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Abstract
Advancements in hardware technology and analysis methods allow more and more mobility
in electroencephalography (EEG) experiments. Mobile Brain/Body Imaging (MoBI) studies
may record various types of data such as motion or eye tracking in addition to neural activity.
Although there are options available to analyze EEG data in a standardized way, they do not
fully cover complex multimodal data from mobile experiments. We thus propose the
BeMoBIL Pipeline, an easy-to-use pipeline in MATLAB that supports the time-synchronized
handling of multimodal data. It is based on EEGLAB and fieldtrip and consists of automated
functions for EEG preprocessing and subsequent source separation. It also provides
functions for motion data processing and extraction of event markers from different data
modalities, including the extraction of eye-movement and gait-related events from EEG
using independent component analysis. The pipeline introduces a new robust method for
region-of-interest-based group-level clustering of independent EEG components. Finally, the
BeMoBIL Pipeline provides analytical visualizations at various processing steps, keeping the
analysis transparent and allowing for quality checks of the resulting outcomes. All
parameters and steps are documented within the data structure and can be fully replicated
using the same scripts. This pipeline makes the processing and analysis of (mobile) EEG
and body data more reliable and independent of the prior experience of the individual
researchers, thus facilitating the use of EEG in general and MoBI in particular. It is an
open-source project available for download at https://github.com/BeMoBIL/bemobil-pipeline
which allows for community-driven adaptations in the future.
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Introduction
Electroencephalography (EEG) has rapidly evolved into a popular brain imaging method in
various areas outside of traditional medical or psychological research. Recent developments
in amplifier technology and improvements in data-driven analyses enable mobile EEG and
Mobile Brain/Body Imaging studies (MoBI; Gramann et al., 2011, 2014), accelerating this
progress. These methods do not only allow for participant movement (mobile EEG) but
specifically address the interplay of active behavior and neural dynamics (MoBI) to better
understand the neural foundation of embodied cognition (Jungnickel et al., 2019; Makeig et
al., 2009). The electrical activity of the brain underlying cognitive processes is now
investigated outside traditional laboratories in diverse scientific fields such as human factors
(e.g. Protzak & Gramann, 2018), architecture (e.g. Djebbara et al., 2019), sports science
(e.g. Büchel et al., 2021), clinical neuroscience (e.g. Short et al., 2020) and many more. As a
result, researchers from various fields with manifold scientific and technical backgrounds
handle data from multimodal brain-behavior assessments. This has led to a multitude of
analytic approaches and analysis pipelines. In order to draw synergy from these exciting
developments, we have identified the need for a standard pipeline that offers researchers
the opportunity to focus on the actual research questions instead of overcoming
methodological obstacles over and over again. To this end, we propose an easy-to-use and
adaptive multimodal data processing pipeline, the BeMoBIL Pipeline, that enables
documented, traceable, and objective data processing.

Despite some efforts to develop best practice guidelines (Chaumon et al., 2015) and to
establish standard processing pipelines, especially for stationary recordings (Bigdely-Shamlo
et al., 2015; da Cruz et al., 2018; Gabard-Durnam et al., 2018; Pedroni et al., 2019; Pernet
et al., 2021; Rodrigues et al., 2021), a common basis in EEG data processing is still lacking
(Robbins et al., 2020). In particular, pipelines targeting methodological obstacles such as
data synchronization and subsequent processing of diverse data modalities (e.g. eye
tracking data, motion capture) with different sampling rates are currently unavailable. In
addition, more ecologically valid mobile EEG and MoBI protocols often come with increased
noise levels in the recordings due to mechanical artifacts as well as biological activity
stemming from the movement itself (Gramann et al., 2011, 2021; Richer et al., 2020).
Handling increased noise levels in the recorded signal also requires new analysis
approaches that often utilize information about the ongoing movement and thus rely on
accurately synchronized multimodal recordings and specific analyses (Jungnickel &
Gramann, 2016). While one toolbox for multimodal data analyses exists (MoBILAB; Ojeda et
al., 2014), it is not supported anymore and lacks central analysis functions that are important
for in-depth EEG processing and synchronized multimodal event extraction. Such
data-driven event extraction, however, can be of central importance for highly realistic
recordings. For example, eye blinks might be used for blink-based event-related analysis of
EEG data when no external visual stimulation is available in natural outdoor experiments
(Wascher et al., 2014; Wunderlich & Gramann, 2021).

This multitude of complex data types and the lack of common processing standards can lead
to subjective, unjustified, or laboratory-specific parameter choices (e.g. filter design, artifact
handling). As a consequence, peer-review processes can become complicated or, in the
worst case, these factors can result in serious reproducibility issues (Cohen, 2017;
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Kappenman & Keil, 2017; Larson & Moser, 2017; Open Science Collaboration, 2015). We
believe that standards in multimodal neuroscientific computing are the inevitable prerequisite
for researchers to converge on basic principles in the field, further our understanding of
human brain function, and foster more efficient research. The goal of the present paper is
thus to introduce a replicable, open-access, standardized, and transparent analysis
approach to EEG data in general and to multimodal mobile EEG/MoBI data analyses
specifically. Our pipeline is intended to serve as an analysis basis that can be adopted and
continuously developed by the scientific community.

Figure 1: The BeMoBIL Pipeline workflow. Data is imported into BIDS format and then converted
into synchronized EEGLAB files. EEG data is preprocessed, cleaned, and analyzed using ICA.
Motion data is cleaned and prepared for analysis. Event markers can be extracted from different
data modalities and repeated clustering can be used for robust source-level analysis. The individual
steps are explained in detail in the respective sections.

The BeMoBIL Pipeline runs on MATLAB as we incorporated standard data processing
routines from EEGLAB (Delorme et al., 2011; Delorme & Makeig, 2004) and Fieldtrip
(Oostenveld et al., 2011), two of the currently leading EEG data processing toolboxes. Our
pipeline can be used for the exclusive analyses of EEG data as well as for multimodal data
processing including different data streams such as motion capture, eye tracking or force
plate data. We provide raw data import and synchronization functions for the standard Brain
Imaging Data Structure format (BIDS; Gorgolewski et al., 2016) that allows for easy data
sharing. EEG data processing is available in the form of basic preprocessing routines (e.g.
re-referencing, line noise removal, channel interpolation) as well as advanced artifact
handling and source separation scripts (e.g. independent component analysis, ICA, or
early-fusion approaches) and subsequent group-level source analysis methods. Motion data
processing is integrated, including data preprocessing and the creation of derivatives. As a
special feature for MoBI analyses, event extraction from motion data (e.g. heel strikes), eye
tracking (e.g. blinks), electrocardiography (ECG, heartbeats), and EEG (using independent
components representing eyes movements, heartbeats, or gait) are available. Various
parameters can be adjusted for each processing step while the pipeline comes with informed
recommendations for all steps. We encourage independent plausibility checks through
automated data visualization at several processing milestones. All routines and parameter
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selections are clearly described and documented in a wiki on the GitHub repository
(https://github.com/BeMoBIL/bemobil-pipeline). The source code is freely available and
extensions and improvements from the community are welcome. Figure 1 depicts the
general structure of the pipeline. In the following sections, each pipeline element is
described in detail.

Time-synchronized data collection and import
Handling simultaneously recorded multimodal data requires special considerations from the
stage of data collection and import. A harmonized, time-synchronized representation of EEG
and motion data is a prerequisite for joint analysis of the two modalities. Addressing time
synchrony is especially non-trivial in MoBI studies because a dataset often consists of
multiple modalities of different sampling rates and different levels of time precision. For
instance, although EEG recording systems typically yield highly regular inter-sample
intervals, motion data may have irregular temporal distances between samples and may
even completely miss latency information for each sample. One solution to record such
multimodal data and preserve all available information is Lab Streaming Layer (LSL,
available at https://github.com/sccn/labstreaminglayer). LSL is an open-source data
streaming protocol that allows the flexible definition and recording of data streams from
various sources such as different EEG amplifiers, different motion capture hardware, eye
gaze recordings, experiment event markers, and more. Using the LSL recorder, the
multimodal dataset can be stored in the extensible data format (XDF), containing all selected
data streams with definitions, samples, and timestamps for each sample.

Standardizing MoBI data
Although the XDF format is commonly used in the context of MoBI studies, it does not easily
allow sharing the recorded data in a standardized way, as the recordings can contain
self-defined data types with non-standard metadata and the XDF format is not based on
common consensus. Additionally, the XDF files may not contain metadata about the
experiment such as participant information that can be relevant for analysis. A key solution
to easier data sharing is the BIDS standard. Initially covering standards for sharing fMRI
datasets (Gorgolewski et al., 2016), the BIDS community has continued its effort to include
more types of data in the framework by means of modality-specific extensions. The
BeMoBIL Pipeline is designed to operate on datasets that adhere to the standards provided
by the EEG-BIDS (Pernet et al., 2019) and MOTION-BIDS (in progress, see
https://bids.neuroimaging.io/get_involved.html) extensions. Using BIDS data standards
lowers the risk of data rot and makes data sharing easier by adhering to the FAIR principles
for data management (Wilkinson et al. 2016), addressing the findability, interoperability, and
reusability aspects. This in consequence can contribute to mitigating low reproducibility of
scientific findings (Cohen, 2017; Kappenman & Keil, 2017; Open Science Collaboration,
2015).

