load driven by SHM, thus 637 
creating a distinct mutational landscape on the Xi; This disparity of mutation load and SHM 638 
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composition relative to the Xa is particularly pronounced in cell lines with a greater global 639 
mutational load. 640 

 641 

Association of mutational pathways with X-chromosome-specific replication programs 642 

We showed above that the elevated mutation load and SHM abundance on Xi were consistent 643 
with its late replication. We next investigated how mutations relate to the random replication 644 
pattern of the Xi. If replication timing is a direct modulator of mutation rate, the random 645 
replication of Xi would predict a random, uniform distribution of mutations. Using the 542 LCL 646 
offspring with an identifiable Xi, we assessed regional mutation rates of phased mutations in 647 
1Mb sliding windows with a 0.5Mb step. As expected, for the Xa, regional mutation rate 648 
correlated to male X-chromosome replication timing (r=0.61) at similar levels as phased 649 
autosomal mutations to autosomal replication timing (Fig S6G). Unexpectedly, regional Xi 650 
mutation rate demonstrated an equally high correlation to male X-chromosome replication 651 
timing (r=0.61; Fig 5J; Fig S6G). This suggests that Xi mutation distribution follows the ordered 652 
replication timing pattern of Xa rather than the random pattern of Xi.  653 

Given the unanticipated result of ordered Xi mutations in LCL, we sought to validate these 654 
findings in CLL. Although we were unable to similarly phase CLL mutations, we compared X-655 
chromosome mutations across male and female patients to estimate the mutational landscape 656 
of Xi. For autosomes, regional mutation rates in males and females near-equally correlated to 657 
replication timing (Fig S6H). However, in contrast to LCLs, this correlation was reduced for X-658 
chromosome mutations in female CLL patients (r=0.67 among females, 0.76 among males; Fig 659 
S6H). A principal difference between LCL and CLL is IGHV mutation status. As described 660 
above, CLL-U mutations are only contributed by the clock-like category, while CLL-M and LCL 661 
mutations are partly contributed by SHM. By analyzing CLL-M and CLL-U separately, we found 662 
that the correlation for X-chromosome regional mutation rate in CLL-U female patients (r=0.46) 663 
was distinctively diminished compared to CLL-U males (r=0.70) and autosomes (Fig S6I). This 664 
level of reduced correlation was not observed in CLL-M females (Fig S6J). As CLL-U samples 665 
lack SHM, we suspected that clock-like mutations are randomly distributed on the Xi while SHM 666 
mutations follow more closely the Xa replication pattern.  667 

To study the distribution of SHM mutations on the Xi, we split phased mutations into five bins 668 
based on the male X-chromosome replication timing. If SHM mutations are randomly distributed 669 
on Xi, we would expect the phased Xi mutations to be distributed independently of replication 670 
timing. However, in LCLs, Xa and Xi mutations showed similarly high enrichment for SHM in late 671 
replicating regions of the male X-chromosome (Fig 5K). Late replicating timing enrichment was 672 
stronger for Xi mutations in the high (6.21-fold more) versus low (4.28-fold) autosomal mutation 673 
load groups (Fig 5L). Thus, the disordered replication timing of Xi does not directly relate to 674 
SHM mutation rate in LCLs. To validate this in CLL-M, we expected to observe equal 675 
enrichments for SHM in late replicating regions in male and female patients. We indeed found 676 
that female CLL-M X-chromosome mutations were similarly enriched in late replicating regions 677 
(10.41-fold) as males (12.29-fold; Fig 5M). Thus, in both LCL and CLL, Xi SHM mutations 678 
distribution follows the ordered pattern of Xa replication timing.  679 
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Last, we examined clock-like mutations on the Xi, focusing specifically on the LCL offspring with 680 
high autosomal mutation loads (since we only observed late-replication enrichment of clock-like 681 
mutations in those; see Fig 2N). We found that Xa clock-like mutations in the high load group 682 
were enriched in late replicating regions of the male X-chromosome (2.11-fold; Fig 5N). 683 
However, in contrast to SHM, Xi clock-like mutations were more uniformly distributed with 684 
respect to male X-chromosome replication timing (0.99-fold; Fig 5N). This supported the 685 
hypothesis that clock-like mutations are randomly distributed on Xi. We again validated these 686 
results in CLL-M: if Xi clock-like mutations are randomly distributed, we would expect a more 687 
uniform distribution of clock-like mutations with respect to replication timing in female versus 688 
male CLL-M patients. As anticipated, CLL-M females demonstrated a striking reduction of clock-689 
like mutations in late replicating regions of the male X-chromosome (1.57-fold) compared to 690 
CLL-M males (2.63-fold; Fig 5O). Taken together, both LCL and CLL suggest that the 691 
replication pattern of Xi may directly relate to clock-like, but not necessarily SHM, mutations.  692 

