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Abstract  19 

Polygenic scores (PGS) have limited portability across different groupings of individuals (e.g., by genetic 20 
ancestries and/or social determinants of health), preventing their equitable use. PGS portability has typically 21 
been assessed using a single aggregate population-level statistic (e.g., R2), ignoring inter-individual 22 
variation within the population. Here we evaluate PGS accuracy at individual-level resolution, independent 23 
of its annotated genetic ancestries. We show that PGS accuracy varies between individuals across the 24 
genetic ancestry continuum in all ancestries, even within traditionally “homogeneous” genetic ancestry 25 
clusters. Using a large and diverse Los Angeles biobank (ATLAS, N= 36,778) along with the UK Biobank 26 
(UKBB, N= 487,409), we show that PGS accuracy decreases along a continuum of genetic ancestries in all 27 
considered populations and the trend is well-captured by a continuous measure of genetic distance (GD) 28 
from the PGS training data; Pearson correlation of -0.95 between GD and PGS accuracy averaged across 29 
84 traits. When applying PGS models trained in UKBB “white British” individuals to European-ancestry 30 
individuals of ATLAS, individuals in the highest GD decile have 14% lower accuracy relative to the lowest 31 
decile; notably the lowest GD decile of Hispanic/Latino American ancestry individuals showed similar PGS 32 
performance as the highest GD decile of European ancestry ATLAS individuals. GD is significantly 33 
correlated with PGS estimates themselves for 82 out of 84 traits, further emphasizing the importance of 34 
incorporating the continuum of genetic ancestry in PGS interpretation. Our results highlight the need for 35 
moving away from discrete genetic ancestry clusters towards the continuum of genetic ancestries when 36 
considering PGS and their applications. 37 

Introduction 38 

Polygenic scores (PGS)—estimates of an individual’s genetic predisposition for complex traits/diseases (i.e. 39 
genetic value)—are a promising application of large-scale genome-wide association studies (GWAS) to 40 
personalized genomic medicine1–4, disease risk prediction and prevention5–8.  The portability of PGS across 41 
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different ancestry and socio-demographic groups is limited due to Euro-centric sampling of GWAS data 42 
coupled with differences in linkage disequilibrium (LD), minor allele frequency (MAF) and/or disease 43 
genetic architecture3,9–13, which poses a critical equity barrier that has prevented widespread adoption of 44 
PGS for personalized medicine. For example, PGS are significantly more accurate for individuals of 45 
European ancestries as compared to other genetic ancestries10,14; furthermore, PGS accuracy varies across 46 
socio-genomic features (e.g., sex, age and social economic status)11, thus complicating interpretability of 47 
PGS across groups with different environmental exposures. 48 

PGS accuracy is traditionally assayed using population-level metrics of accuracy (e.g., R2), thus assuming 49 
some level of homogeneity across individuals within the considered population2,11,15. However, 50 
homogeneous populations are an idealized concept that only roughly approximate human populations; 51 
human diversity exists along a genetic ancestry continuum without clearly defined clusters and with various 52 
correlations between genetic and socio-environmental factors15–20. Grouping individuals into genetic 53 
ancestry clusters obscures the impact of individual variation on PGS accuracy. This is evident for 54 
individuals with recently admixed genomes, where genetic ancestries vary individual-to-individual and 55 
locus-to-locus in the genome. For example, a single population-level PGS accuracy estimated across all 56 
African Americans greatly overestimates PGS accuracy for African Americans with large proportions of 57 
African genetic ancestries21; likewise, coronary artery disease PGS performs poorly in Hispanic individuals 58 
with high proportions of African ancestry22. The genetic ancestry continuum impacts PGS accuracy even 59 
in traditionally-labeled “homogeneous/non-admixed” populations; for example, PGS accuracy decays 60 
across a gradient of subcontinental ancestries within Europe as the target cohorts are more genetically 61 
dissimilar from the data used to train the PGS19,23. Assessing PGS accuracy using population-level metrics 62 
is further complicated by technical issues in assigning individuals to discrete clusters of genetic ancestries. 63 
Different algorithms and/or reference panels may assign the same individual to different clusters15,23,24 and 64 
thus to different PGS accuracy classes. Moreover, many individuals are not assigned to a cluster due to 65 
limited reference panels used for genetic ancestry inference23,25, leaving such individuals outside PGS 66 
accuracy characterization; this poses equity concerns as it limits PGS applications only to individuals within 67 
well-defined clusters of genetic ancestries.  68 

Here we leverage methods that characterize PGS performance at the level of a single target individual26 to 69 
evaluate the impact of the genetic ancestry continuum on PGS accuracy. We use simulation and real data 70 
analysis to show that PGS accuracy decays continuously individual-to-individual across the genetic 71 
continuum of ancestry as function of genetic distance (GD) from the PGS training data; GD is defined as a 72 
principal component analysis (PCA) projection of the target individual on the training data used to estimate 73 
the PGS weights. We leverage a large and diverse Los Angeles biobank at UCLA (ATLAS, N= 36,778) 74 
joint with UK Biobank (UKBB, N= 487,409) to investigate the interplay between genetic ancestries and 75 
PGS for 84 complex traits and diseases. The accuracy of PGS models trained in UKBB “white British” 76 
individuals (N= 371,018) is negatively correlated with GD for all considered traits (average Pearson R=-77 
0.95 across 84 traits), demonstrating pervasive individual variation in PGS accuracy. The negative 78 
correlation remained significant even when restricted to traditionally defined “homogenous” clusters of 79 
genetic ancestries (ranging from R=-0.43 for East Asian cluster to R=-0.85 for the African American cluster 80 
in ATLAS). On average across the 84 traits, when rank-ordering individuals according to distance from 81 
training data, PGS accuracy decreased by 14% in the closest vs furthest decile in the European genetic 82 
cluster; notably the furthest decile of European ancestry individuals showed similar accuracy to the closest 83 
decile of Hispanic Latino individuals. Characterizing PGS accuracy across continuum of GD allows for 84 
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inclusion of individuals unassigned to a given genetic ancestry clusters (6% of all ATLAS), thus allowing 85 
for more individuals to be included in PGS applications. Finally, we explore the relationship between GD 86 
and PGS estimates themselves; 82 (out of 84) PGS show significant correlation between GD and PGS with 87 
30 showing opposite correlation (GD, trait) vs (GD, PGS); we exemplify the importance of incorporating 88 
GD in interpretation of PGS using height and neutrophils in the ATLAS data. Overall, our results 89 
demonstrate the need to incorporate the genetic ancestry continuum on PGS performance and/or bias. 90 

Results 91 

Overview of the study 92 

PGS accuracy has traditionally been assessed at the level of discrete genetic ancestry clusters using 93 
population-level metrics of accuracy (e.g., R2). Individuals from diverse genetic backgrounds are routinely 94 
grouped into discrete genetic ancestry clusters using computational inference methods such as PCA27 and/or 95 
admixture analysis28 (Figure 1a). Population-level metrics of PGS accuracy are then estimated for each 96 
genetic ancestry cluster and generalized to each individual in the cluster (Figure 1b). This approach has 97 
three major limitations: (1) the inter-individual variability within each cluster is ignored; (2) the genetic 98 
ancestry cluster boundary is sensitive to algorithms and reference panels used for clustering; and (3) a 99 
significant proportion of individuals may not be assigned to any cluster due to a lack of reference panels 100 
for genetic ancestry inference (e.g., individuals of uncommon or admixed ancestries). 101 