To this end, the pipeline provides two features: One is the function bemobil_xdf2bids to
convert data contained in XDF files into BIDS formatted data, and the other is the function
bemobil_bids2set for converting BIDS data into EEGLAB-compatible data structures. The
created BIDS dataset retains all necessary timing-relevant information from all streams,
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especially all timestamps of the samples, while applying only minimal change to the data
itself, for example converting motion data orientation values that are represented in
quaternion values into Euler angles, or replacing samples with a defined value for missing
samples (e.g. zeros or -999) with not-a-number (NaN) values. The function supports the
flexible use of parameters to load XDF files and allows the addition of metadata such as
information about the participants, the EEG recording, the motion tracking system, its
manufacturer, or the spatial axes layout to be stored together with the dataset.

When importing this BIDS dataset into EEGLAB using bemobil_bids2set, the function aligns
the EEG and other data streams by first resampling the EEG data to a given target sampling
frequency and then resampling other data to match the latency of EEG samples (see figure
2). As it can be assumed that the EEG data is recorded with high precision and equidistant
samples, it is resampled to the desired sampling rate using the EEGLAB function
pop_resample, which uses the filter-based resample MATLAB function internally.
Resampling the other data types to the same rate is done by default using the pchip
interpolation option of the fieldtrip function ft_resampledata, including an anti-aliasing filter if
the data is downsampled. This is chosen as it is not always guaranteed that the nominal
sampling rate of the other data types is accurate (e.g. when recording motion from virtual
reality environments, the sampling rate is dependent on the performance of the rendering
and the refresh rate of the display), and the samples are not always evenly distributed. Even
in cases of equidistant sampling from reliable measurement devices, the level of precision
using filter-based resampling may not be high enough for very long data sets containing
millions of samples, leading to a shift between EEG and other data of several hundreds of
milliseconds towards the end of the recording. In contrast, using interpolation of other data
streams to align with the EEG samples preserves the relative temporal structure between
the different modalities within the precision of one sample at all times and is thus favored in
our use case. As motion data usually varies mainly in much lower frequencies than EEG,
imprecisions introduced during the interpolation should not be problematic for downstream
analysis. However, the requirements unique to additional modalities other than EEG and
motion (such as eye tracking) may be at a disadvantage with this approach due to possible
distortion of the signal, especially in the high-frequency range. In these cases, the exact
sampling rate can optionally be entered and used for filter-based resampling instead of the
interpolation approach.

For every recording then, a plot is created that shows the first and last event and one
channel of all modalities, both directly imported from the XDF file as well as after the
EEGLAB import and data alignment process. These plots can be used to verify the integrity
of the temporal structure of the multiple data streams. As a final step of the import, all data
modalities are made the exact same length as the EEG data, even in cases where there was
no recording of a given modality in some sessions. To this end, all missing samples are filled
with not-a-number (NaN) values. This, in combination with the previous resampling step,
leads to fully synchronized data structures in EEGLAB with the exact same amount of
samples and identical event markers in all modalities. Such synchronized data allows for
analyzing event-related activity or the creation of event markers from one modality that can
be copied to others, such as extracting gait event markers from motion (see section
Extracting gait parameters from motion data). A generic template and a specific example
script to use this complete import processing are available in the repository.
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Figure 2: Example impression of the import synchronization. When importing BIDS data using
bemobil_bids2set, EEG data is resampled using a filter-based method, while other data such as
motion is interpolated to the same timestamps, leading to a fully synchronized dataset in EEGLAB.
In this 200 ms example data, the EEG data was originally sampled at 500 Hz and the motion data
at 90 Hz, and both are resampled/interpolated to 250 Hz. Plots of the raw and synchronized data
that show the first channel of all modalities are created around the first and last event in each data
file, allowing the inspection of the synchronization. This exemplary visualization is taken from
subject 6 in the NeSitA example data that is available with the BeMoBIL Pipeline. For details, see
section Data import and time synchronization.

Data cleaning and processing
The BeMoBIL Pipeline contains a variety of scripts and wrappers for cleaning and
processing EEG, motion, and eye tracking data, all configured by one central file containing
all relevant parameters and explanations thereof. EEG parameter default values are
optimized for data from mobile experiments, however, they can also be easily adjusted for
data from stationary experiments. Processing steps are documented within the data
structures themselves, as well as by visualizing the outcome of every important step. As for
the import, template files for the processing exist for all modalities and the configuration file.
The pipeline wrapper scripts read the raw imported data and create several intermediate
folders for preprocessing, other processing, and the final resulting data files. These folders
and filenames can be adjusted in the configuration file. If the processing is stopped and
restarted, it will by default load already created files instead of computing them again. This
can be overridden if necessary. As it was shown that the data precision level has important
effects on the processing (Bigdely-Shamlo et al., 2015), we ensure that double precision is
used from the start and throughout the processing by selecting the appropriate EEGLAB
option at several points within the pipeline.

EEG data processing
The BeMoBIL Pipeline allows for fully automatic processing of EEG data from raw files to the
final clean datasets including ICA information. This raw data can be obtained either via our
own import (see above) or from any other importer. As a very first step in EEG processing, it
is recommended, but not mandatory, to remove the segments before and after the
experiment, as well as breaks during the experiment. This can be done automatically based
on experiment event markers, or manually if no such event markers are included in the data
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structure. This step is important because these segments can contain very strong artifacts,
e.g. excessive movement from stretching, or electrical or mechanical artifacts from touching
cables, the cap, or putting off and on equipment such as a virtual reality head-mounted
display. These artifacts can affect subsequent analysis steps negatively (such as channel
rejection or ICA) and should thus be discarded. If removal based on event markers is
impossible or manual removal is preferred for other reasons, it should be done once, and the
removed indices should be stored for every participant. These indices can be obtained using
the eegh command after removal, and can subsequently be applied automatically again.
This is important on the one hand for reproducible processing, and, on the other hand, to be
able to maintain synchronized datasets from different modalities. If segments are removed in
the EEG data in this step, these segments must also be removed in motion and other
physiological data for their respective processing. With only relevant experiment segments
remaining in the EEG data, it is first preprocessed and then subjected to an ICA.

EEG preprocessing
Preprocessing of EEG data in the BeMoBIL Pipeline is done using the
bemobil_process_all_preprocessing function. This is a wrapper that incorporates all
necessary processing steps from the raw loaded EEG set (all blocks merged together and
non-experiment parts removed) up to the preprocessed dataset which has line noise
removed, channels interpolated, and the data re-referenced to the average. It stores
intermediate files on disk in the location provided in the configuration file parameter
bemobil_config.EEG_preprocessing_data_folder and plots several analytics plots which are
saved alongside their respective files. Exemplary visualizations of the preprocessing can be
seen in figure 3.

As a first step, some basic preparations are performed on the data using the
bemobil_process_EEG_basics function. First, the EEG structure is filled with ur-data,
specifically for event markers and channel locations. This is to ensure that in subsequent
processing, the original event structure can always be recovered. Then, unused electrodes
are removed. This can be set in the config file using the
bemobil_config.channels_to_remove entry. This is to ensure that channels without channel
location or channels in the montage that do not record data have no impact on downstream
analysis. If the data is not already at the correct sampling rate, it is then resampled to the
frequency declared in bemobil_config.resample_freq.

Frequency-specific noise is removed with Zapline-plus (Klug & Kloosterman, 2022).
Zapline-plus is an EEGLAB plugin that removes spectral artifact peaks automatically. It
includes a detector for artifactual peaks, chunks data to account for non-stationarity of the
noise, runs Zapline (de Cheveigné, 2020) with the automatically detected number of
components to remove, and creates a comprehensive analytics plot. Zapline removes noise
by splitting the data into an originally clean (data A) and a noisy part (data B) by filtering the
data once with a notch filter (A) and once with the inverse of said notch filter (B). It then uses
a spatial filter to remove noise components in the noisy part (B) to get a cleaned version of
that part (B’). Finally, the two clean parts (A and B’) are added back together to result in a
cleaned dataset with full rank and full spectrum except for the noise. Zapline is preferred
over a notch filter because it preserves the spectrum, and it is preferred over a simple spatial
filter because it preserves the full data rank. It was also shown to have more powerful
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cleaning capabilities than the cleanLine plugin of EEGLAB (Miyakoshi et al., 2021). If
bemobil_config.zaplineConfig.noisefreqs is declared empty, the function will use the
complete automatic adaptation. This is the default and recommended. However, parameters
can be adjusted if the cleaning does not work as intended. See (Klug & Kloosterman, 2022)
for details about the processing and parameter tweaking. This step can be avoided by
setting the whole bemobil_config.zaplineConfig field to empty.

Figure 3: Exemplary impressions of the visualizations of the EEG preprocessing. During
preprocessing of EEG data, several plots are created to allow an inspection of the workflow. (a) The
raw data is plotted directly after import in six 10-second periods equally spaced throughout the
entire data. This example shows the third such period in subject 76 of the visual discrimination
datasets that are available with the BeMoBIL Pipeline. Only the first channels are shown in this plot
for visualization purposes. Note that the scale of each channel is different and depends on the
overall activity, and can thus not be interpreted. (b) Diagnostic plots of Zapline-plus (top) and the
repeated bad channel detection (bottom) are available. This example shows a simplified version of
plots from the same dataset as in (a). (c) In a plot similar to (a), the data that is cleaned with
Zapline-plus is visualized with detected bad channels denoted in red color. (d) Lastly, the
completely preprocessed data with interpolated bad channels is visualized again in a plot similar to
(a). For details of the preprocessing, see section EEG preprocessing.