 693 

 694 

Discussion 695 

In this work, we sought to identify factors that explain how mutation rate fluctuates with 696 
replication timing and how this relation varies across samples. We first affirmed that the 697 
relationship between mutation rates and replication timing was heterogeneous by comparing 698 
five cell types. We further characterized this variability through the specific mutation signatures 699 
of the cell type and found both signature quantity and its replicative strand asymmetry vary in 700 
relationship to replication timing. For example, SBS9 was highly enriched in late replicating 701 
regions of the genome whereas its asymmetry was most apparent in mid S-phase. Clock-like 702 
mutations were distributed more flatly on the chromosome with less prominent asymmetry 703 
though these properties varied considerably by cell type. We next showed that individual 704 
mutation load and mutation clustering greatly influence the late replication timing bias of 705 
mutations, particularly of SHM origin. Greater mutation load corresponded to elevated SHM late 706 
replication bias whereas clustered mutations were relatively enriched in early replicating 707 
regions. We then uncovered a unique mutational landscape of the inactive X-chromosome, 708 
showing Xi contained a higher mutation load explained by elevated SHM activity. We 709 
additionally found elevated autosomal mutation load exacerbates the disparity of mutation load 710 
and SHM abundance between Xa and Xi.  Finally, by comparing the landscape of mutational 711 
signatures on Xi, we found evidence for clock-like mutations being directly modulated by 712 
replication timing, while SHM mutations are seemingly not. Together, the presence of multiple 713 
factors influencing the mutational landscape challenges our understanding of how mutational 714 
pathways relate to replication timing. 715 

An unexpected finding was that an individual sample’s mutation load greatly influences whether 716 
mutational signatures are enriched in late replicating regions and/or show replicative strand 717 
asymmetry. We confirmed this observation among individual LCLs, through the down sampling 718 
of LCL mutations, and in CLL, where mutations were identified using a different methodology. 719 
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The effect of mutation load may largely underly the conflicted reporting of mutation signature 720 
quantity and replication timing enrichment across cell/cancer types. For example, a collection of 721 
high mutation load LCLs would produce different conclusions about SHM or clock-like category 722 
abundance than a collection of low mutation load LCLs. More generally, a lower mutation load 723 
cohort may suggest the distribution of a signature is flatter along chromosome or occurs more 724 
symmetrically on replicative strands. Given the importance of mutation signature analysis, it is 725 
therefore vital to control for mutation load when evaluating properties of signatures. By 726 
extension, other properties of mutational signatures such as nucleosome occupancy, 727 
transcription factor binding occupancy, or histone modifications may be subject to similar 728 
heterogeneity10.  729 

Our controls for mutation numbers across mutation load groups, and the down-sampling of 730 
mutations in individual LCLs, indicate that the association between mutation load and the 731 
mutation landscape is not due to lack of statistical power. Instead, these appear to be two 732 
correlated attributes that are inherent to individual samples. We consider several possible 733 
mechanisms to explain this inter-sample variability. First, it is conceivable that past mutations 734 
inherently increase the probability, and skew the distribution of future mutations, in a type of 735 
mutational feedback loop. This could happen, for instance, due to local recruitment and 736 
retainment of mutagenic DNA repair pathways. However, the observation that SHM mutational 737 
clustering decreases with higher mutation load implies that mutation rate increases in late 738 
replicating regions are not driven by proximal changes, arguing against such a mechanism in 739 
LCLs. Instead, we favor a model by which the mutation of a trans-acting factor increases the 740 
global mutation rate and also underlies the shift of mutations towards later replicating genomic 741 
regions. As this mutation increases in clonal frequency, possibly due to compounding effects of 742 
the mutated gene(s) on cell proliferation, we would observe greater late replication timing bias 743 
for newly acquired somatic mutations. One candidate of interest we identified is BCL6, a cancer 744 
census gene prominently mutated in B cell lymphomas. BCL6 is a transcription factor that 745 
prevents cell cycle arrest under the tremendous DNA damage of SHM56. Current models pose 746 
that BCL6 mutations disrupt its negative regulation, promoting proliferation despite ongoing 747 
mutagenesis56. Further investigation on functional mutations of BCL6 in B cells may elucidate its 748 
role in elevated late SHM replication timing bias with high mutation load. It would also be 749 
important to determine whether the mutation load effect is unique to SHM in B cell types, or if 750 
similar or other processes with comparable effects take place in other cell types. Regardless, 751 
we argue that mutation load, even if being a proxy for another underlying mutational landscape 752 
shift, is important to consider in any studies of mutational patterns.  753 

Another unexpected finding of this work relates to the mutational landscape of the inactive X 754 
chromosome. We found that SHM was elevated on Xi in agreement with the chromosome’s late 755 
replication, while its mutations were unanticipatedly distributed with respect to the replication 756 
pattern of Xa. Furthermore, SHM showed elevated late Xa replication timing bias in high 757 
mutation load samples, as observed on autosomes. Clock-like mutations, on the other hand, 758 
were distributed with respect to the disordered replication of Xi. These findings were supported 759 
by male-female comparisons in CLL. These results suggest that replication timing may not 760 
directly modulate where SHM mutations occur. Instead, some yet unidentified correlated factor 761 
that is otherwise unaltered on Xi and serves as an epigenetic “memory” of its pre-inactivation 762 
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state, may explain the landscape of SHM. Since gene expression, chromatin structure, and 763 
chromosome conformation are all effectively lost on the Xi alongside replication timing 764 
programming70,71, it is difficult for us to speculate on the nature of such a factor at this time. 765 