In this work, we evaluate PGS accuracy across the genetic ancestry continuum at level of a single target 102 
individual. We model the phenotype of individual 𝑖 as 𝑦! = 𝑥!"𝛽 + 𝜖!, where 𝑥! is a 𝑀 × 1 genotype vector 103 
indicating allele counts, 𝛽 is a 𝑀 × 1 allelic causal effects vector and 𝜖! is random noise. Under a random 104 
effects model 𝑔𝑣! = 𝑥!"𝛽 and 𝑃𝐺𝑆$0 =𝐸(𝑥!"𝛽|𝐷) are random variables where the randomness comes from 105 
𝛽 and training data 𝐷 (𝐷 = (𝑋%&'!(, 𝑦%&'!())	. We define the individual PGS accuracy as the correlation of 106 
an individual’s genetic value and PGS estimates as:  107 

𝑟!)(𝑔𝑣! , 𝑃𝐺𝑆$0)=
𝑐𝑜𝑣*,+(𝑔𝑣! , 𝑃𝐺𝑆$0)

𝑣𝑎𝑟*(𝑔𝑣!)𝑣𝑎𝑟*,+(𝑃𝐺𝑆$0)
= 1−

𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A

𝑣𝑎𝑟*?𝑥!"𝛽@
		(equation	1) 108 

We use Ldpred2 to estimate 𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A26,29 and approximate 𝑣𝑎𝑟*?𝑥!"𝛽@ as the heritability of the 109 
phenotype (Methods)30; equation 1 can be further simplified assuming all variants are causal drawn from a 110 
normal distribution (infinitesimal model, see Methods). As continuous genetic distance (GD) we use 𝑑! =111 

K∑ ?𝑥!"𝑣-@
)		.

-/0  where 𝑣- is the 𝑗%1 eigenvector of training genotype data (Figure 1c). Individuals that are 112 

clustered into the same genetic ancestry clusters may have different genetic distance from training data and 113 
different individual PGS accuracy (Figure 1d). We use theory and empirical data analyses to show that PGS 114 
accuracy decay is well-approximated by the continuous metric of genetic distance.  115 

We organize the manuscript as follows. First, we show the relation between genetic distance and PGS 116 
accuracy in simulations using real genotype data from UK biobank. Next, we show that existing PGS have 117 
accuracy that decreases individual-to-individual as function of genetic distance in a diverse biobank from 118 
UCLA. Finally we showcase the impact of genetic distance on interpretability of PGS using height and 119 
neutrophil count as example traits. 120 
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Individual PGS performance is calibrated across the genetic ancestry continuum in 121 
simulations 122 

First, we evaluated calibration of 𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A estimated by LDpred2 for individuals at various 123 
genetic distances from the UKBB “white British” individuals used to train PGS by checking the calibration 124 
the of 90% credible intervals (Figure 2a). We simulated 100 phenotypes at heritability ℎ2) = 0.25 and 125 
proportion of causal variants 𝑝3'45'6 = 1% for all individuals in UK Biobank, assuming shared causal 126 
variants and homogenous allelic effect sizes for individuals from various genetic backgrounds (see 127 
Methods). Overall, the 90% credible intervals are approximately well-calibrated, i.e. the credible interval 128 
overlaps with the true genetic value across 90 out of 100 replicates, for all individuals, regardless of their 129 
distance from the training population or genetic ancestry labels (Figure 2a). For example, when individuals 130 
are binned into 10 deciles based on their GD from the training population, the average empirical coverage 131 
of the 90% credible intervals is 89.7% (s.d. 2.6%) for individuals from the lowest decile (composed of 96.9% 132 
individuals labeled as “white British”, 3.1% labeled as “Poland” under discrete view of ancestries) 133 
compared with the average empirical coverage of 82.4 % (s.d. 4.6%) for individuals from the highest decile 134 
(composed of 19.9% individuals labeled as “Caribbean” and 80.1% labeled as “Nigeria”).  135 

Next, we investigated the impact of GD on individual-level PGS accuracy. As expected, the credible 136 
interval width increases linearly with GD reflecting reduced predictive accuracy for the PGS (Figure 2b). 137 
The average width of 90% credible interval is 1.83 in the highest decile of GD, a 1.8-fold increase over the 138 
average width in the lowest decile of GD.  In contrast to the credible interval width, the individual-level 139 
PGS accuracy 𝑟$)U decreases with genetic distance from training data (Figure 2c); the average estimated 140 
accuracy of individuals in the lowest decile GD is 4-fold higher than that of individuals in the highest decile. 141 
Even among the most homogenous grouping of individuals traditionally labeled as white British, we 142 
observe a 5% relative decrease in accuracy for individuals at the highest decile of GD as compared to those 143 
in the lowest decile. Similar results are observed when using population-level PGS metric of accuracy, 144 
albeit at expense of binning individuals according to GD; we find a high degree of concordance between 145 
the average 𝑟$)U  within the bin and the population-level R2 estimated within the bin (Figure 2d, 146 
Supplementary Figure 1a). Similarly, we observe a high consistency between average 𝑟$)Uand squared 147 
correlation between PGS and simulated phenotype, (R = 0.87, P < 2.2e-16, Supplementary Figure 1b). 148 
Taken together, our results show that 90% credible interval remains calibrated for individuals that are 149 
genetically distant from the training population at the expense of a wider credible intervals while 150 
𝑟$)U	captures the PGS accuracy decay across genetic distance. 151 

Individual PGS accuracy varies across the genetic ancestry continuum in all ancestries 152 

After having validated our approach in simulations, we next turn to empirical data. For illustration purposes 153 
we use height as example focusing on ATLAS biobank as target population with PGS trained in the 371,018 154 
“white British” individuals from UKBB (Methods); other traits show similar trends and are presented in 155 
the next sections. PGS accuracy at the individual level varies with GD across the entire biobank as well as 156 
within all genetically inferred ancestry clusters (Figure 3, Supplementary Fig 2). For example, GD strongly 157 
correlates with PGS accuracy of individuals in the genetic ancestry cluster labeled as Hispanic/Latino 158 
American (HL, R = -0.83) and African American (AA, R=-0.88) in ATLAS. Notably, GD correlates with 159 
PGS accuracy even in non-admixed genetic clusters of ancestry with correlations as -0.66, -0.66 and -0.35, 160 
for European Americans (EA), South Asian Americans (SAA) or East Asian Americans (EAA), 161 
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respectively. Similar qualitative results are also observed when applying PGS in a test data from UKBB 162 
with significant negative correlations between GD and individual PGS accuracy in all the sub-continental 163 
genetic clusters in UKBB (Supplementary Figure 2) ranging from R= -0.031 for the “white British” cluster 164 
to R=-0.62 for the Caribbean cluster.  165 

Next, we focused on the impact of GD on PGS accuracy across all ATLAS individuals regardless of genetic 166 
ancestry clustering (R = -0.96, P < 2.2 e-16, Figure 3b). Notably, we find a strong overlap of PGS accuracies 167 
across individuals from different genetical ancestry clusters demonstrating the limitation of using a single 168 
cluster-specific metric of accuracy. For example, when rank-ordering by GD, we find the individuals from 169 
the closest GD decile in HL cluster have similar estimated accuracy as the individuals from the farthest GD 170 
decile in EA cluster (average 𝑟$)U  of 0.71 vs 0.71). This shows that GD enables identification of HL 171 
individuals with similar PGS performance as the EA cluster thus partly alleviating inequities due to lack of 172 
access to accurate PGS. Most notably, GD can be used to evaluate PGS performance for individuals that 173 
cannot be easily clustered by current genetic inference methods (6% of all individuals in ATLAS, Figure 174 
3b) partly due to limitations of reference panels and algorithms for assigning ancestries. Among this 175 
traditionally overlooked group of individuals, we find the GD ranging from 0.02 to 0.64 and their 176 
corresponding estimate PGS accuracy 𝑟$)U ranging from 0.63 to 0.21. In addition to evaluating PGS accuracy 177 
with respect to the genetic value, we also evaluated accuracy with respect to the residual height after 178 
regressing out sex, age, PC1-10 on the ATLAS from the actual measured trait. Using equally spaced bins 179 
across the GD continuum, we find that correlation between PGS and the measured height tracks 180 
significantly with GD (R = -0.9, P-value = 5.9e-8, Figure 3c).  181 