After this first step of data cleaning, channel locations are added. Here, channel names can
be changed in case they were named incorrectly or contain an unnecessary prefix using the
bemobil_config.rename_channels setting. This is to ensure that the lookup tables for
channel locations can operate correctly, even if the channel names were incorrect. At this
point, a reference channel can also be added with zero entries when declared in
bemobil_config.ref_channel. This allows feeding back the data of the reference channel
when the data is re-referenced to the average in a later step, similarly to the Full Rank
Average Reference EEGLAB plugin. This is done before importing channel locations so the
reference channel can also be located. Then, if channel locations were not already loaded
during the import, they can be imported at this stage using the
bemobil_config.channel_locations_filename entry. In this step, we either look up locations in
the standard 10-20 system (when no filename is provided) or use a file provided by an
electrode location digitizer. In the latter case, if a reference channel was declared before, the
file must contain the location of the reference with the name specified above. Lastly, the
channel types are declared to be either EEG (default), EOG (can be provided in
bemobil_config.eog_channels and will be ignored in both bad channel detection and
re-referencing, see below), or REF (if a reference channel was entered above). These steps
form the foundational preparations for downstream cleaning and analysis, and data files will
be saved with the name provided in bemobil_config.basic_prepared_filename.
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As the next step, bad channels will be detected and interpolated in a repeated process using
the clean raw data plugin of EEGLAB, which uses the algorithm proposed in the PREP
pipeline (Bigdely-Shamlo et al., 2015). We do not use all options in this function and our
processing slightly differs from the PREP pipeline, which is why we make use of the general
concepts only. One key issue in this process is the order of the re-referencing and
interpolation, in which the average reference should not contain strong artifacts anymore, but
re-referencing is necessary for the detection of bad channels. The detection of bad channels
also recommends a high-pass filter of 0.5Hz cutoff frequency, which is not part of our
preprocessing in order to preserve as much data information as possible, and since spectral
filters should be adapted exactly to the needs of the final analysis (Widmann et al., 2015).
For these reasons, we decided to split the detection of bad channels from their interpolation.

Using the bemobil_detect_bad_channels function, the data is first re-referenced to the
average, excluding EOG channels as defined previously. This is to have an approximation of
the final data but includes the impact of bad channels. This average reference will not be
used later on, but only to detect the bad channels. Here, we either make use of the
previously added reference channel or, as a fallback, the Full Rank Average Reference
EEGLAB plugin, to preserve the full rank of the data and thus as much information as
possible. This is automatically detected in the bemobil_avref function.

Subsequently, we repeatedly run the clean_artifacts function of the clean raw data EEGLAB
plugin, with the number of repetitions specified by the bemobil_config.chan_detect_num_iter
parameter. This is necessary because clean_artifacts uses a random sample consensus
(RANSAC) approach that does not necessarily converge to the same results when repeated.
The function stores the sampling in a micro cache that will be accessed when restarting the
function without restarting MATLAB or clearing the micro cache beforehand, resembling a
stable result. But when using the function with a cleared micro cache, the detected channels
might differ. To ensure a reproducible bad channel detection, we thus clear the micro cache
and repeat the detection several times, with a recommended minimum of 10 iterations. Only
channels that were flagged as ‘bad’ more than a given proportion of the processed data
(specified in bemobil_config.chan_detected_fraction_threshold) are then detected for final
removal. We exclude all EOG channels from the detected bad channels because their
statistical properties will often lead to false positive detection.

Within the clean_artifacts function, the data is split into windows of five seconds, and robust
interpolations of each channel are computed based on the RANSAC sampling of
surrounding channels. We do not make use of the time-domain sample removal or the
Artifact Subspace Reconstruction (ASR) options, as we are only interested in detecting bad
channels at this point. In our detection, five parameters can be adjusted:

● bemobil_config.chancorr_crit is the main parameter. This is a correlation threshold. If
a channel is correlated less than this value to its own robust estimate based on the
surrounding channels, it is considered abnormal in the given time window.
Recommended are correlation values of 0.75 (rather lax) to 0.85 (rather strict).

● bemobil_config.chan_max_broken_time sets the maximum proportion of time
windows a given channel may be flagged as bad before it is detected as bad in the
final output per iteration. Recommended are values from 0.2 (20% of the time, strict)
to 0.5 (50% of the time, lax).
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● bemobil_config.flatline_crit uses a criterion for detecting channels that are flat. This is
recommended to be set to 'off' since i) flat channels will not correlate with their
interpolation, and ii) sometimes, especially in MoBI, data may be lost without
necessitating the removal of the complete channel.

● bemobil_config.line_noise_crit rejects channels that have increased noise. However,
line noise was removed by Zapline-plus in a previous step and it is recommended to
be kept 'off', too.

● bemobil_config.num_chan_rej_max_target determines the fraction of channels that
can be maximally removed (e.g. 1/5). This is to ensure that even in the case of very
noisy data or incorrect bad channel detection, the processing does not remove too
many channels to reconstruct them.

Subsequently, the detected bad channels are interpolated in the dataset that is not yet
re-referenced or filtered using spherical spline interpolation in EEGLAB in the
bemobil_interp_avref function. When this is done, the rank of the data matrix is reduced by
the number of interpolated channels and this information is stored within the data structure.
As a final step, the data is re-referenced to the average of all scalp channels (excluding EOG
channels; Delorme et al., 2012), maintaining the full rank, as within the bad channel
detection: Either the reference channel was declared previously, which means it was added
with zero-entries. In this case, it will now be filled and available for analysis. Or no reference
was declared, in this case, we follow the approach of the Full Rank Average Reference
EEGLAB plugin: a new dummy channel with zeros is added, the data is re-referenced, then
the dummy channel is deleted again. In both options, the data rank remains intact. The final
preprocessed dataset is then saved with the filename provided in
bemobil_config.preprocessed_filename.

Independent component analysis

EEG measures not only brain signals, but always a mix of cortical, ocular, and muscular
physiological sources, at times even cardiac activity in addition. Traditionally, any non-brain
aspects of the data are considered artifacts and removed from the data, often in the
time-domain. However, in MoBI data, physiological sources can carry important information
and contribute to the interpretation of the data. Separating these sources and reconstructing
their estimated activity throughout the experiment is thus an essential processing step,
especially in mobile experiments where movement of the eyes and body is unrestricted. This
can be done using blind source separation with ICA, which has become a staple in EEG
analysis after having been introduced around three decades ago (Bell & Sejnowski, 1995;
Hyvärinen & Oja, 1997). Different algorithms for ICA exist, but the Adaptive Mixture
Independent Component Analysis (AMICA; Palmer et al., 2011) was shown to perform best
in different comparisons, which is why we use it in this pipeline (Delorme et al., 2012;
Leutheuser et al., 2013; Zakeri et al., 2014). The function bemobil_process_all_AMICA
incorporates necessary steps from the preprocessed EEG dataset to the final dataset
containing ICA information. The function stores the intermediate files of AMICA processing
and accompanying plots in the folder specified in bemobil_config.spatial_filters_folder and its
subfolder bemobil_config.spatial_filters_folder_AMICA. Exemplary visualizations of AMICA
and subsequent processing can be seen in figure 4.
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Figure 4: Exemplary impressions of the visualizations of the independent component
analysis (ICA). During the computation of the ICA decomposition and subsequent source analysis,
several plots are created to allow an inspection of the workflow. (a) The final preprocessed data is
shown again here for visualization purposes (see Figure 3d). (b) An inspection plot of the automatic
sample rejection of the AMICA algorithm is created (see section Independent component analysis),
where rejected samples are denoted in red. (c) Exemplary visualization of the ICLabel classification
of resultant independent components (ICs), see section Original data reconstruction and
independent component classification. (d) Equivalent dipole models of the ICs that are classified as
being of brain origin (subject 76 of the visual discrimination datasets that are available with the
BeMoBIL Pipeline), see section Equivalent dipole model reconstruction. (e) Finally, the data is
cleaned by removing unwanted ICs such as those stemming from non-brain sources, see section
Original data reconstruction and independent component classification. The cleaned data is
visualized in a plot similar to (a).