A major and still not fully answered question in the human mutagenesis field pertains to the 766 
mechanisms that lead to preferential mutation accumulation in late replicating regions. The 767 
comparison of SHM and clock-like mutations on both the autosomes and the X-chromosome 768 
support the idea that there is no singular mechanism that can explain this association. Rather, 769 
mutational landscapes are shaped by composites of pathways with varied associations with the 770 
replication program. By first categorizing which pathways are directly modulated by replication 771 
timing, the underlying mechanisms may be more easily probed. Nevertheless, in combination 772 
with mutational pathways, mutational load, and rate of clustering, replication timing is an 773 
effective predictor and likely to be a critical driver of regional mutation rates across 774 
chromosomes. Given that replication timing itself is a polymorphic trait in humans38,72, we would 775 
predict that different people would have different mutational patterns in different genomic 776 
regions; characterizing such a form of genetic variation would require incorporating the multiple 777 
factors we described here, including mutational signature abundance, autosomal mutation load, 778 
and mutation clustering.  779 

 780 

Methods 781 

Genomic data sources and mutation calling 782 

LCL genomic data sources  783 

Mutations in the 1662 LCL offspring were sourced from six cohorts (Table 1). These offspring 784 
were matched to 989 pairs of fully genotyped parents, as 377 families contained two or more 785 
offspring. Eight families covered three generations. The largest cohort was iHART73 and 786 
included 1028 offspring with or without a diagnosis of autism. While iHART samples included 787 
both LCL and whole blood samples, only LCL offspring were included in this study, although for 788 
parental data we also considered whole blood samples (1.2% of parents). The second-largest 789 
LCL mutation cohort was sourced from the 1000 Genomes Project (1kGP) and contained 602 790 
trios74. We used 49 offspring from the Polaris project Kids cohort75  as replicate samples as all 791 
overlapped the 1kGP cohort. An additional nine offspring were sourced from the Repeat 792 
Expansion (RE) cohort76 and included two fragile-X syndrome patients that we nonetheless 793 
have shown before do not have global replication timing alterations compared to healthy 794 
samples77. We sourced another 13 offspring from the Illumina Platinum78 family; of those, two 795 
(NA12878 and NA12877) overlapped with 1kGP samples and were used for primary analyses 796 
instead of the latter due to their higher read depth (~50x compared to ~30x).  797 

We obtained 12 LCL trios from the Coriell Institute and sequenced and aligned them in-house. 798 
Samples were sequenced at Genewiz (South Plainfield, NJ) on Illumina HiSeq X (2x150bp) to a 799 
depth of approximately 15X (for further information, see Caballero et al. 202177). Reads were 800 
converted into unaligned BAM files and marked for Illumina adaptors with Picard Tools (v1.138) 801 
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(http://broadinstitute.github.io/picard/) commands ‘FastqToSam’ and ‘MarkIlluminaAdapters’. 802 
BAM files were then aligned to hg38 with BWA-mem79 (v0.7.17), and duplicate reads were 803 
marked with Picard Tools command ‘MarkDuplicates’. These alignment steps were similar to 804 
those implemented for the other LCL cohorts. Among these 12 offspring, two are affected by 805 
ataxia-telangiectasia yet did not show global replication timing alterations compared to healthy 806 
LCLs77.  807 

 808 

LCL genotyping 809 

In order to ultimately identify mutations, we first genotyped LCL offspring and parents. 810 
Genotypes for iHART samples were obtained from Ruzzo et al. 201973. All other LCL cohorts 811 
were genotyped by us using the GATK (v4.1.4.0) best practices for germline short variant 812 
discovery80,81. Briefly, BAM files were recalibrated and aligned around common insertions and 813 
deletions with ‘BaseRecalibrator’ and ‘IndelRealigner’. Next, gVCF files were generated from all 814 
recalibrated BAM files using ‘HaplotypeCaller’. gVCFs were then merged into families with 815 
‘CombineGVCFs’ and joint genotyped with ‘GenotypeGVCFs’. Finally, SNVs were recalibrated 816 
with ‘VariantRecalibrator’. We note that genotype calling for the iHART cohort differed from the 817 
above in that all samples were jointly genotyped, and variants were removed if they had a depth 818 
of <10X, a genotype quality of <25, or an alternative allele frequency of <0.2; we subsequently 819 
applied equal or stricter filtering metrics to all samples when identifying mutations, hence ruling 820 
our an effect of these differences in iHART genotyping on our analyses.   821 