The continuous decay of PGS accuracy across genetic distance is pervasive across all traits 182 

Having established the coupling of GD with PGS accuracy in simulations and for height, we next turn to 183 
the question of whether such relationship is pervasive across complex traits using PGS for a broad set of 184 
84 traits (Supplementary Table 1). We find consistent and pervasive correlations of GD with PGS accuracy 185 
across all considered traits in both ATLAS and UK Biobank (Figure 4).  For example, the correlations 186 
between GD and individual PGS accuracy range from -0.71 to -0.97 with an average of -0.95 across the 84 187 
PGS in ATLAS with similar results in UKBB. Traits with sparser genetic architectures and fewer non-zero 188 
weights in the PGS yield to a lower correlation between GD and PGS accuracy; we hypothesize this is 189 
because GD represents genome-wide genetic variation patterns that may not reflect a limited number of 190 
causal SNPs well. For example, PGS for Lipoprotein A (log_lipoA) has the lowest polygenicity estimate 191 
(0.02%) among the 84 traits and has the lowest correlation in ATLAS (-0.71) and UKBB (-0.85). In contrast, 192 
we observe a high correlation between GD and PGS accuracy (>0.9) for all traits with an estimated 193 
polygenicity > 0.1%. Next, we show that the fine-scale population structures accountable for the individual 194 
PGS accuracy variation is also prevalent within the traditionally defined genetic ancestry group. For 195 
example, in ATLAS we find 501 out of 504 (84 traits across 6 genetic ancestry clusters) trait-ancestry pairs 196 
have a significant association between GD and individual PGS accuracy after Bonferroni correction. In 197 
UKBB, we find 572 out of the 756 (84 traits across 9 subcontinental genetic ancestry clusters) trait-ancestry 198 
pairs have significant association between genetic distance and PGS accuracy after Bonferroni correction. 199 
We also find that a more stringent definition of homogenous genetic clusters results in a lower correlation 200 
magnitude (Supplementary Figure 3).  201 
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Genetic distance correlates with PGS estimates across most traits 202 

We focused so far on investigating the relationship between GD and PGS accuracy. Next, we turn to 203 
evaluating the impact of GD on PGS estimates themselves. We find that GD is significantly correlated with 204 
PGS estimates for 82 out of 84 traits in UKBB ranging from R=-0.52 to R= 0.74 (Supplementary Figure 4); 205 
this broad range of correlations is in stark contrast with the highly consistent negative correlation of GD 206 
and PGS 𝑟!). To gain insights into whether PGS coupling with GD is due to stratification or true signal, we 207 
next contrasted the correlation of GD to PGS estimates (𝑐𝑜𝑟(𝑑! , 𝑃𝐺𝑆U !)) with correlation of GD to the 208 
measured phenotype values (𝑐𝑜𝑟(𝑑! , y7)). We find a wide-range of couplings reflecting trait-specific signals; 209 
30 traits GD correlate in opposite directions with PGS vs. phenotype; 40 trait GD correlates in the same 210 
direction with PGS vs. phenotype but differ in correlation magnitude (Supplementary Figure 4). For 211 
example, GD shows opposite and significantly different correlations PGS vs trait for years of education 212 
(years_of_edu, 𝑐𝑜𝑟(𝑦! , 𝑑!)  = 0.03, 𝑐𝑜𝑟(𝑃𝐺𝑆U ! , 𝑑!) =-0.18). Other traits such as hair color show highly 213 
consistent impact of GD on PGS vs trait (darker_hair, 𝑐𝑜𝑟(𝑦! , 𝑑!)  = 0.59, 𝑐𝑜𝑟(𝑃𝐺𝑆U ! , 𝑑!) = 0.74); while for 214 
monocyte percentage GD shows different magnitudes albeit with the same directions (monocyte_perc, 215 
𝑐𝑜𝑟(𝑦! , 𝑑!)   =-0.03, 𝑐𝑜𝑟(𝑃𝐺𝑆U ! , 𝑑!)  = -0.52). The correlation between GD and phenotype/PGS is also 216 
observed in ATLAS. For example, both height phenotype and PGS for height decrease along GD within in 217 
ATLAS (Figure 5a); this holds true even if restricted to the European American genetic ancestry cluster 218 
(Figure 5b). This is consistent with genetic value driving difference in phenotypes but could also be 219 
explained by residual stratification. For neutrophil counts, phenotype and PGS varies in opposite direction 220 
along GD across the ATLAS (Figure 5c), although the trend is similar for phenotype and PGS in European 221 
American cluster (Figure 5d). This could be explained by genetic value driving signal in Europeans with 222 
stratification for other groups. Neutrophil counts have been reported to vary greatly across ancestry groups 223 
with reduced counts in individuals of African ancestries31. In ATLAS, we observe a negative correlation (-224 
0.04) between GD and neutrophil counts in agreement with the previous reports, while GD is positively 225 
correlated (0.08) with PGS estimates with genetically distant individuals traditionally labeled as African 226 
American having higher PGS than average. The opposite directions in phenotype/PGS-distance correlations 227 
are partly attributed to Duffy-null SNP rs2814778 on chromosome 1q23.2. This variant has a large 228 
association with neutrophil counts among individuals traditionally identified as African ancestry, but it is 229 
rare and excluded in our training data. This exemplifies the potential bias in PGS due to non-shared causal 230 
variants and urges ancestral diversity in genetic studies.  231 

Since PGS can vary across GD either as reflection of true signal (i.e. genetic value varying with ancestry) 232 
or due to biases in PGS estimation ranging from unaccounted residual population stratification to 233 
incomplete data (e.g., partial ancestry-specific tagging of causal effects), our results emphasize the need to 234 
consider GD in PGS interpretation beyond adjusting for PGS 𝑟!). 235 

Discussion 236 

In this work, we showed that continuous genetic ancestry impacts PGS accuracy and its interpretability 237 
across a continuum of genetic ancestries. We proposed individual PGS accuracy as an approach to 238 
individualize PGS performance to each target individual. We use a PCA-based genetic distance23 from the 239 
center of training data to describe an individual’s unique location on the genetic ancestry continuum. In 240 
simulations and real data analyses, we showed that individual PGS accuracy tracks well with genetic 241 
distance. We demonstrate the pervasive continuous decay of PGS performance as the target individual is 242 
further away from the training population. Our demonstration of the continuous PGS accuracy decay 243 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2022. ; https://doi.org/10.1101/2022.09.28.509988doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509988
http://creativecommons.org/licenses/by/4.0/


 
 