A vital step before computing ICA is to perform high-pass filtering with a suitable cutoff
frequency. In earlier work, we showed that higher high-pass filters than commonly applied (>
0.5Hz cutoff) are often beneficial with diminishing returns, and that a higher cutoff frequency
is recommended for data from mobile experiments and for higher channel density (Klug &
Gramann, 2021). In addition, the improved decomposition also affects the signal-to-noise
ratio of event-related potentials (ERPs) when cleaned with ICA, even when the ICA
information was copied on an unfiltered dataset to make sure the effect was not due to the
filter itself but only due to the improved ICA decomposition. Taken together, we found a filter
of 1.25Hz cutoff to be a good overall option for data from both stationary and mobile
experiments. However, for data containing strong movement, it might be suitable to use
cutoff frequencies of 2Hz or even higher. It is important to note that the EEGLAB filter
specifications do not use the cutoff frequency (the frequency where the filter starts taking
noticeable effect, defined as -6db reduction in power) but instead, the user specifies the
passband-edge (where the filter starts taking any effect). The transition bandwidth (two times
the difference between passband edge and cutoff frequency) and resulting cutoff frequency
are computed based on different heuristics depending on the frequency. It is recommended
to specify the filter manually to ensure it leads to reproducible and comparable results
(Widmann et al., 2015). We thus specify the filter order in the pipeline, and recommend
using the same we used in our work comparing the high-pass filters
(bemobil_config.filter_AMICA_highPassOrder parameter): The order of 1650 leads to a
transition bandwidth of 0.5Hz, so to obtain a true cutoff frequency of 1.25Hz, a setting of
1.5Hz is required for the bemobil_config.filter_lowCutoffFreqAMICA parameter. A
zero-phase Hamming window FIR filter is used. As with the high-pass filter for channel
cleaning, this filter will only be applied to compute the AMICA and will not have any effect on
the final dataset other than an improved decomposition. The final AMICA information will be
copied to the unfiltered dataset.
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Subsequently, the data is processed with AMICA. No time-domain cleaning is performed
before doing so because AMICA includes a powerful cleaning option: At the beginning of the
processing, samples with a log-likelihood estimation that is x standard deviations below the
average (specified by bemobil_config.AMICA_reject_sigma_threshold, recommended 3
(Klug et al., 2022)) are removed repeatedly (as specified by bemobil_config.AMICA_n_rej,
recommended 5 to 10 times (Klug et al., 2022)). This means that samples with suboptimal
model fit are being rejected, as measured objectively by the algorithm itself. In our tests, this
method yielded better or the same decomposition results than using our own time-domain
cleaning option (see section Time-domain cleaning based on epoch rejection and
supplementary material), which is why it is recommended and used in this pipeline. If
desired, this feature can be disabled by setting the bemobil_config.AMICA_autoreject flag to
0. Note that these samples are not removed from the data itself, AMICA only disregards
them internally when computing the spatial filters. A plot of the rejection is created and the
rejection information is stored in the EEG data structure, thus being available for
investigation or use in other circumstances. As it was shown, if stricter cleaning is being
used (higher bemobil_config.AMICA_n_rej and/or lower
bemobil_config.AMICA_reject_sigma_threshold), more samples will be discarded by AMICA
(Klug et al., 2022). This can have a positive effect on the decomposition, which is important if
subsequent source analysis is performed. However, in this case, the rejected samples will
not contribute to the computation of the decomposition, which in turn means that the
decomposition is not fit for these samples, and artifactual contributions might intersperse into
brain components. Hence, it may be that even though the decomposition appears to be
improved, the signal-to-noise ratio of the final measures (such as ERPs) is decreased or not
changed in comparison to using more lax criteria when cleaning the data (Klug et al., 2022).
We thus recommend using this time-domain cleaning conservatively: as much as necessary
for the desired analysis, but as little as possible.

Equivalent dipole model reconstruction
To obtain estimates of the source location for the resultant independent components (ICs),
the fitting of equivalent dipole models is done using the DIPFIT toolbox of EEGLAB with
standard settings of a 3-layer boundary element model (an exemplary visualization can be
seen in figure 4d). If a non-standard electrode layout with individual electrode locations is
used, these locations need to be warped to the standard locations to enable the correct fit of
dipoles. For this, a subset of electrodes where the corresponding closest standard electrode
is known can be entered in bemobil_config.warping_channel_names. The final dipole model
has an accuracy of 1-2cm for brain ICs (Acar & Makeig, 2010) and includes information
about the component topography variance that is not explained by the physiological model
(residual variance, RV). The RV value can serve as an estimate of the physiological
plausibility of the component and its respective dipole, and inform decision-making about the
removal of components at a later stage (Delorme et al., 2012). Note that as we are
interested in the location of not only brain but also eye and muscle source locations, it would
be desirable to use a head model that does not restrict the sources to brain tissue only. This
could be done using HArtMuT, a new head volume conduction model that extends to the
neck and includes brain sources as well as sources representing eyes and muscles that can
be modeled as single dipoles, symmetrical dipoles, and tripoles (Harmening et al., 2022).

13

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.09.29.510051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510051
http://creativecommons.org/licenses/by/4.0/


This model is currently under development and will be included in the pipeline as soon as it
is available.

Original data reconstruction and independent component classification
The ICA processing thus far was performed on high-pass filtered data. Since final EEG
measures may require the data to be filtered with a lower filter cutoff (e.g. ERPs), the
computed AMICA information including rejections and dipole fitting is copied back to the
initial preprocessed, but unfiltered, dataset (Hyvärinen et al., 2001; Klug & Gramann, 2021).
In order to provide a directly usable dataset, a final zero-phase Hamming window FIR filter
can be applied using the bemobil_config.final_filter_lower_edge (high-pass filter,
recommended 0.2 Hz) and bemobil_config.final_filter_higher_edge (low-pass, recommended
empty, i.e. not used). This filter will be applied to all sets in the
bemobil_config.single_subject_analysis_folder. Using the recommended 0.2 Hz high-pass
filter will remove slow drifts in the data, but leave all relevant information intact, even for ERP
analysis. Information about the filter is stored in the EEG data structure and can easily be
reported. The filter order can optionally be specified, otherwise, EEGLAB default filters are
being used. If both a lower and higher edge for the filter are entered, the filters are being
applied successively without the use of a band-pass filter, as suggested by (Widmann et al.,
2015). This dataset will then be stored in the folder specified by
bemobil_config.single_subject_analysis_folder with the name specified by
bemobil_config.preprocessed_and_ICA_filename.

As a last step in the EEG processing, the data is cleaned with the ICLabel classifier
(Pion-Tonachini et al., 2019) as specified in bemobil_config.iclabel_classifier. ICLabel
classifies ICs into brain, eye, muscle, and heart sources as well as channel and line noise
artifacts and a category of other, unclear, sources, based on a large database of expert
labelings (an exemplary visualization can be seen in figure 4). Our experience with MoBI
datasets is that the 'lite' classifier detects muscle components more reliably than the 'default'
classifier (Klug & Gramann, 2021). If it is only important to detect brain ICs, the 'default'
classifier is likely to be the better choice. Only classes that are specified in
bemobil_config.iclabel_classes are kept in the data, all others are removed. The majority
vote is used by default, meaning each component is assigned the class with the highest
probability. It is possible to also set a different threshold using the
bemobil_config.iclabel_threshold parameter. In that case, the summed probability of the
classes specified in bemobil_config.iclabel_classes must be higher than this threshold to
keep the component. The cleaned dataset is saved with the name specified in
bemobil_config.single_subject_cleaned_ICA_filename alongside a plot of the kept IC
topographies and dipoles. Note that this is a critical step in the cleaning process. We found
that ICLabel often performs sufficiently well to justify using it, since it makes the ICA cleaning
objective and reproducible, but there might be cases where it fails, especially in datasets
containing many muscle sources. A reason for this is that the original datasets used to train
the ICLabel classifier were taken mostly from stationary experiments, thus muscle
components or components related to mechanical artifacts stemming from movement are
underrepresented in the classifier. It is very important that the resulting plots are inspected
and checked for misclassifications. Guidelines for this process can be found in (Chaumon et
al., 2015), and especially for MoBI data, a training tool for ICA labeling can be found at
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https://www.icmobi.org. On this website, experienced researchers can also label
components in order to train a new classifier dedicated to MoBI data.

Motion data processing
As for EEG, the BeMoBIL Pipeline provides a fully automatic processing pipeline for motion
data from the raw data to cleaned and filtered data including derivatives. If motion data is to
be analyzed in sync with EEG data with non-experimental segments removed, the same
segments need to be removed in the motion data, too, to maintain the synchronization and
enable easy transfer of event markers or other features between the two modalities. Data of
rigid body movement can be processed using the bemobil_process_all_motion function. This
function takes a full set of motion data, containing one or more rigid body tracked points with
six degrees of freedom (3D position and orientation values, orientation can be given in
quaternion units or Euler angles), and creates a cleaned motion dataset with orientation in
Euler angles, containing derivative channels for velocity and acceleration in addition. The
function performs the following actions:

1. Split the complete motion data into individual sets for each tracked rigid body, where
each of the rigid bodies undergoes processing steps 2.-8.

2. Clean the motion data, which includes removing excessively large jumps in the data
as well as interpolation of samples with lost tracking (NaN samples). This process
also extrapolates data to parts of the experiments containing no motion information
(NaN entries inserted during import, see section Data import and time
synchronization) by entering the nearest available value.

3. Unwrapping Euler angles to eliminate jumps between -pi and pi in radian values. This
is necessary for low-pass filtering, as otherwise, the jumps will create ringing
artifacts.

4. Low-pass filter the data with the filter frequency given in
bemobil_config.lowpass_motion.

5. Wrap the angles to pi again.
6. Compute the first derivative (velocity), ignoring the jumps from -pi to pi.
7. As time derivatives effectively amplify the high frequencies, it is recommended to use

another low-pass filter after each derivative, as can be set in
bemobil_config.lowpass_motion_after_derivative.