For samples originally aligned and genotyped in hg19 (approximately half of all samples), 822 
genotypes were lifted-over to hg38 coordinates using vcf-liftover (https://github.com/hmgu-823 
itg/VCF-liftover, only liftover within the same chromosome were allowed). We removed 824 
genotypes in samples originally aligned to hg38 at coordinates without an hg19 equivalent to 825 
compensate for the reduction of genotypes following liftover. This eliminated approximately 826 
1.9% of all sites. 827 

 828 

LCL mutation calling 829 

Candidate mutations were identified as single nucleotide Mendelian errors between parent and 830 
offspring alleles. The following steps were based on previously established family-based 831 
mutation calling methods from Yuen et al. 201682. Mutations on the autosomes and X-832 
chromosome in female offspring were identified as heterozygous genotypes (for the reference 833 
allele and an alternate allele) in offspring where parents were homozygous for the reference 834 
allele. For the X-chromosome in male offspring, mutations were identified as sites with only an 835 
alternate allele where the mother is homozygous for the reference allele. Next, we filtered 836 
mutations with a Fisher's exact test Phred-scaled p-value (FS)<60.0, RMS mapping quality 837 
(MQ)< 0.0, Wilcoxon rank sum test z-score of mapping qualities (MQRankSum)<-12.5 or read 838 
position (RPRS)<-8.0, symmetric odds ratio (SOR)>3, and a Phred-scaled quality score 839 
(QUAL)<30. We excluded sites that did not pass variant quality score recalibration. To remove 840 
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sub-clonal mutations and potential technical errors, we eliminated candidate mutations for which 841 
the mutant (alternate) allele frequency was <0.2. We removed likely inherited variants where 842 
either parent contained reads matching the mutant allele. Finally, to eliminate possible false-843 
positive mutation calls caused by somatic deletions in the offspring (and hence reduced 844 
genotyping accuracy), we eliminated candidate mutations in cases where the offspring read 845 
depth was <10% of the combined parental read depth (again, adjusted for the X-chromosome in 846 
male offspring) at the mutation site. After this initial hard filtering, 4.4 million candidate mutations 847 
were called across all 1662 offspring.  848 

Next, we removed candidate mutations based on genomic location. We first removed 61,479 849 
candidate mutations around the HLA locus (chr6:28477797–33548354 in hg38) due to the high 850 
propensity for genotyping errors stemming from high local polymorphism density83. Similarly, we 851 
removed 63,547 mutations around the immunoglobulin heavy locus (IGHV, chr14:105580000-852 
106880000 in hg38), which is hypermutated in LCLs. Next, we removed 587,511 mutations 853 
within gaps >25Kb in the LCL replication timing profile (see section Replication timing 854 
profiles). Regions of the genome removed for HLA and IGHV were also removed from the LCL 855 
reference RT profile. 856 

To further eliminate inherited variants, we implemented a last filtering step to remove mutations 857 
based on population allele frequency. Specifically, we removed mutations with a gnomAD84 V3 858 
allele frequency of >0.001. We did not use a frequency of zero as many of our samples 859 
(including all 1kGP individuals), and their somatic mutations, are represented in gnomAD. We 860 
also filtered mutations occurring in more than 30 of the 1662 offspring. In total, 2,826,985 861 
candidate mutations were eliminated through this allele frequency filtering. After all filtering 862 
steps, 885,655 autosomal and 42,061 X-chromosome mutations remained in the 1662 non-863 
replicate LCL offspring. 864 

For each mutation, trinucleotide context was generated with SigProfilerMatrixGenerator85, and 865 
replication timing values at mutations sites were calculated with the R function ‘approx’ using 866 
the linear method. 867 

 868 

LCL mutation validation 869 

Parent-offspring mutation calling carries a risk of falsely identifying an inherited variant as a de 870 
novo mutation. This could stem, for instance, from failing to identify the inherited alleles in a 871 
parent due to a somatic deletion or false-negative genotyping. To quantify the proportion of false 872 
mutations that are inherited variants, we analyzed mutation calls in 73 monozygotic (MZ) twin 873 
pairs. MZ twins share all inherited alleles and germline mutations but have unique somatic 874 
mutations (Fig S1B). Although parent-offspring mutation calling cannot distinguish somatic from 875 
germline mutations, having an estimate for one of those enables to estimate the other. 876 
Specifically, based on all samples from denovo-db86, the average human contains 65.5 877 
autosomal germline mutations. In contrast, in this study, MZ pairs shared between 81 and 245 878 
autosomal mutations (median:113; Fig S1C, D). Thus, the excess number (above 65.5) of MZ 879 
twin shared mutations provides a rough estimate of the number of falsely called mutations that 880 
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are likely inherited variants (Fig S1E). We thus predicted that between 1.85% to 27.2% of 881 
autosomal mutations in MZ twins are inherited variants (median: 9.66%; Fig S1E). This is likely 882 
an overestimate, as the paternal age among MZ twins was relatively high (median: 32.26 years, 883 
range: 20.43-78.51), thus increasing the expected number of germline mutations. 884 