 

directly leads to two conclusions: first, PGS accuracy decay already happens within traditionally defined 244 
genetic ancestry groups; second, PGS accuracy can be similar for genetically adjacent individuals that are 245 
separated into distinct genetic ancestry groups (usually with different population PGS accuracy). Individual 246 
PGS accuracy also enables the evaluation of PGS performance for individuals who cannot be clustered into 247 
reference populations, obviating the necessity for genetic ancestry clustering and PGS accuracy evaluation 248 
under a discrete view of genetic ancestry.  249 

Our results have several implications for applying PGS to populations with diverse genetic ancestries. First, 250 
we highlight the variability in PGS performance along the continuum of genetic ancestry, even within 251 
traditionally defined homogenous populations. With the increasing recognition that genetic ancestries are 252 
not discrete but rather continuous15–19,  the individual-level accuracy introduced here provides a powerful 253 
tool to study PGS performance along the genetic ancestry continuum. Given the pervasive variable PGS 254 
accuracy across individuals, incorporating individual-level metrics of PGS performance can improve the 255 
utility of PGS. For example, by using individual-level PGS accuracy, we can identify individuals from 256 
Hispanic/Latino genetic ancestry cluster who have similar PGS accuracy with European individuals thus 257 
partly alleviating inequities due to lack of access to accurate PGS.  258 

Second, our simulation and real data analysis show that the individual PGS accuracy is highly correlated 259 
with genetic distance from training data. The increased genetic distance corresponds to a lower relatedness 260 
of the testing individual with the training population13. This provides a finer resolution compared with 261 
previous theoretical studies that investigate population level PGS portability based on LD/MAF difference, 262 
Fst and mean kinship between training and targeting population12,13. Along with previous studies, our results 263 
emphasize the importance of powerful PGS training in non-European cohorts32 to improve the PGS 264 
performance for individuals from diverse genetic background. To narrow the prediction gap and ameliorate 265 
consequent health disparities between European and non-European ancestries individuals, concerted global 266 
effort and equitable collaborations are needed to increase the sample size of underrepresented 267 
individuals32,33. Equally important is the development of multi-ancestry PGS methods that can effectively 268 
leverage ancestrally diverse populations to train PGS models34. Some examples of such methods recently 269 
developed include PRS-CSx35, vilma36 and CT-SLEB37. 270 

Third, our results highlight the pervasive correlation between PGS estimates and genetic distance from the 271 
training data, which usually displays opposite direction or different magnitude compared with the 272 
correlation between phenotype and genetic distance. This observation provides a finer resolution of the 273 
previously reported mean shift of PGS estimates across genetic ancestry groups9. We note that the 274 
correlation between genetic distance and phenotype can stem from both potential bias in PGS estimates and 275 
true biological difference such as continuous genetic variation. We provide neutrophil counts PGS as an 276 
example of potential bias due to low allele frequency of Duffy-null SNP rs281477831 in the training data, 277 
however we cannot rule out the impact of true biological differences for most traits. More effort is needed 278 
to investigate the PGS bias especially in the context of continuous genetic ancestry.  279 

We note several limitations and future directions of our work. First, individual PGS accuracy is derived 280 
from individual PGS uncertainty with approximations under strong assumptions that the causal variants and 281 
effects are the same across all genetic ancestries. In reality, despite the abundance of shared causal variants38 282 
and the strong transethnic genetic effect sizes correlation39, population-specific causal variants and effects 283 
still exist and limit the transferability of PGS. Future work could investigate the impact of the population-284 
specific components of genetic architecture on the calibration of PGS accuracy. Second, we approximate 285 
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the variance of genetic value with heritability and set the value fixed for all individuals. Further work can 286 
be done to quantify the genetic value variance for individuals at different genetic distance and assess its 287 
impact on accuracy. Third, individual PGS accuracy evaluates how well PGS estimates the genetic value 288 
instead of how accurate the PGS predicts the phenotype. Quantifying the individual accuracy of PGS with 289 
respect to phenotype can be achieved by modeling environments to calibrate over phenotypes. Fourth, there 290 
can be misspecification of model assumptions for the individual-level PGS uncertainty. Future work can be 291 
done to investigate the impact of the genetic architectures on the calibration of PGS uncertainty/accuracy. 292 
Fifth, limited by the sample size, we train PGS on white British individuals in UKBB, and inevitably define 293 
genetic distance relative to European individuals. This work should be replicated while training PGS in 294 
non-European individuals in future works. Alternative definitions of genetic distance such as genetic 295 
relatedness13 and other multi-dimensional descriptions of genetic ancestry continuum16 can also be explored 296 
in the future.  297 

  298 
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Methods 299 

Model. We model the phenotype of an individual with a standard linear model 𝑦! = 𝑥!"𝛽 + 𝜖! where 𝑥! is 300 
an 𝑀 × 1 genotype vector indicating allele counts 𝛽 is an 𝑀 × 1 vector of allelic genetic effects and 𝜖! is 301 
random noise. Under a random effects model, 𝛽 is a vector of random variable sampled from a prior 302 
distribution 𝑝(𝛽) which differs under different genetic architecture assumptions40 and PGS methods29,41–43. 303 
The PGS weights	𝛽W = 𝐸*|+(𝛽) are estimated to be the posterior mean given the observed data 𝐷 (𝐷 =304 
(𝑋%&'!(, 𝑦%&'!()	with access to individual-level genotypes	𝑋%&'!(	and phenotype 𝑦%&'!( or 𝐷 = ?𝛽W89:;, 𝑅Y@ 305 
with access to marginal association statistics 𝛽W89:; and 𝑅Y). An individual	𝑖’s genetic value (𝑔𝑣! = 𝑥!"𝛽 ) 306 
is estimated to be 𝑃𝐺𝑆U ! = 𝐸*|+(𝑥!"𝛽)	, the uncertainty of which is estimated as the posterior variance of 307 
genetic value 𝑣𝑎𝑟(𝑃𝐺𝑆U !) = 𝑣𝑎𝑟*|+(𝑥!"𝛽)26. 308 

Individual PGS accuracy. Under a random effects model both the genetic value and PGS estimate for 309 
individual 𝑖 are random variables. The randomness of 𝑔𝑣! = 𝑥!"𝛽 comes from the randomness in 𝛽 and the 310 
randomness of  𝑃𝐺𝑆$0 = 𝑥!𝛽W  comes from the randomness of both 𝛽	and the training data 𝐷. Individual PGS 311 
accuracy measures the correlation between 𝑔𝑣!  and  𝑃𝐺𝑆$0 , which can be computed with the following 312 
equation: 313 

𝑟!) = 1 −
𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A

𝑣𝑎𝑟*(𝑥!𝛽)
	(equation	1) 314 

where 𝑣𝑎𝑟*|+(𝑥!"𝛽) is the posterior variance of genetic value given the training data and 𝑣𝑎𝑟*(𝑥!"𝛽) is the 315 
genetic variance. The equation is derived as follows: 316 

First, we show that under the random effects model, 𝑐𝑜𝑣*,+?𝑥!"𝛽W, 𝑥!"𝛽@ = 𝑣𝑎𝑟+?𝑥!"𝛽W@  (where  𝛽W =317 
𝐸*|+(𝛽)) following equation 5.149 in ref44: 318 