8. Compute the second time-derivative (acceleration) and add another low-pass filter as
in 7.

9. Merge all single rigid bodies into one complete motion dataset again.
10. The final processed motion set is then stored on disk in the folder specified in

bemobil_config.motion_analysis_folder.

Event marker extraction
Experiments typically contain event markers to denote events within the experiment. This
may be for example the beginning or end points of the experiment or experiment blocks, the
presentation of stimuli, or responses of participants such as a button press. For stationary
experiments in classical settings (seated participant, presentation of a stimulus on a
computer monitor, no head movement), these event markers are sufficient for the
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investigation of most experimental questions. However, mobile EEG or MoBI studies
inherently contain movement that may be explicitly part of the relevant measures. Here,
extracting event markers post-hoc from the collected data can play an important role, as it
can reveal information about cognitive and motor processes, or other physiological states.
Hence, the pipeline provides a set of functions that allow easy and fast creation of event
markers from the most prominent MoBI data types: Motion (general motion as well as gait
events), eye gaze (blink events), and heartbeats. If the multimodal data was loaded via the
pipeline import pathways, they will be completely synchronized, allowing extracting event
markers in one data stream and copying them into another for analysis of event-related
activity. Additionally, it is possible to generate event markers from the EEG data alone, even
in the absence of other data streams.

Motion event detection
Motion events can be an integral analysis aspect of MoBI experiments. For example, they
can be used to detect reaction time and movement duration (Gehrke et al., 2022; Jungnickel
& Gramann, 2016), they can serve as anchors for time-warping in spectral analysis
(Gramann et al., 2021), they can help remove oscillatory gait artifacts (Gwin et al., 2010), or
they can help to shed light on the neural basis of oscillatory gait generation (Wagner et al.,
2016). To enable this functionality, the pipeline contains two functions: A basic movement
onset and offset detector that requires only a single tracked element of any kind, and the
advanced detection of relevant gait event markers.

Basic motion event detection
The bemobil_detect_motion_startstops algorithm detects motion starts and stops based on a
coarse and a fine threshold of one or more given channels. The square root of the sum of
squares of these channels is taken as the detection data, resulting in the absolute value (if a
single channel was entered), or the absolute movement in more than one dimension (if more
than one channel was entered). An overall movement is detected first based on a coarse
threshold of a given quantile of the data (0.65 by default), then a fine threshold is applied
based on a buffer (plus and minus two seconds by default) around the detected initial coarse
movement onset. This fine threshold is the minimum within the buffer plus a proportion of the
range of the data within the buffer (0.05 by default). From the detected coarse movement
onset going back in time, the last sample exceeding the fine threshold is taken as the final
movement start, and from this point going forward in time, the last sample exceeding the fine
threshold is taken as the movement stop. In effect, the coarse movement quantile threshold
can be regarded as related to the amount of time one expects the tracked object to be in
motion overall, while the fine movement threshold describes the expected data variability
during the rest phase before the movement onset. The detector assumes no trend in the
data and thus works on data where the endpoint of a movement is the same as the start
point in the relevant channels. This can be for example the yaw orientation of the head to
detect rotation movements (Gramann et al., 2021), the position of the hand in a reaching
task (Gehrke et al., 2022), or the up/down movement of a foot tracker to detect steps (see
next section). The detected event markers and used parameters are stored in the data
structure so they can be copied between synchronized datasets of different modalities.
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Extracting gait parameters from motion data
Although computing final measures of specific movements is not in the scope of the
BeMoBIL Pipeline, we would like to point out a few standard parameters that are commonly
investigated in a number of mobile EEG and MoBI experiments. The aim of including this
description is to enable researchers that are familiar with EEG, but not motion analysis, to
obtain results comparable to biomechanics research. A large number of previous mobile
EEG and MoBI studies investigated human brain dynamics in walking participants
demonstrating the importance of gait in the research field. Here, one branch investigates the
cortical dynamics accompanying gait control (e.g. Castermans et al., 2014; Gwin et al.,
2010; Seeber et al., 2015; Wagner et al., 2012). A second branch of studies rather uses gait
to investigate human brain dynamics in ecologically valid scenarios (e.g. De Sanctis et al.,
2020; Jacobsen et al., 2021; Malcolm et al., 2015; Nenna et al., 2021; Protzak et al., 2021;
Protzak & Gramann, 2021; Reiser et al., 2019, 2021). Here, the focus is less on gait itself but
rather on the extraction of gait parameters in different walking scenarios to clean the signal
from gait-related artifacts or to investigate the impact of walking difficulty on brain dynamics,
respectively. Both approaches, however, require reliable extraction of gait parameters to
inform the EEG analyses. To facilitate the extraction of reliable parameters and to provide
guidelines for future mobile brain imaging studies, the definitions of a number of
biomechanical gait parameters are given here.

As the main categorization, gait parameters could be divided into parameters of pace
(including gait velocity or walking speed and referring step length), rhythm (including
cadence, stride, and swing time), phase (including double support time), base of support
(including step width) as well as variability (including the coefficients of variation for all
parameters; Hollman et al., 2011). From a biomechanical point of view, an active heel-to-toe
movement with associated ankle movement is necessary to maintain balance during the
forward motion of walking. At the same time, with each step, the body's center of gravity
shifts beyond the support surface, so that the pelvis must be stabilized in the period from
heel strike to double stance phase (Perry & Burnfield, 2010). Therefore, the movement of the
feet, as well as the pelvis and hip rotation, give insights into stable gait patterns.
Nevertheless, gait is a whole-body movement, and therefore trunk rotation, head
movements, and arm swing and their referring kinematics are oftentimes relevant aspects to
consider, e.g. to detect pathological gait patterns.

To describe the susceptibility to disturbances of gait and its accompanying brain dynamics, a
set of parameters has been established quantifying changes in various gait parameters.
These include i) reduced stride length, defined as the distance that one part of the foot
travels in front of the same part of the other foot during each step, we recommend using the
distance from heel-strike to heel-strike (Hollman et al., 2011; Scott et al., 2015), ii) reduced
walking speed (Verghese et al., 2009), iii) prolonged stance phases, e.g. expressed by the
double support time (the time when both feet are in contact with the ground simultaneously),
defined as the sum of the time elapsed during two periods of double support in the gait cycle
(Hollman et al., 2011; Maki, 1997; Scott et al., 2015; Verghese et al., 2009), and iv)
increased stride length variability, defined as the coefficient of variation (%CV), calculated as
the average standard deviation of the gait parameter divided by the average mean (Hollman
et al., 2011; Verghese et al., 2009).
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An essential requirement for measuring and calculating spatiotemporal gait parameters (i.e
step length and cadence) is the accurate spatiotemporal identification of heel-strike and
toe-off events (Rudisch et al., 2021). We provide options to extract these event markers, but
no additional gait parameters, as these can be derived from the data and event markers but
may require knowledge about the measurement device or experimental paradigm that is
impossible to anticipate in a generalized pipeline. Due to underlying differences in
measurement devices and principles, it has to be ensured that the gait cycles can be
accurately detected by using a standardized description of the axes in the Euclidean space.
In biomechanical analyses, the gait parameters are commonly defined such that the x-axis
describes the anterior-posterior direction, the y-axis describes the medial-lateral direction,
and the z-axis refers to the vertical direction (distal and proximal, up and down). With these
axes known, gait event markers can be extracted in a standardized way using the
bemobil_gait_analysis function.

The BeMoBIL Pipeline extracts gait cycles defined as a sequence of events: 1) movement
start (flat foot phase end), 2) toe-off, 3) heel-strike, and 4) movement stop (next flat foot
phase start). For an ideal toe-off and heel-strike event detection, the heels and toes would
require their own tracker. However, these events can be reasonably approximated by
assuming that i) during the flat-foot phase the foot is moving backward in relation to the
body, ii) as soon as the toe-off event occurs, the foot starts moving forward, and iii) as soon
as a heel-strike event occurs, the foot stands still again, and is moving backward in relation
to the body. Detecting these four events thus is possible with only one tracker on top of the
feet and happens in two steps: First, foot movements, in general, are detected using the
bemobil_detect_motion_startstops function on the z-Axis of the tracking (up-down
movement). These mark the flat-foot end and the flat-foot start events, respectively. In a
second step, toe-off and heel-strike events are then defined using the velocity in the x-Axis
(forward-backward). This requires the foot movement measurement to be in relation to the
body, i.e. not a continuous forward movement but a forward-and-back cycle. If the motion
was measured on a treadmill, this is already the case (as the feet slide back under the
body). In overground walking, a motion tracking of the torso or head of the participant is
required in addition. If such tracking is provided, the values in the x- and y-axes are
subtracted from those of the feet, such that the feet exhibit a forward-and-back cycle again,
relative to the provided tracking. With this cyclic movement in the x- and y-direction, one
additional issue has to be overcome: The tracking axes are not necessarily always aligned
with the movement axes, but the movement x-axis is relevant for event extraction. Hence, a
PCA analysis is computed using the provided x- and y-axes for each foot separately, and
finally, the component with the higher variance is taken as the foot x-axis. In this oscillatory
forward-backward movement of the feet, the zero-crossings of the first derivative (i.e.
maxima/minima) are taken as the final two events: Such a zero-crossing after the foot
movement start event is used as the toe-off event, and the same before the foot movement
end event is used as the heel-strike. The final gait event markers are added to the EEGLAB
data structure and can be copied to synchronized other datasets such as EEG, allowing
further investigations. An example visualization of this gait event extraction can be seen in
figure 5.
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Figure 5: Exemplary impressions of the motion event extraction. (a) Example visualization of a
5-second data segment of raw data from subject 64 of the visual discrimination datasets that are
available with the BeMoBIL Pipeline. (b) Motion data with gait event extraction (here, only toe-off
and heel-strike events are plotted for visualization purposes). The x-axis of the feet is at the bottom
of the two plots, respectively, and shows the forward movement. The y-axis represents the left-right
movement of the foot, which is minimal in this case. The z-axis at the top of the two plots shows the
lifting of the feet, with a lowering during the swing phase and a prolonged minimum during the flat
foot phase. For details on the extraction of these events, see section Extracting gait parameters
from motion data. (c) Exemplary detection of steps of both feet based on the independent
component time series, see section IC-based gait-related event detection. (d) Exemplary final
cleaned EEG data similar to (a) that contains all gait events for further analysis. Since the data
modalities are synchronized during import (see section Data import and time synchronization), the
events can easily be transferred between them.