We also estimated false mutation calls derived from technical errors by analyzing genotype calls 885 
in 51 offspring that were resequenced by different groups on different platforms (Table S1). We 886 
compared mutant alleles of samples in the main dataset to the GVCF of the replicate. A 887 
mutation was considered validated if the mutant allele was found in the replicate sample at any 888 
frequency. A median of 93.1% of autosomal mutations were supported by their replicate sample 889 
(range: 65.1-98.7%; Fig S1F). The mutations that could not be validated did not show a strong 890 
enrichment towards late replication timing and, therefore, should not have influenced our results 891 
(Fig S1G). We further validated mutation calls in the offspring sample NA12878. The Illumina 892 
Platinum cohort sample of NA12878 was used as part of the main dataset (of 1662 offspring), 893 
and the 1kGP NA12878 sample was used for validation (and counted as part of the 51 replicate 894 
sample analysis mentioned above). We sourced four other replicate sequencings of NA12878 895 
(Table S1) and found that 98.8% of mutations were supported by at least one alternate source.  896 

 897 

CLL mutation data  898 

Mutations in chronic lymphocytic leukemia (CLL) patients were obtained from the 899 
ICGC/PCAWG cohorts CLLE-ES. Alignment and mutation calling for tumor samples (peripheral 900 
blood-derived) and normal samples was performed by PCAWG using their pipeline87 in hg19. 901 
We only included mutations called from 151 patients with whole genome sequencing. This 902 
provided 371,252 autosomal mutations and 23,130 X-chromosome mutations. 903 

Before filtering, all mutations were lifted to hg38 using the vcf-liftover method, as used in LCL. 904 
We then removed mutations around the HLA and IGHV loci and in gaps of the LCL replication 905 
timing profile. Hence, we used two LCL replication timing profiles in our analyses: one in which 906 
regions filtered from the LCL offspring dataset were removed, and another in which regions 907 
filtered from the CLL dataset were removed. We interpolated replication timing values for the 908 
final 355,474 autosomal and 22,131 X-chromosome mutations with the CLL-filtered LCL 909 
reference replication timing profile and determined trinucleotide contexts in an identical manner 910 
to LCLs.  911 

 912 

HCT116, HT115, and LS180 mutation data  913 

The HCT116 line was a gift from the tissue culture lab at the Francis Crick Institute. Cells were 914 
grown in Dulbecco's Modified Eagle Medium (DMEM), 10% fetal calf serum, penicillin, and 915 
streptomycin. Culture was maintained at 37°C with 5% CO2. Passage was performed 916 
approximately twice per week for one year. BAM files were generated by aligning reads to hg38 917 
and recalibrated in an identical manner to our processing of the LCL data as described above.  918 
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BAM files from the passage of HT115 and LS180 were sourced from Petljak et al. 201925. BAM 919 
files, originally generated by aligning reads to hg19, were recalibrated identically to our 920 
processing of LCL data (above). For LS180 and HT115, we lifted mutations to hg38 (as 921 
described above). 922 

Mutations in HCT116 were identified with GATK (v4.1.4.0) mutect288 per the somatic short 923 
variant discovery best-practices pipeline. The parental clone was considered the normal 924 
sample, and daughter clones were considered tumor samples. For filtering, read orientation bias 925 
artifacts were predicted with the command ‘LearnReadOrientationModel’ and used in filtering 926 
with ‘FilterMutectCalls.’ The Mutect2 step of cross-sample contamination was not implemented 927 
since the samples were cell lines. We identified candidate mutations as heterozygous calls that 928 
passed the mutect2 filtering and were unique to a daughter subclone. We required that at 929 
daughter candidate mutation sites, the parental genotype must be homozygous for the 930 
reference allele and not contain any mutant allele reads. We removed mutations where the 931 
parental clone had no read depth, as this prevented confident mutation calling. Finally, we only 932 
retained candidate mutations with an MQ of <40 and an alternate (mutant) allele frequency of 933 
>0.2 and <0.8 in the daughter.  934 

We removed mutations in all colon adenocarcinoma cell lines around the HLA locus and gaps 935 
>25Kb in the respective cell type replication timing profile. The final mutation dataset contained 936 
150,470 autosomal mutations in the six HCT116 subclones, 28,944 autosomal mutations in the 937 
five HT115 subclones, and 14,974 autosomal mutations in the five LS180 subclones. Mutation 938 
trinucleotide context and interpolated replication timing values were assigned using the methods 939 
described above for LCLs and CLL.  940 

 941 

Replication timing profiles 942 

LCL 943 

The LCL replication profile was generated using TIGER37 from median read count data from all 944 
1662 offspring. First, uniquely mapping reads were extracted from aligned BAM files of each 945 
sample. For samples aligned to hg19, BAM coordinates were lifted to hg38 in an identical 946 
manner to mutations. We compensated for lift-over by modifying TIGER to exclude hg38 947 
coordinates with no hg19 equivalent when creating 2.5Kb windows of uniquely alignable 948 
sequence. We tested the effect of this method by comparing the replication timing profiles of 22 949 
samples originally aligned to hg38 with those aligned to hg19 and lifted-over to hg38. The lifted 950 
replication timing profile in all samples on all autosomes was nearly identical (Pearson’s r >0.99) 951 
to the one aligned to hg38.  952 