𝑐𝑜𝑣*,+?𝛽W, 𝛽"@ = 𝐸*,+?𝛽W𝛽"@ − 𝐸*,+?𝛽W@𝐸*,+(𝛽")	319 

= 𝐸+ >𝐸*|+?𝛽W𝛽"@A − 𝐸+,*?𝛽W@𝐸+ >𝐸*|+(𝛽")A	320 

= 𝐸+ >𝐸*|+?𝐸*|+(𝛽)𝛽"@A − 𝐸+ >𝐸*|+(𝛽)A 𝐸+ >𝐸*|+(𝛽")A	321 

= 𝐸+ >𝐸*|+(𝛽)𝐸*|+(𝛽")A − 𝐸+ >𝐸*|+(𝛽)A 𝐸+ >𝐸*|+(𝛽")A	322 

= 𝑣𝑎𝑟+ >𝐸*|+(𝛽)A	323 

= 𝑣𝑎𝑟+(𝛽W) 324 

Multiply 𝑥! on both sides of equation, we obtain: 325 

𝑥!"𝑐𝑜𝑣*,+?𝛽W, 𝛽@𝑥! = 𝑥!"𝑣𝑎𝑟+?𝛽W@𝑥! 	 326 

𝑐𝑜𝑣*,+?𝑥!"𝛽W, 𝑥!"𝛽@ = 𝑣𝑎𝑟+?𝑥!"𝛽W@	(equation	2) 327 

Next, by applying the law of total variance, we show that: 328 
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𝑣𝑎𝑟*,+(𝑔𝑣!) = 𝑣𝑎𝑟*,+?𝑥!"𝛽@ = 𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A + 𝑣𝑎𝑟+ >𝐸*|+?𝑥!"𝛽@A 329 

𝑣𝑎𝑟+?𝑥!"𝛽W@ = 𝑣𝑎𝑟*,+(𝑔𝑣!) −	𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A 	(equation	3) 330 

Third, we derive the correlation between 𝑔𝑣! and  𝑃𝑅𝑆$0  as:  331 

𝑟!) =
𝑐𝑜𝑣*,+(𝑔𝑣! , 𝑔𝑣$[ )

𝑣𝑎𝑟*,+(𝑔𝑣!)𝑣𝑎𝑟*,+(𝑔𝑣$[ )	332 

=
𝑣𝑎𝑟+?𝑥!"𝛽W@

)

𝑣𝑎𝑟+?𝑥!"𝛽@𝑣𝑎𝑟+?𝑥!"𝛽W@
	by	applying	equation	2	333 

=
𝑣𝑎𝑟+?𝑥!"𝛽W@
𝑣𝑎𝑟+?𝑥!"𝛽@

	334 

=
𝑣𝑎𝑟*,+?𝑥!"𝛽@ −	𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A

𝑣𝑎𝑟+?𝑥!"𝛽@
	by	applying	equation	3	335 

= 1 −
	𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A

𝑣𝑎𝑟+?𝑥!"𝛽@
	336 

	337 

= 1 −
𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A

𝑣𝑎𝑟*(𝑥!"𝛽)
 338 

Equation 1 is widely used in animal breeding theory to compute the reliability of estimated breeding value 339 
for each individual30. In this work, we use individual PGS uncertainty 𝑣𝑎𝑟(𝑃𝑅𝑆U !) = 𝑣𝑎𝑟*|+(𝑥!𝛽) as an 340 
unbiased estimator of 𝐸+(𝑣𝑎𝑟*|+(𝑥!"𝛽)). We also use estimated heritability to approximate 𝑣𝑎𝑟*(𝑥!"𝛽) in 341 
simulation where the phenotype has unit variance. In real data analysis, since the phenotypes does not 342 
necessarily have unit variance, we approximate 𝑣𝑎𝑟*(𝑥!"𝛽) by scaling the estimated heritability multiplied 343 
by the residual phenotypic variance in the training population after regressing GWAS covariates including 344 
sex, age and precomputed UKBB PC1-16 (Data-Field 22009). 345 

Analytical form of individual PGS accuracy under infinitesimal assumption. Without loss of generality, 346 
we assume a prior distribution of genetic effects as follows:  347 

𝑝?𝛽`𝜎2)@ = 𝑀𝑉𝑁(0, 𝜎2)𝐼<) 348 

With access to individual genotype data 𝑋%&'!( and phenotypes 𝑦%&'!(, the likelihood of the data is  349 

𝑝(𝑦%&'!(|𝑋%&'!(, 𝛽, 𝜎=)) = 𝑀𝑉𝑁(𝑋%&'!(𝛽, 𝜎=)𝐼>)) 350 

The posterior distribution of genetic effects given the data is proportional to the product of the prior and the 351 
likelihood: 352 

𝑝?𝛽|𝑋%&'!(, 𝑦%&'!(, 𝜎2), 𝜎=)@ ∝ 𝑝?𝛽`𝜎2)@(𝑦%&'!(|𝑋%&'!(, 𝛽, 𝜎=))	353 
∝ 𝑀𝑉𝑁?0, 𝜎2)𝐼<@𝑀𝑉𝑁(𝑋%&'!(𝛽, 𝜎=)𝐼>)	354 
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∝ 𝑀𝑉𝑁(𝜇* , Σ*) 355 

Where 𝜇* = h?!
"

?#"
𝐼< + 𝑋%&'!(" 𝑋%&'!(i

@0
𝑋%&'!(" 𝑦%&'!( and Σ* = 𝜎=) h

?!"

?#"
𝐼< + 𝑋%&'!(" 𝑋%&'!(i

@0
 356 

For a new target individual, the posterior variance of the genetic value is: 357 

𝑣𝑎𝑟?𝑥!𝛽`𝑥! , 𝑋%&'!(, 𝑦%&'!(, 𝜎2), 𝜎=)@ = 𝑥!"Σ*𝑥! = 𝜎=)𝑥!" j
𝜎=)

𝜎2)
𝐼< + 𝑋%&'!(" 𝑋%&'!(k

@0

𝑥! 358 

After performing eigendecomposition on 𝑋%&'!(" 𝑋%&'!( = ∑ 𝜆-𝑣-𝑣-"
.
-/0 , we can rewrite 359 

j
𝜎=)

𝜎2)
𝐼< + 𝑋%&'!(" 𝑋%&'!(k

@0

= m
𝜎=)

𝜎2)
+	n𝜆-𝑣-𝑣-"

.

-/0

o

@0

=nj
𝜎=)

𝜎2)
+ 𝜆-k

@0

𝑣-𝑣-"
.

-/0

 360 

where 𝑣- and 𝜆- corresponds to the 𝑗%1 eigenvalue and unit-length eigenvector of training genotype 𝑋%&'!( 361 

Thus, we can rewrite the posterior variance of genetic value as  362 

𝑣𝑎𝑟?𝑥!𝛽`𝑥! , 𝑋%&'!(, 𝑦%&'!(, 𝜎2), 𝜎=)@ = 	𝜎=)nj
𝜎=)

𝜎2)
+ 𝜆-k

@0

𝑥!"𝑣-𝑣-"𝑥!

.

-/0

 363 

Replacing 𝐸+ >𝑣𝑎𝑟*|+?𝑥!"𝛽@A in equation 1 with analytical form of 𝑣𝑎𝑟?𝑥!𝛽`𝑥! , 𝑋%&'!(, 𝑦%&'!(, 𝜎2), 𝜎=)@, we 364 
get  365 

𝑟!) = 1 −
𝑣𝑎𝑟?𝑥!"𝛽`𝑥! , 𝑋%&'!(, 𝑦%&'!(, 𝜎2), 𝜎=))

𝑣𝑎𝑟?𝑥!"𝛽@
= 1 −

𝜎=) ∑ j𝜎=
)

𝜎2)
+ 𝜆-k

@0

𝑥!"𝑣-𝑣-"𝑥!
.
-/0

𝜎2)𝑥!"𝑥!
 366 

 367 

As the eigenvalue of 𝑋%&'!(" 𝑋%&'!( increases linearly with training sample size N45. At the UKBB level 368 
sample size (e.g. N = 371,018for our UKBB white British training data), the eigenvalue for the top PCs are 369 

usually larger than the ratio of environmental noise variance and genetic variance ?!
"

?#"
. Thus, we can further 370 

approximate the analytical form with: 371 

𝑟!) = 1 −
𝜎=)∑

1
𝜆-
𝑥!"𝑣-𝑣-"𝑥!