Eye tracking-based blink event detection
Eye gaze data can be very informative for MoBI analysis, and especially using VR displays it
is easy to be recorded. During blinks, the pupil is not detectable, which means that the eye
tracker can not determine the gaze direction. For a basic eye gaze analysis, the
bemobil_clean_eye function thus cleans eye gaze data by detecting blinks based on the
pupil radius. It then interpolates all eye gaze data using pchip interpolation during the
detected blink times. Eyeblink event markers are added to the event field of the dataset and
blink extraction information is stored.

The blink detection is modified from code written by Ravi Chacko (Mitz et al., 2017) and
processes the data as follows:

1. The pupil radius is used to determine blinks, as during closure of the eyelids the pupil
radius is zero. To this end, the mean and SD of the radius throughout the recording
are computed, disregarding samples below a radius of 0.2mm. The general threshold
to define a blink is then defined in SDs below the mean, 3 by default.

2. Going through the data from the start, a blink is detected if a sample is below the
threshold. The following first sample above the threshold is regarded as the end of
the blink.

3. These coarse start and end values are now used to determine the exact starts and
ends. Here, a search buffer around the detected timestamps is used (20ms by
default). Within this period, large peaks in the absolute values of the first derivative of
the pupil size are computed and the last peak denotes the true end of the blink. This
allows for a brief period in which the pupil size can jitter after re-opening the eyes
(e.g. several samples in which the pupil radius appears to be open, then closed
again, then open again), but only the final opening is taken as the end of the blink.
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4. A buffer around the detected start and end points of the blink is applied (30ms by
default), the blink indices are stored, and the detector continues after the end index
with 2.

5. After searching for blink indices in the entire dataset, the detected blink periods are
interpolated using pchip interpolation in all eye tracking data. This also removes large
jumps in the eye gaze position data that can occur during blink periods, when the
pupil is not trackable.

6. Finally, blinks that were below a minimum duration (100ms by default) are discarded,
and the final blink start and end event markers are added to the EEGLAB data
structure. These can be copied to synchronized other datasets such as EEG,
allowing further investigations. An example visualization of this blink event extraction
can be seen in figure 6.

Figure 6: Exemplary impressions of the blink event extraction. (a) Example visualization of a
5-second data segment of raw data from subject 6 in the NeSitA example data that is available with
the BeMoBIL Pipeline. (b) Eye tracking data with blink event extraction. Blinks are detected based
on pupil size (see section Eye tracking-based blink event detection). The eye x- and y-axes are not
used for event extraction but are shown for the visualization of the synchrony of eye tracking and
independent component (IC) time series in (c). (c) Exemplary detection of blinks based on the IC
time series, see section IC-based blink and saccade event detection. (d) Exemplary final cleaned
EEG data similar to (a) that contains all blink events for further analysis. Since the data modalities
are synchronized during import (see section Data import and time synchronization), the events can
easily be transferred between them.

Event detection based on independent component time series
Paradigms including mobile EEG/MoBI can be comparably complex and time-consuming so
it can be reasonable to reduce the data recording to EEG only. Even though this limits the
extraction of event markers based on other modalities such as motion or eye gaze, there is
another possible option to extract event markers for further analysis utilizing the
decomposition of the data using ICA. Although ICA is commonly applied to remove
non-brain activity from the data, it can also be used to extract event markers from
components that stem from eyes, muscles, or mechanical artifacts like cable sway or
electrode pressure from walking. Hence, these non-brain sources can now inform the
analysis of brain activity by providing context events. Thus what is traditionally considered an
artifact can become a signal and thus an integral part of the data analysis.
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IC-based blink and saccade event detection
Following the approach published in Wunderlich & Gramann (2021), the BeMoBIL Pipeline
provides two functions to extract blink, saccade, and step event markers from IC time series.
The function bemobil_detect_blinks_from_ICA detects blinks and saccades based on the
time series of two ICs representing horizontal and vertical eye movements, respectively
(e.g., figure 6c). In the first step, these components are automatically detected based on
their topographies and their spectral power below 5Hz. It is also possible to indicate specific
ICs manually and hand them over as parameters when using the function. Blinks and
saccades are detected using the findpeaks function. Default values for distance,
prominence, and width of the peaks are provided based on EOG literature (Lins et al., 1993).
Alternatively, the parameters can be set by the user. Before detecting peaks in the IC
activation time course, the data is smoothed using a moving median filter, which preserves
the steep edges while removing high frequency fluctuations (Bulling et al., 2011). The
moving median filter smoothdata is used with a window length of 0.08s by default and can
be defined by the user. Furthermore, bemobil_detect_blinks_from_ICA takes care of flipped
IC activity and ensures that blinks are always positive peaks which is a requirement for the
use of the findpeaks function. For saccade detection, the square root of the sum of vertical
and horizontal eye movement is computed which is known in the electrooculogram (EOG)
literature as EOG activity (Jia & Tyler, 2019). The squared derivative of the EOG time series
allows for using peak detection to locate the quickest differences in the EOG time series
equalling saccadic eye movements. To disentangle the blinks from saccades, all saccade
detections in temporal proximity (by default +/- 100ms) of a blink are excluded. For all the
remaining detected peak latencies, EEGLAB event markers are created using the type ‘blink’
or ‘saccade’, respectively.
An informed decision about the detector efficacy can be made by the provided figures. Here,
one plot shows the activation of the two detected eye ICs and the newly created event
markers. In addition, there are figures for blinks and saccades, respectively, depicting the
whole dataset with the findpeaks parameters, allowing the inspection of the peak detection
efficacy when zooming in. Below this plot are histograms of the prominences and peak
widths (including those exceeding the thresholds). These histograms provide information
about how well the used threshold fits this participant's data. In our tests and comparisons
with eye tracking data in an experiment containing strong eye movements, we found the
IC-based blink detector to be in correspondence with the eye tracking-based detector (see
section Eye tracking-based blink event detection) around 80% of the time. This, however,
depends on the nature of the eye movement, as e.g. strong vertical movements can appear
almost like an eye blink in the vertical IC activity even in the absence of a blink. Saccades
can thus falsely be detected as blinks, mask blinks, or go undetected because they can
happen during a blink. Taken together, the event extraction should always be handled with
care and especially saccades are not always reliable, which is why we offer an option to not
extract saccade event markers. All parameters, the detected blink and saccade event
latencies, as well as the prominences and widths of the detector, are stored in the EEG data
structure. An example visualization of this IC-based blink detection can be seen in figure 6.

IC-based gait-related event detection
The function bemobil_detect_steps_from_ICA detects steps based on the time series of an
indicated gait IC (e.g., figure 5c). The most indicative signature of a gait IC is that the time
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series follows the same pattern as the upwards axis of a motion tracker device mounted to
the head. As some data might contain steps only in parts of the entire duration, it is possible
to specify the start and end points of the step detection to prevent false alarms during
periods where the participant did not walk. Analogous to the eye-movement detector, the
data is smoothed using the moving median and the function checks whether the stronger
deflection is plotted upward. Steps are detected using findpeaks with parameters for
distance, prominence, and minimal and maximal duration of the peaks. Finally, EEGLAB
event markers are created at the respective latencies and stored in the EEG data. The
parameters can be chosen freely and an informed decision about the detector efficacy can
be made by the plots of the detection, including a histogram of the prominences and widths
(including those exceeding the thresholds) akin to that of the blink detector. The detection
can be repeated with varying search boundaries or IC indices. All parameters, the found step
event markers, and latencies, as well as the prominences and widths of the detector, are
stored in the EEG data structure. An example visualization of this IC-based step detection
can be seen in figure 5.