Using default TIGER parameters, the liftover-corrected 2.5Kb windows were GC-corrected and 953 
normalized to an autosomal genome copy number of two. We eliminated subclonal aneuploidies 954 
in individual offspring by filtering out whole chromosomes with an average autosomal copy 955 
number of >2.2 or <1.8, an X-chromosome copy number of >2 or <1.6 for female offspring, and 956 
an X-chromosome copy number of >1.2 or <0.8 for male offspring. This removed 34 957 
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chromosomes in 23 samples. We removed suspected small copy number alterations by filtering 958 
out 2.5Kb windows with an exceptionally high or low median copy number across all offspring 959 
and within individual offspring. We first removed autosomal and female X-chromosome windows 960 
across all offspring with a median copy number ±0.6 than that chromosome’s median copy 961 
number (as calculated from all offspring). The cutoff was ±0.4 for the X-chromosome in male 962 
offspring. We then filtered out windows in individual offspring with a copy number ±0.6 than that 963 
chromosome’s median copy number (as calculated in the individual offspring). The cutoff was 964 
±0.3 for the X-chromosome in male offspring. We next calculated autocorrelation for all offspring 965 
using the MATLAB command “autocorr” and removed whole chromosomes for samples with 966 
abnormally high autocorrelation. This removed 51 chromosomes in 26 samples. Finally, we 967 
discarded the two offspring, HG02523 and NA12344, as they had more than six individual 968 
chromosomes removed.  969 

Mutations in LCL offspring and HCT116 daughter subclones were not removed if an offspring’s 970 
chromosome was filtered out during replication timing generation. However, as previously 971 
mentioned, candidate mutations were removed in regions >25Kb where replication timing was 972 
not available for all offspring. This arose from windows filtered out for disproportionately high or 973 
low median copy number across all offspring, which removed 92Mb on autosomes (3.67% of 974 
the autosomal genome).  975 

After filtering, we took the median GC-corrected data in 2.5Kb each window across all offspring. 976 
For the X-chromosome, we calculated separate medians using only male or female offspring. 977 
Replication timing values were generated by smoothing the median GC-corrected data with a 978 
cubic smoothing spline (MATLAB command ‘csaps’, smoothing parameter: 1x10-17). Only 979 
regions of >20 continuous 2500bp windows were included. Smoothing was not performed over 980 
data gaps >100Kb or reference genome gaps >50Kb. The smoothed profiles were then 981 
normalized to an autosomal mean of zero and a standard deviation of one. For analyses on the 982 
X-chromosome, we generated an X-chromosome replication timing profile considering only 983 
male LCL offspring.  984 

We compared our median LCL replication timing profile to a replication profile of NA12878 985 
generated by sequencing S and G1 phase DNA89. The S/G1 coordinates were interpolated to 986 
TIGER window coordinates with the MATLAB function ‘interp1’. The LCL replication timing used 987 
in this study highly correlated to the S/G1 profile (Pearson’s r = 0.94; Fig S1J).  988 

 989 

HCT116 990 

We similarly generated a median autosomal replication timing profile for HCT116 from the six 991 
daughter subclones and the parental line using TIGER. Liftover adjustment was not 992 
implemented as all samples were originally aligned to hg38. HCT116 is nearly diploid, with 993 
several large copy number alterations present in some or all samples. As in LCL, we removed 994 
these copy number alterations by filtering out 2.5Kb windows in individual samples with a copy 995 
number ±0.6 than the chromosomal median copy number (as calculated in the individual 996 
sample). Each sample was then filtered via the TIGER command ‘TIGER_segment_filt’ (using 997 
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the MATLAB function ‘segment’, R2: 0.04, standard deviation threshold: 2.5). After filtering, we 998 
took the median GC-corrected data in 2.5Kb each window across all samples. Altogether, 999 
280Mb were removed in filtering (11.1% of the autosomal genome). Notably, four copy number 1000 
alterations >10Mb were removed from all samples. 1001 

 1002 

HT115 and LS180 1003 

HT115 and LS180 replication timing profiles were generated from S/G1 sequencing as 1004 
described in Massey et al., 201989. DNA from each cell cycle fraction was sequenced using an 1005 
Illumina NextSeq 500 and aligned to hg19. The S/G1 DNA replication timing profile for HT115 1006 
was previously described21. The S/G1 replication timing coordinates were lifted to hg38 as 1007 
described above for LCLs.  1008 

We compared the final TIGER-generated HCT116 replication timing profile to one generated by 1009 
S/G1 alongside HT115 and LS180. The two profiles were highly correlated (Pearson’s r = 0.91; 1010 
Fig S1J). We chose to use the TIGER-generated profile for HCT116 to match the source of the 1011 
mutation calls.   1012 