.
-/0

𝜎2)𝑥!"𝑥!
= 1 −

𝜎=)

𝜎2)
	
∑ 1

𝜆-
𝑥!"𝑣-𝑣-"𝑥!

.
-/0

𝑥!"𝑥!
 372 

The term ∑ 0
A$
𝑥!"𝑣-𝑣-"𝑥!

.
-/0  is the Mahalanobis distance of the testing individual 𝑖 from the center of the 373 

training genotype data on its PC space and  𝑥!"𝑥! is the sum of squared allelic counts across all variants. 374 
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Empirically, the ratio between the two is highly correlated with the Euclidean distance of the individual 375 
from the training data on that PC space (R= 1, P-value < 2.2e-16 in UKBB).  376 

Genetic Distance. The genetic distance is defined as the Euclidean distance between a target individual 377 
and the center of training data on the PC space of training data. 378 

𝑑! = pn ?𝑥!"𝑣-@
).

-/0
 379 

where 𝑑!	 is the genetic distance of a testing individual 𝑖 from the training data, 𝑥! is an M x1 genotype 380 
vector for testing individual 𝑖, 𝑣-	 is the 𝑗%1 eigenvector for the genotype matrix of training individuals and 381 
𝐽 is set to 20. 382 

Ancestry ascertainment in UKBB. The UKBB individuals are clustered into nine sub-continental ancestry 383 
clusters White British, Poland, Iran, Italy, Ashkenazi, India, China, Caribbean and Nigeria based on the top 384 
16 precomputed PCs (Data-Field 22009) as described in ref23. The center of each ancestry group on PC 385 
space is obtained from ref23. Each individual is assigned to one of the nine ancestral groups based on their 386 
Euclidean distance to the centers on the PC space. The genetic ancestry of an individual is labeled as 387 
unknown if its distance to any genetic ancestry center is larger than one eighth of maximum distance 388 
between any pairs of cub-continental ancestry clusters. We are able to cluster 91% of the UKBB participants 389 
into 411,018 British white, 4127 Polish, 1169 Iran, 6499 Italy, 2352 Ashkenazi, 1798 China, 2472 390 
Caribbean and 3894 Nigeria.  391 

Ancestry ascertainment in ATLAS. The ATLAS individuals are clustered into five genetic ancestry 392 
clusters - European Americans (EA), Hispanic and Latino Americans (HL), South Asian Americans (SAA) 393 
and East Asian Americans (ESA) and African Americans (AA) as described in ref25 based on their 394 
proximity with 1000 Genome super populations on the PC space. First, we filter the ATLAS typed 395 
genotypes with plink2 by Mendel error rate (‘plink --me 1 1 –set-me-missing’), founders (‘--filter-396 
founders’), minor allele frequency (‘–maf 0.15’), genotype missing call rate (‘--geno 0.05’), and Hardy-397 
Weinberg equilibrium test p-value (‘–hwe 0.001’). Next, ATLAS genotypes were merged with the 1000 398 
Genomes phase 3 dataset. Then, LD pruning was performed on the merged dataset (‘--indep 200 5 1.15 --399 
indep-pairwise 100 5 0.1’). The top10 PCs were computed with the flashpca246 software with all default 400 
parameters. Next, we use the super population label and PCs of the 1000 Genome individuals to train the 401 
K-nearest neighbors (KNN) model to assign genetic ancestry labels to each ATLAS individual. For each 402 
ancestry cluster, we run KNN on the pair of PCs that capture the most variation for each genetic ancestry 403 
group: European, East Asian, and African ancestry groups utilize PCs 1 and 2, the Admixed American 404 
group use PCs 2 and 3, and the South Asian group use PCs 4 and 5. In each analysis, we use 10-fold cross-405 
validation to select the ‘k’ hyper-parameter from k=5, 10, 15, 20. If an individual is assigned to multiple 406 
ancestries with probability larger than 0.5 or is not assigned to any clusters, it’s labeled as unknown. We 407 
relabel the five 1000 genome super population as EA for EUR, HL for AMR, SAA for SAS, AA for AFR 408 
and ESA for EAS. We can cluster 95% of the ATLAS participants into 22,380 EA, 6973 HL, 625 SAA, 409 
3331 EAA, 1995 AA and 2332 individuals are labeled as unknown.  410 

Genotype data. In simulations, we use 1,054,151 UKBB HapMap3 SNPs for simulating phenotypes, 411 
training PGS models and calculating PGS for testing individuals in UKBB. For real data analysis, we use 412 
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an intersection of UKBB HapMap 3 SNPs and ATLAS imputed SNPs for the training of PGS in UKBB 413 
and calculating PGS for remaining UKBB individuals and ATLAS individuals. We start from 1,054,151 414 
UKBB HapMap3 SNPs and 8,048,268 ATLAS imputed SNPs. Since UKBB is on genome build hg37 and 415 
ATLAS is on hg38, we first lift all ATLAS SNPs from hg38 to hg37 with snp_modifyBuild function in 416 
bigsnpr R package. Next, we match UKBB SNPs and ATLAS SNPs by chromosome and position with 417 
snp_match function in bigsnpr. Then, we recode ATLAS SNPs using UKBB reference alleles with plink2 418 
--recode flag.  In the end, 979,457 SNPs remain for training the LDpred2 models in real data analysis.  419 

Simulated phenotypes. We use simulations on all UKBB individuals to investigate the impact of genetic 420 
distance from training data on the various metrics of PGS. We fix the proportion of causal SNPs 𝑝3'45'6 =421 
0.01	and heritability as ℎ2) = 0.25. The simulated genetic effects and phenotype are generated as follows: 422 
First, we randomly sample  423 

𝛽C ∼ s𝑁 j0,
ℎ2)

𝑣𝑎𝑟(𝑥C)𝑀𝑝3'45'6
k cD = 1	, with	probability	𝑝3'45'6

0 cD = 0,with	probability	1 − pEFGHFI
 424 

where 𝑣𝑎𝑟(𝑥C) is the variance of allele counts for SNP 𝑚 among all UKBB individuals. Second, we 425 
compute the genetic value for each individual as 𝑔𝑣! 	= 	∑ 𝑥!C𝛽C<

C/0  and randomly sample environmental 426 
noise 𝜖!~𝑁(0,1 − ℎ2)). Third, generate phenotype as 𝑦! = 𝑔𝑣! + 𝜖!. We repeat the process 100 times to 427 
generate 100 sets of genetic values and phenotypes.  428 

Genetic distance from PGS training data. To compute the genetic distance of testing individuals from 429 
the training population, we perform PCA on the 371,018 UKBB white British training individuals and 430 
project the 48,586 UKBB testing individuals and 36,778 ATLAS training individuals on the PC space. We 431 
start from the 979,457 SNPs that are overlapped in UKBB and ATLAS. First, we perform LD pruning with 432 
plink2 (--indep-pairwise 1000 50 0.05) and exclude the long-range LD regions. Next, we perform PCA 433 
analysis with flashpca246 on the 371,018 UKBB white British training individuals to obtain the top 20 PCs. 434 
Then, we project the remaining 48,586 UKBB individuals that are not included in the training data and 435 
36,778 ATLAS individuals onto the PC space of training data by using SNP loadings (--outload loadings.txt) 436 
and their means and standard deviations (--outmeansd meansd.txt) output from flashpca2. In the end, we 437 
compute the genetic distance for each individual as the norm of its projection on the PC space.  438 