Heartbeat event detection
Heartbeats and subsequent analyses such as heart rate variability can be of interest in a
MoBI experiment, for example for assessments of workload and stress (Delliaux et al., 2019;
Kim et al., 2018). We thus provide the widely used Pan-Tompkins algorithm to detect
heartbeats from electrocardiography (ECG) data (Pan & Tompkins, 1985), either recorded
from additional ECG sensors or derived from independent components reflecting cardiac
activity. As the original algorithm is written in the C programming language, we use a
modified version of a MATLAB implementation available online (Sedghamiz, 2014),
additionally allowing the specification of the high and low-pass filter cutoff frequencies (1 Hz
and 40 Hz by default, respectively). The MATLAB implementation by Sedghamiz (2014)
makes use of the hard-coded frequency-dependent filters and computations defined in the
original work if the data is given at a sampling rate of 200 Hz, but uses state-of-the-art
MATLAB signal processing otherwise, which is our recommendation.

Single-subject and group-level post-processing
The BeMoBIL Pipeline focuses on the automatic processing and cleaning of EEG and other
data but provides a selection of useful additional features regarding the next steps. With
preprocessed EEG data as well as event markers available, this often is to analyze the data
based on epochs that are centered around one or several events of interest. Using these
epochs, it is then possible to perform analyses on either the cleaned sensor data or on the
source-level, taking into account the location of the EEG equivalent dipole models of the ICs.
To facilitate these steps, two options provided by the pipeline are helpful: First, we offer a
way to reject epochs based on objective criteria and in a balanced fashion between
conditions, and second, the pipeline includes a repeated IC clustering approach for reliable
and reproducible group-level source analysis.
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Epoch rejection and time-domain cleaning
After creating epochs either based on experiment event markers or based on the event
markers created using the pipeline, these epochs might still contain non-brain signals even if
the data was cleaned with ICA before. As a final option to improve the signal strength of the
measure of interest, it is thus often necessary to reject epochs that are particularly noisy.
This can be achieved by either manually selecting epochs to reject, or by using automated
methods. One issue arising in many automated rejection tools, however, is that one cannot
specify the amount of data to be removed, but only the threshold that leads to removal.
Hence, one runs the risk of insufficient cleaning or the removal of an excessive amount of
data when the threshold is not adjusted properly. More importantly, cleaning data from
different movement conditions might lead to an imbalance in the removal of epochs, where
significantly more epochs are rejected in the condition with more movement, potentially
complicating the analysis or skewing the final results.

Automatic and balanced epoch rejection
We thus propose a method to rank epochs on their noise level and remove only a specified
amount of the worst ranking epochs. Each epoch is evaluated using four measures that are
normalized by their median across epochs: i) the mean of channel means, to catch epochs
with high amplitude, ii) the SD of means, to catch epochs with inhomogeneous channel
activity according to their mean, iii) the mean of SDs, to catch epochs with high variance
within channels (e.g. strong leftover muscle activity), and iv) the SD of SDs, to catch epochs
with inhomogeneous channel activity according to their variance. It is possible to weigh the
measures separately, although the default of equal weights is recommended. Each epoch
then receives a final summed score and the epochs are sorted according to that score. Then
three options are available to determine the rejection threshold: i) a fixed number of epochs
that should be left - this will guarantee an equal number of epochs for all conditions, ii) a
fixed percentage threshold, e.g. the worst 10% of the epochs are removed - this will
preserve the original ratio of epochs per condition, or iii) determine a “knee-point” of the
score and use that as the threshold - this will lead to the removal of only outlier epochs.
Downsides of the third method are that this can lead to an imbalance of the retained epochs
between conditions, and in cases where very few very strong outliers exist, the “knee-point”
can be shifted to a high threshold, while very clean datasets can exhibit an almost round
curve with a “knee-point” that is shifted towards the center. Thus, we recommend using
methods i) or ii).

Time-domain cleaning based on epoch rejection
The algorithm to reject epochs can be extended for use as general time-domain cleaning of
continuous data. To this end, the data is first high-pass filtered and subsequently cut into
epochs that are then cleaned as described above. If eye movements are to be ignored in this
cleaning, it is recommended to use a high-pass filter of 10 Hz to remove the majority of eye
contributions. This, however, is unnecessary if the cleaning is used on data where eye
contributions were removed with ICA. To target bad segments more precisely, epochs can
be specified to overlap such that a short burst of noise could be captured by one epoch
rather than two adjacent ones. Additionally, when an epoch is marked for rejection, a buffer
around the epoch is rejected as well to capture possible on- and offsets of the artifact. The
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epoch length, overlap, and buffer can be specified according to the needs of the analysis.
For example, when removing artifacts before running ICA, an epoch length of 500 ms with
an overlap of 125 ms and an epoch buffer of 62.5 ms can be used, while longer epochs
could be useful if it is important to retain longer contiguous data. We do not recommend
using this method in our pipeline because we found no improvement when using it over the
automated cleaning of AMICA itself.

Robust group-level source analysis for regions of interest
If source analysis is to be performed on the group level, it is necessary to find ICs of all
participants that represent activity from the specific source region. To this end, k-means
clustering can be used, which finds similar components in the complete study set containing
ICs from all participants based on weighted measures such as dipole location, scalp
topographies, spectrum, ERPs, or event-related spectral perturbations (ERSPs). Choosing
the weights is subject to the analyst, but it is recommended to weigh the location highly, add
topographies and spectra, and, depending on the situation, ERPs and ERSPs with lower
weighting. However, when using ERPs or ERSPs, it can be argued that double-dipping
happens in the selection of relevant ICs (meaning that the measure that is later used to
compute statistics is also used to select the ICs). A counter-argument to this would be that
the clustering uses average measures while the statistics are used to investigate condition
differences. All in all, no final rule on how to choose the weights can be given. The standard
k-means clustering, however, has one other strong limitation: the k-means results are not
stable due to variation in the starting conditions. Repeating the clustering can result in
different solutions, and depending on the location and the similarity of the ICs, the cluster of
interest (COI, the cluster closest to your region of interest, ROI) can contain vastly different
ICs (see figure 7a).

Figure 7. Robust group-level clustering example. In this example, we ran the robust clustering
of independent components (ICs) on the group level of the four example participants from the visual
discrimination study that is available with the BeMoBIL Pipeline. We weighted the dipoles with 3,
the topographies with 1, the spectra with 1, and the ERPs of stimulus presentation with 1, and ran
1000 repetitions of the clustering. The region of interest (ROI) was set to the posterior parietal
cortex (MNI coordinates of [0,-48,39]) and the weights for the ROI cluster quality measures were
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chosen as: subjects = 3, ICs/subjects = -1, normalized spread = -1, mean RV = -1, distance from
ROI = -2, and mahalanobis distance from median of multivariate distribution = -1. See section
Robust group-level source analysis for regions of interest for details. (a) The resultant distributions
of the various quality measures show the variability of the outcome of the clustering. The
unnormalized spread and the X/Y/Z coordinates are not used for the final selection but shown for
visualization purposes only. (b) The resulting best three clusters and their respective measures
show that, although they are not identical, they are similar, and the top 2 clusters are identical,
indicating a stable result of the repeated clustering.

To alleviate this issue, we implemented a repeated clustering approach that clusters several
hundred or thousand times and selects the COI for each clustering solution, based on the
distance from a given ROI in MNI coordinates (Evans et al., 1993). For each of these COIs,
a set of quality measures is derived: the number of subjects in that cluster, the average
number of ICs per subject, the normalized Euclidean spread of the cluster (distance of the
individual IC locations from the cluster centroid divided by the number of ICs), the mean RV
of the ICs in the cluster, the distance of the cluster centroid from the ROI, and the
Mahalanobis distance from the median of the multivariate distribution of all cluster solutions.
The last measure shows how normal, or representative for the entire distribution, the given
cluster solution is. Ideally, we are looking for a solution that contains as many subjects as
possible (so the final measures are representative of the group), few ICs per subject
(because it is difficult to interpret several ICs per subject in an identical cortical area), a small
distance from the ROI, a low spread (tight cluster around the ROI restricting it to one
“functional” cortical area), a low mean RV (reflecting physiologically plausible ICs), and a low
Mahalanobis distance from the median (attenuating outlier clusters). To this end, the quality
measures are assigned a weight and the clustering solutions are sorted according to their
summed score. The solution with the highest combined score is then taken as the final
clustering solution that can be used for further analysis.

To make sure that no outlier solution is taken as the final solution, on the one hand, one can
weigh the Mahalanobis distance more negatively, on the other hand, we provide plots of the
locations and average scalp topographies of the five highest-ranking solutions (figure 7b).
These should look very similar, which indicates that the results are stable. Depending on the
ROI it might be possible to achieve a stable solution with only 100 repetitions (e.g. in the
visual cortex), but deeper ROIs like the retrosplenial complex may require several thousand
repetitions. If one is interested not only in one ROI but several, two options are possible: i)
Optimize separately for all ROIs and create different STUDY files accordingly. A limitation of
this approach is that the same IC may be present in two or more ROIs if they are too close
together. ii) If one ROI is more important than the others, it might be better to only optimize
for that one ROI and use this cluster solution for all subsequent analyses (Gramann et al.,
2021).