 1013 

Mutation counts and signature fitting 1014 

We fit the previously described biologically relevant COSMIC v3.2 SBS signatures1 to all 1015 
autosomal mutations in the five cell types using the MutationalPatterns90 command 1016 
‘fit_to_signatures‘. Following current best-practices45, individual COSMIC signatures were 1017 
corrected by adjusting the 96 trinucleotide frequencies by the relative abundance of trinucleotide 1018 
frequencies between the filtered and unfiltered autosomal genome. We used cosine similarity to 1019 
assess the confidence of signature fit. This metric compares the original trinucleotide 1020 
frequencies of mutations to reconstructed frequencies based on predicted signature 1021 
contributions. A value of one indicates an identical reconstruction. We calculated cosine 1022 
similarity with the MutationalPatterns command ‘cos_sim’. We additionally performed 1000 1023 
bootstrap sampling when fitting signatures using the MutationalPatterns command 1024 
‘fit_to_signatures_bootstrapped’. We used the standard deviation of 1000 bootstrap samples as 1025 
the standard error for signature contribution. Standard errors for combined signatures (e.g., 1026 
MMRd, which is the combination of SBS21 and SBS44 in HCT116/LS180) were calculated 1027 
using standard error in the difference of the means (the square-root of the sum of variances).  1028 

To assess the relationship of mutations or signature abundance to replication timing, we divided 1029 
the autosomal replication timing profiles of each cell type into 20 bins ordered by replication 1030 
timing. Each bin contained an equal 5% of the genome. In later analyses where mutations were 1031 
reduced (e.g., stratification by replicative strand), we used five bins (each with an equal 20%) to 1032 
preserve resolution. The number of bins was chosen to optimize visualization for the different 1033 
analyses. When fitting signatures to mutations, we again corrected for trinucleotide abundances 1034 
within each replication timing bin. For this, the 96 trinucleotide frequencies were corrected by 1035 
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the relative abundance of trinucleotide frequencies between the filtered and unfiltered 1036 
autosomal genome within the replication timing range of each bin.  1037 

 1038 

Replicative strand asymmetry 1039 

The local slope of replication timing provides replicative strand information for the positive 1040 
strand of the genome. We assigned 2.5Kb smoothed data windows of positive slope (based on 1041 
the immediate flanking windows) as lagging replicative strand on the positive genome strand 1042 
and leading replicative strand on the negative genome strand. Reciprocally, windows of 1043 
negative slope were assigned as leading replicative strand on the positive strand and lagging 1044 
replicative strand on the negative strand. At locations of a slope change, flanking windows 1045 
within 100Kb were assigned undefined replicative strandedness for both the positive and 1046 
negative genome strands. Undefined replicative strandedness comprised 600.15Mb 1047 
(approximately 25%) of the LCL replication timing profile, 599.49Mb in CLL, 740.15Mb in 1048 
HCT116, 1113.77Mb in LS180, and 1000.07Mb in HT115. Mutations were partitioned into 1049 
leading or lagging groups based on (1) whether the pyrimidine base of the substitution was on 1050 
the positive or negative genome strand and (2) the replicative strand of the positive and 1051 
negative genome strands at that coordinate. We did not include mutations in regions of 1052 
undefined replicative strand in asymmetry analysis.  1053 

We fit the biologically relevant mutational signatures separately to replicative strand-partitioned 1054 
autosomal mutations. As performed above, individual COSMIC signatures were corrected by 1055 
adjusting the 96 trinucleotide frequencies by the relative abundance of trinucleotide frequencies 1056 
between the filtered leading or lagging replicative strand and unfiltered autosomal genome. 1057 
Regions of undefined strandedness were not included in correction. To assess the relationship 1058 
of mutational replicative strand asymmetry to replication timing, we divided the autosomal 1059 
replication timing profile (voiding regions of undefined strandedness) into five bins ordered by 1060 
replication timing value. Each bin contained an equal quintile (20%) of the genome. We fit the 1061 
biologically relevant mutational signatures separately to the replicative strand-partitioned 1062 
mutations in each quintile. Again, we performed signature correction using only regions of 1063 
defined strandedness within the range of replication timing quintiles.  1064 

Before determining asymmetry values, we calculated replicative strand ratios for a given 1065 
mutational signature using the formula: 1066 

������� � ��������������  

where d and g represent the number of autosomal mutations on the respective leading and 1067 
lagging strand regarding the genomic strand of the substituted pyrimidine base.  1068 

As described above, we calculated standard error for a signature as the standard deviation of 1069 
1000 bootstrap samples. Standard error was calculated separately for mutations partitioned to 1070 
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the leading and lagging replicative strand. To get standard error for a replicative strand ratio, we 1071 
propagated standard errors from the leading and lagging strands using the formula: 1072 

��������������� �  ����������������� 	� 
  ���������������� 	� 
�������� � �������  ·  ���������

�������
�� 
  �	������

	������
�� . 1073 

We then calculated replicative strand asymmetry values using the formula: 1074 

������� �  ������������� . 1075 

To calculate standard error for asymmetry values, we subtracted the error from the replicative 1076 
strand ratio before log2 transformation. Thus, we determined the error for asymmetry as: 1077 

�������� �  ������� �  ������������ � ��������� . 1078 

To increase strand asymmetry confidence, we repeated the analysis of strand asymmetry in 1079 
LCL, CLL, and HCT116 while removing 500Kb (instead of 100Kb) around regions of slope 1080 
change. The rationale for this validation was that origin and termination sites in replication timing 1081 
profiles may be regionally imprecise or variable across samples, leading to false mutation strand 1082 
assignment even after removing 200Kb around regions of slope change. HT115 and LS180 1083 
were not included in this reanalysis due to an insufficient number of mutations.   1084 

 1085 

Gene associations for late replication timing bias 1086 

We identified individual LCL mutational replication timing bias by calculating the proportion of 1087 
mutations in four replication timing bins. We used the linear slope of proportions as a 1088 
representation for replication timing bias and calculated PCs using the R command ‘prcomp.’ 1089 
Gene associations were calculated using the binary state of whether at least one mutation fell 1090 
within the range of a protein coding gene 1091 
(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/) 1092 
against individual replication timing biases. Mutation functionality was not considered. P-value of 1093 
association was calculated with the R command ‘lm’ and individual autosomal mutation load 1094 
was inputted as a covariate. 97 genes showed significant association for late replication timing 1095 
biases and were mutated in at least 50 samples. 1096 

 1097 

Clustering mutations 1098 

We clustered SHM-context mutations, which represented 26.69% of autosomal LCL mutations 1099 
and 21.13% of CLL mutations, using ‘ClusteredMutations’ (https://cran.r-1100 
project.org/web/packages/ClusteredMutations/index.html) command ‘showers.’ The minimum 1101 
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cluster size was two mutations, and the maximum distance between SHM-context mutations 1102 
was 500bp. We simulated autosomal SHM-context mutations of matched mutation rates in 20 1103 
replication timing bins. Within the replication timing range of each bin, we performed 1000 1104 
random selections of SHM-context motifs (TA, TT, or AA loci on the positive genome strand) 1105 
without replacement. The simulated mutations were clustered identically as described above for 1106 
real mutations.  1107 

We evaluated the distance of SHM-context mutations to 22,337 protein-coding genes and the 1108 
C>N mutations in LCL offspring and CLL. We defined genes as all transcribed sequences 1109 
(mRNA in the gene feature table), including introns and UTRs. As many gene models 1110 
overlapped, we merged intervals using the bedtools91 (v2.29.2) command ‘merge.’ We 1111 
interpolated LCL replication timing values using the center coordinate of the merged gene 1112 
regions. We calculated the distance between SHM-context mutations and gene/C>N mutations 1113 
with the bed tools command ‘closest.’  1114 

 1115 

Determining Xi parental identity and phasing mutations 1116 

We phased Mendelian inherited single nucleotide variants in female LCL offspring. For each 1117 
variant, we required the offspring and parents to have a read depth ≥5, MQ>30, FS<60.0, 1118 
MQRankSum>-12.5, RPRS>-8.0, and SOR<3. In the heterozygous offspring genotype, we 1119 
required the alternate allele frequency to be greater than 0.3. We calculated parental copy 1120 
number disparity as the absolute difference of mean sequencing read depth for paternal and 1121 
maternal alleles divided by their combined read depth. To determine a threshold for identifying 1122 
X-inactivation, we used the 95th percentile of parental copy number disparity on chromosome 1123 
14. This chromosome was chosen as it contained the most comparable number of phaseable 1124 
variants as chromosome X. The parental identity of Xi was assigned to the parental homolog 1125 
with the lower mean sequencing read depth. 1126 

We phased mutations occurring on the same read or mate-pair as a phaseable inherited variant. 1127 
We first determined the read names containing the maternal and paternal alleles using the 1128 
Samtools92 (v1.6) command ‘mpileup.’ We repeated this process to identify read names 1129 
containing the mutation alleles. We phased mutations where read names containing mutation 1130 
alleles exclusively matched those phased to one parent. If mutation alleles matched read names 1131 
phased to both parents, the mutation was considered ambiguous. We calculated mutational 1132 
signature contributions on phased chromosomes as described above using the biologically 1133 
relevant LCL signatures corrected for individual chromosome trinucleotide content. 1134 

 1135 

Data and code availability 1136 

All replication timing profiles in hg38 coordinates and relevant code are available in the 1137 
supplementary information. BAM files for HCT116 and relevant S/G1 profiles are available as 1138 
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SRA bioproject PRJNA875498. Mutation counts for LCL offspring, CLL-M/U predictions, and Xi 1139 
parental identity predictions are available in Table S1.  1140 
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