LDpred2 PGS model training. The PGS models were trained on 371,018 UKBB individuals labeled as 439 
white British with the LDpred229 method for both simulation and real data analysis. For simulation analysis, 440 
we use 1,054,151 UKBB HapMap3 variants. For real data analysis, we use 979,457 SNPs that are 441 
overlapped in UKBB HapMap3 variants and ATLAS imputed genotypes.  442 

First, we obtain GWAS summary statistics by performing GWAS on the training individuals with plink2 443 
using sex, age and precomputed PC-1-16 as covariates. Second, we calculate the in-sample LD matrix with 444 
the function snp_cor from R package bigsnpr47.  Next, we use the GWAS summary statistics and LD matrix 445 
as input for snp_ldpred2_auto function in bigsnpr to sample from the posterior distribution of genetic effect 446 
sizes. Instead of using a held-out validation dataset to select hyperparameters p (proportion of causal 447 
variants) and h2 (heritability), snp_ldpred2_auto estimates the two parameters from data with MCMC 448 
directly. We run 10 chains with different initial sparsity p from 10-4 to 1 equally spaced in log space. For 449 
all chains, we set the initial heritability as the LD score regression heritability48 estimated by the built-in 450 
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function snp_ldsc. We perform quality control of the 10 chains by filtering out trains with estimated 451 
heritability that are smaller than 0.7 times of the median heritability of the 10 chains or with estimated 452 
sparsity that are smaller than 0.5 times of the median sparsity or 2 times of the median sparsity. For each 453 
chain that passes filtering, we remove the first 100 MCMC iterations as burn-in and thin the next 500 454 
iterations by selecting every 5th iteration to reduce autocorrelation between MCMC samples. In the end, 455 
we obtain a M x B matrix [𝛽z(0), 𝛽z()), . . . , 𝛽z(L)], where each column of the matrix 𝛽z(M)  is a sample of 456 
posterior causal effects of the M SNPs. Due to the quality control of MCMC chains, the total number of 457 
posterior samples 𝐵 ranges from 500 to 1000.  458 

Calculate PGS and accuracy. We use the score function in plink2 to compute the PGS for 48,586 and 459 
36,778 testing individuals in UKBB and ATLAS, respectively. For each 𝛽z(M), we compute the PGS for 460 
each individual i as 𝑥!"𝛽z(M)with plink2 (--score). For each individual with genotype 𝑥! , we compute 461 
𝑥!"𝛽z(0), 𝑥!"𝛽z()), . . . , 𝑥!"𝛽z(L) to approximate its posterior distribution of genetic value. The genotype 𝑥!" is 462 
centered to the average allele count (--read-freq) in training data to reduce the uncertainty from the 463 
unmodeled intercept. We estimate the PGS with the posterior mean of the genetic value as 𝑃𝐺𝑆U ! 	=464 
	𝐸*|+(𝑥!"𝛽) 	= 	

0
L
∑ 𝑥!"𝛽z(M)L
M/0 . We estimate the individual level PGS uncertainty as 𝑣𝑎𝑟(𝑃𝐺𝑆U !) =465 

𝑣𝑎𝑟*|+(𝑥!"𝛽) 	=
0
L
∑ (𝑥!"𝛽z(M) − 𝑃𝐺𝑆U !))L
M/0 		. The individual level PGS accuracy is calculated as 𝑟$)U = 1 −466 

N'&(O8;%P)
1#"

 for simulation ( ℎ2) is the heritability estimated by the LDpred2 model) and as 𝑟$)U = 1 −467 

N'&(O8;%P)
1#"N'&(Q&'()*@QR&'()*)

 for real data analysis, where 𝑣𝑎𝑟(𝑦%&'!( − 𝑦|%&'!()	refers to the variance of residual 468 

phenotype in training data after regressing out GWAS covariates).  469 

Calibration of credible interval in simulation. We run the LDpred2 model on 371,018 white British 470 
training individuals for the 100 simulation replicates. In each simulation 𝑟 , for individual with genotype 471 
𝑥! , we compute 𝑥!"𝛽z&

(0), 𝑥!"𝛽z&
()), … , 𝑥!"𝛽z&

(L)  to approximate its posterior distribution of genetic value, 472 
generate 90% credible interval 𝐶𝐼 − 𝐺𝑉!& with 5% and 95% quantile of the distribution and check if its 473 
genetic value is contained in the credible interval 𝐼(𝑔𝑣!& ∈ 𝐶𝐼 − 𝐺𝑉!&). We compute the empirical coverage 474 
for each individual as the mean across the 100 simulation replicates 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒! =

0
0SS

∑ 𝐼(𝑔𝑣!& ∈ 𝐶𝐼 −0SS
&/0475 

𝐺𝑉!&).		 476 
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Figures 498 

499 
Figure 1. Population-level vs individual-level PGS accuracy. (a) Discrete labeling of genetic ancestry 500 
with PCA-based clustering. Each dot represents an individual. The circles represent arbitrary boundaries 501 
imposed on the genetic ancestry continuum to divide individuals into different genetic ancestry clusters. 502 
The color represents the assigned genetic ancestry cluster label. The gray dots are individuals who are left 503 
unclassified. (b) Population-level PGS accuracy varies across clusters. The box plot represents the PGS 504 
accuracy (e.g., R2) measured at population level. The question mark emphasizes that the PGS accuracy for 505 
unclassified individuals is unknown due to the lack of a reference group. Gray dashed lines emphasize the 506 
categorical nature of genetic ancestry clustering. (c) Continuous labeling of each individual’s unique 507 
position on genetic ancestry continuum with a PCA-based genetic distance. The genetic distance is defined 508 
as the Euclidean distance of an individual’s genotype from the center of the training data when projected 509 
on the PC space of training genotype data. Each individual has its own unique genetic distance 𝑑! and 510 
individual PGS accuracy 𝑟!) . (d) Individual-level PGS accuracy decays along the genetic ancestry 511 
continuum. Each dot represents an individual and its color represents the genetic ancestry label assigned in 512 
panel a. Individuals labeled with the same ancestry spread out on the genetic ancestry continuum and there 513 
are no clear boundaries between genetic ancestry groups.  514 

 515 
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518 
Figure 2. PGS performance is calibrated across genetic distance in simulations using UKBB data. 519 
(a) 90% credible intervals are well calibrated for testing individuals at all genetic distances. The red 520 
dotted line represents the expected coverage of 90% credible interval. Each dot represents a randomly 521 
selected UKBB testing individual. For each dot, the x-axis is its genetic distance from training data, the y-522 
axis is the empirical coverage of 90% credible interval calculated as the proportion of simulation 523 
replicates where the 90% credible intervals contain the individual’s true genetic value, and the error bars 524 
represent mean ±1.96 standard error of the mean (s.e.m) of the empirical coverage calculated from 100 525 
simulations. (b) The width of 90% credible interval increases with genetic distance. For each dot, the y-526 
axis is the width of 90% credible interval across 100 simulation replicates, and the error bars represent 527 
±1.96 s.e.m. (c) Individual PGS accuracy decreases with genetic distance. For each dot, the y-axis is the 528 
average individual level PGS accuracy across 100 simulation replicates, and the error bars represent ±1.96 529 
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s.e.m. (d) Population-level metrics of PGS accuracy recapitulates the decay in PGS accuracy across 530 
genetic continuum. All UKBB testing individuals are divided into 100 equal-interval bins based on their 531 
genetic distance. The x-axis is the average genetic distance for the bin and the y-axis is the squared 532 
correlation between genetic value and PGS estimates for the individuals within the bin. The dot and error 533 
bars represent the mean and ±1.96 s.e.m from 100 simulations.  534 