Miscellaneous functions
As a final element, the pipeline comes with a set of post-processing functionalities not
pertaining to event-related EEG analysis: Different spatial filtering techniques are
implemented that do not rely on blind source separation but instead make use of the
additional data modalities or other information, and scripts to visualize motion and eye gaze
data in an intuitive way are provided.
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Additional spatial filtering approaches
While blind source separation methods such as ICA can be beneficial in disentangling the
mix of electrical sources in EEG data in general, other spatial filtering methods that make
use of additional information may prove to be more powerful in circumstances where
knowledge or expectations about the data are already available before the analysis. We thus
provide several such options in the function bemobil_signal_decomposition_extended:
Source Power Comodulation (SPoC; Dähne, Meinecke, et al., 2014) allows the separation of
data subspaces that describe the modulation of a given target value and can, for example,
be used to extract motion-related information from EEG when motion data is available,
allowing either the removal or the interpretation of the data (Gehrke et al., 2019). Canonical
Correlation Analysis (CCA) can be used to find common subspaces between EEG and other
data, allowing the investigation of their relationships such as the interplay of EEG and
functional magnetic resonance imaging (fMRI) data (Biebmann et al., 2010), or the removal
of motion artifacts in EEG data (Safieddine et al., 2012). Lastly, Spatiospectral
Decomposition (SSD; Nikulin et al., 2011) is a possible preprocessing step to reduce
dimensionality before applying SPoC or CCA (Dähne, Nikulin, et al., 2014) but can also be
used standalone to extract spatial filters that enhance specific frequencies such as the theta
or alpha band in the EEG. As a final element when using the above described spatial filtering
techniques, the function bemobil_distributed_source_localization allows the inspection of the
computed spatial patterns on the source level by using previously found source locations of
the ICA, a method that was originally intended to visualize the sources of brain-computer
interface classifiers (Krol et al., 2018; Zander et al., 2016).

Visualizations of motion and eye gaze data

Motion datasets can in particular be difficult to visualize without neglecting parameters that
could lead to serendipitous discoveries. We have thus focused on developing multiple
informative plots for both eye-tracking and motion datasets that ensure an accessible,
coherent, and rapid inspection of the data. As both eye-tracking and motion data are best
examined using several parameters in a single plot, we have developed plots that readily
and intuitively visualize velocities and positions in space over time (figure 8).

26

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.09.29.510051doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510051
http://creativecommons.org/licenses/by/4.0/


Figure 8. BeMoBIL motion data plot example. In this example, we visualize the controller
movement in the time up to a touch of an object in a physical reaching task (data from subject 1 in
the NeSitA example data that is available with the BeMoBIL Pipeline). On the left side of the plot,
we visualize the synchronized XYZ coordinates separately with their velocity measures plotted on
top. On the right side of the plot, we visualize the three-dimensional movement as a trajectory
through space. Besides illustrating the position in space, we also show the temporal dimension
using colors and the velocity of the movement using the thickness of the line as inspired by the
kinematics of handwriting, supporting an intuitive and accessible reading. All the information used
in the plots is available as the function output upon plotting the figure.

The pipeline provides three such functions for plotting. The first, bemobil_plot_motion,
serves to inspect each XYZ coordinate as well as their three-dimensional trajectory. On the
left side of the plot, the function divides the XYZ coordinates of the motion data into three
separate plots that visualize the distance against the time as well as the velocity of the
movement. The right side of the plot visualizes the three-dimensional trajectory in space
without neglecting velocity or time. To visualize velocity, we have been inspired by the
everyday kinematics of handwriting, i.e. strokes that are thicker relative to the rest of the line
represent a slower hand movement as opposed to the thinner part of the line, representing
much faster movements. To visualize the temporal dimension, we have been inspired by the
techniques in plots of imaginary numbers and Riemann topology, i.e. we use a gradient of
color to depict the end and beginning of the trajectory. All the information used in the plots is
available as the function output upon plotting the figure.
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Figure 9. Eye tracking data plot example. (a) In this example, we compare two conditions in
which the participant either hit or missed the target in a physical reaching task (data from subject 1
in the NeSitA example data that is available with the BeMoBIL Pipeline). The plot is based on the
same principles as the motion data plot (see figure 8). (b) The data can readily be transferred to a
heatmap kernel density estimation (KDE) plot that can be exported and further processed using
image-based analyses.

The last two functions are dedicated to eye-tracking. Following the same principles as
above, the function bemobil_plot_trail compares the trails of two conditions in two
dimensions, using again the thickness of the trail to represent the velocity and the colors for
the temporal dimension (figure 9a). As an additional plot that enables image-based
analyses, we have included a heat-map function, bemobile_plot_heatmap, that plots the
areas in which the trail spent the longest time (figure 9b). For custom colormaps, we offer
the bemobil_makecmap which generates a gradient between given colors. The output here
can be used with all our plot functions.

Summary
The combination of electrophysiological data and other body measures such as motion or
eye tracking becomes more prevalent as a tool in neuroscientific studies investigating
human brain dynamics in more ecologically valid scenarios such as the workplace (Ayaz &
Dehais, 2018; Mehta & Parasuraman, 2013; Parasuraman & Rizzo, 2007; Wascher et al.,
2014) or urban environments (Aspinall et al., 2015; Djebbara et al., 2019). These large
multimodal datasets require special treatment during the analysis to ensure the reliability of
the results. While there are powerful solutions available for individual aspects of EEG data
preprocessing (e.g. the PREP pipeline (Bigdely-Shamlo et al., 2015)) or automated EEG
analysis (e.g. the HAPPE pipeline (Gabard-Durnam et al., 2018)), they do not cater to the
specific needs of multimodal MoBI data. For example, these pipelines do not include the
synchronized import of multiple data streams, the processing of data not stemming from
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EEG, the treatment of EEG data from mobile experiments specifically, or additional
functionalities for extracting event markers, reliable source analysis, or early-fusion analysis
that can greatly benefit MoBI research.

Our proposed BeMoBIL Pipeline thus seeks to fill this gap and provides automatic,
transparent, replicable, and easy-to-use data processing for multimodal datasets of human
participants. It is a MATLAB pipeline based on EEGLAB (Delorme et al., 2011; Delorme &
Makeig, 2004) and fieldtrip (Oostenveld et al., 2011), comprising wrappers and new
functions to i) import the raw multimodal dataset to obtain BIDS-compatible shareable data
and fully synchronized multimodal EEGLAB files that allow easy computations of multimodal
analysis or transfer of event markers, ii) preprocess and clean EEG data, including line-noise
removal, channel rejection and interpolation, and artifact rejection using ICA and epoch
cleaning, iii) process motion data and extract event markers from motion, eye tracking, ECG,
and IC activity, iv) robust clustering of ICs for group-level source analysis, v) allow
early-fusion analysis of EEG and other data combined, and vi) visualize motion and eye
gaze data intuitively. This set of features helps to reduce experimenter bias when analyzing
data, allows the easy replication of data processing, and lowers the threshold of entry into
EEG data analysis for researchers from other fields. Importantly, while the pipeline is
designed around the requirements of MoBI studies, it can be applied to datasets from
stationary studies with minimal changes.

The pipeline can be used with a small set of wrapper functions and a configuration file, but
the steps can also be called individually to allow a modular setup of self-defined pipelines.
For reporting the methods, all steps are documented within the EEG data structure itself,
allowing precise descriptions of all data processing such as exact filter specifications,
removed channels, or the amount of data removed by AMICA, to simplify replications or
similar investigations in future studies. Furthermore, once set up, the entire processing from
the raw files to the cleaned datasets and even the final study with clusters of interest can
easily be reproduced using the pipeline scripts. This will yield identical final datasets and
results though minor deviations due to suboptimal parameter selection in the configuration
files (e.g., number of iterations for specific processing steps) are possible. The pipeline is
documented in depth in a wiki section on the public GitHub repository, available online at
https://github.com/BeMoBIL/bemobil-pipeline/wiki. Here, a comprehensive user guide on all
steps including the installation can be found alongside explanations of the chosen default
values and other practical considerations when running the functions.

Limitations and conclusions
A major limitation of largely automated data processing is that researchers have no insight
into the actual data and its subtleties. This can lead to overlooking processing errors, such
as mishandling artifacts or unrealistic results. Therefore, we strongly believe that the
visualization and close inspection of the data is an essential element of electrophysiological
data analysis. To this end, analytics plots of the data during and after processing steps, as
well as figures for the processing itself are created throughout the pipeline in order to keep
the experimenters informed about the analysis. A comprehensive guide on the interpretation
of the analytics plots is available on the wiki. Additionally, Even though the pipeline is as
flexible as possible and has been extensively tested, it is in the nature of MoBI experiments
that they sometimes raise unprecedented analysis issues that are difficult to predict and may
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require a customized pipeline. This problem can be addressed by taking modular elements
of the pipeline and setting up custom analyses or adding entirely new elements as
appropriate. Since the BeMoBIL Pipeline is an open source project, new analysis
approaches from the community as well as contributions to the code repository are strongly
encouraged. Our aim is to continuously provide the best possible pipeline that takes into
account algorithmic advances or new insights while providing a stable and reliable analysis
that can be easily used.

Taken together, our two main goals were to make the processing and analysis of (mobile)
EEG data more reliable and independent of the researcher and to open up EEG research to
other fields as a method to answer their own research questions. We provide a flexible and
powerful open-source toolset for multimodal data processing and cleaning that paves the
way for fast and reliable research using mobile EEG and complementary body measures.
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