 535 
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538 
Figure 3. The individual-level accuracy for height PGS decreases across the genetic ancestry 539 
continuum in ATLAS. (a) Individual PGS accuracy decreases within both homogenous and admixed 540 
genetic ancestry clusters. Each dot represents a testing individual from ATLAS. For each dot, the x-axis 541 
represents its distance from the training population on the genetic continuum; the y-axis represents its PGS 542 
accuracy. The color represents the inferred genetic ancestry cluster. R and p refer to the correlation between 543 
genetic distance and individual-level PGS accuracy and its significance from two-sided t-tests.  (b) 544 
Individual PGS accuracy decreases across the entire ATLAS. (c) Population-level PGS accuracy decreases 545 
with the average genetic distance in each genetic distance bin. All ATLAS individuals are divided into 20 546 
equal-interval genetic distance bins. The x-axis is the average genetic distance within the bin, the y-axis is 547 
the squared correlation between PGS and phenotype for individuals in the bin; The dot and error bar show 548 
mean and 95% confidence interval from 1000 bootstrap samples. (EA, European American; HL, 549 
Hispanic/Latino American; SAA, South Asian American; EAA, East Asian American; AA, African 550 
American.)  551 
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 552 

 553 

Figure 4. The correlation between individual PGS accuracy and genetic distance is pervasive across 554 
84 traits across ATLAS and UKBB. (a) The distribution of correlation between PGS accuracy and genetic 555 
distance for 84 traits in ATLAS. (b) The distribution of correlation between PGS accuracy and genetic 556 
distance for 84 traits in UKBB. Each boxplot contains 84 points corresponding to the correlation between 557 
PGS accuracy and genetic distance within the group specified by x-axis for each of the 84 traits. The box 558 
shows the first, second and third quartile of the 84 correlations, and whiskers extend to the minimum and 559 
maximum estimates located within 1.5 × IQR from the first and third quartiles, respectively. Numerical 560 
results are reported in Supplementary Table 2 and 3.  561 

 562 
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 564 
Figure 5. Measured phenotype, PGS estimates, and accuracy varies across the ATLAS and within 565 
European American genetic ancestry clusters. (a) Variation of height phenotype, PGS estimates and 566 
accuracy across different genetic distance bins in ATLAS. The 36,778 ATALS individuals are divided into 567 
20 equal-interval genetic distance bins. The x-axis is the average genetic distance within the bin, the y-axis 568 
is the average phenotype (top), PGS (middle) and individual PGS accuracy (bottom). The error bars 569 
represent +/- 1.96 standard error of the mean. Bins with fewer than 50 individuals are not shown due to 570 
large standard error of the mean. (b) Variation of height phenotype, PGS estimates and accuracy across 571 
different genetic distance bins within European American (EA) genetic ancestry clusters in ATLAS. The  572 
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22,380 EA individuals are divided into 20 equal-interval genetic distance bins. The x-axis is the average 573 
genetic distance within the bin, the y-axis is the average phenotype (top), PGS (middle) and individual PGS 574 
accuracy (bottom). The error bars represent +/- 1.96 standard error of the mean. Bins with fewer than 50 575 
individuals are not shown due to large standard error of the mean. (c) Variation of log neutrophil counts, 576 
PGS estimates and accuracy across different genetic distance bins across ATLAS. (d) Variation of log 577 
neutrophil counts, PGS estimates and accuracy across different genetic distance bins within European 578 
American (EA) genetic ancestry clusters in ATLAS. 579 
  580 
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   581 

Supplementary Figures 582 

 583 

Supplementary Figure 1. The individual level accuracy is highly correlated with population level 584 
accuracy. All UKBB testing individuals are divided into 100 bins based on their genetic distance. The x-585 
axis is the average individual-level PGS accuracy for the individuals within the bin and the y-axis is (a) 586 
the squared correlation between simulated genetic value and PGS estimates for the individuals within the 587 
bin (b) the squared correlation between simulated phenotype and PGS estimates. The dot and error bars 588 
represent the mean and ± 1.96 s.e.m from 100 simulations.  589 
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 591 

Supplementary Figure 2. The individual-level accuracy for height PGS decreases across the genetic 592 
ancestry continuum in UKBB. (a) Individual PGS accuracy decreases within subcontinental admixed 593 
genetic ancestry clusters. Each dot represents a testing individual from UKBB. For each dot, the x-axis 594 
represents its distance from the training population on the genetic continuum; the y-axis represents its PGS 595 
accuracy. The color represents the inferred genetic ancestry cluster. R and p refer to the correlation between 596 
genetic distance and individual-level PGS accuracy and its significance from two-sided t-tests.  (b) 597 
Individual PGS accuracy decreases across the entire UKBB. (c) The population PGS accuracy decreases 598 
with the average genetic distance in each genetic distance bin. All UKBB individuals are divided into 20 599 
equal-interval genetic distance bins. The x-axis is the average genetic distance within the bin; the y-axis is 600 
the squared correlation between PGS and phenotype for individuals in the bin. The dot and error bar show 601 
mean and 95% confidence interval from 1000 bootstrap samples. 602 
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 604 

Supplementary Figure 3. Lower heterogeneity within the genetic ancestry group corresponds to a 605 
lower correlation between genetic distance and individual PGS accuracy (a) The distribution of 606 
correlations between PGS accuracy and genetic distance for 84 traits in ATLAS. (b)The distribution of 607 
correlations between PGS accuracy and genetic distance for 84 traits in UKBB.  The x-axis is the 608 
homogeneity of the genetic ancestry clusters measured as standard deviation of genetic distance within a 609 
genetic ancestry cluster; a larger 𝑠𝑑(𝑑!) indicates a larger variation of genetic background. Each boxplot 610 
contains 84 points corresponding to the correlation between PGS accuracy and genetic distance within the 611 
group specified by x-axis for each of the 84 traits. The box shows the first, second and third quartile of the 612 
84 correlations, and whiskers extend to the minimum and maximum estimates located within 1.5 × IQR 613 
from the first and third quartiles, respectively.  614 

 615 
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 616 

Supplementary Figure 4. Discordant directions of phenotype/PGS-distance correlations in UKBB. 617 
The x axis is the correlation between phenotype and genetic distance and the y axis is the correlation 618 
between PGS estimates and genetic distance for all 48,586 testing individuals in UKBB. Numerical results 619 
are reported in Supplementary Table 4. 620 

 621 
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Supplementary Table 1. The training sample size, proportion of causal variants and heritability of 623 
the 84 traits.  624 
 625 
Supplementary Table 2. The correlation between individual PGS accuracy and genetic distance 626 
from training data across ATLAS and within each genetic ancestry clusters  627 
 628 
Supplementary Table 3. The correlation between individual PGS accuracy and genetic distance 629 
from training data across UKBB and within each genetic ancestry clusters 630 
 631 
Supplementary Table 4. The correlation between measured phenotype/PGS and genetic distance 632 
from training data across UKBB  633 
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