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7 Abstract

8 Antibiotic resistance is a major public health concern around the globe. As a result, researchers always look for new 

9 compounds to develop new antibiotic drugs for combating antibiotic-resistant bacteria. Bacteriocin becomes a promising 

10 antimicrobial agent to fight against antibiotic resistance, due to its narrow killing spectrum. Sequence matching methods are 

11 widely used to identify bacteriocins by comparing them with the known bacteriocin sequences; however, these methods often 

12 fail to detect new bacteriocin sequences due to sequences’ high diversity. The ability to use a machine learning approach can 

13 help find new highly dissimilar bacteriocins for developing highly effective antibiotic drugs. The aim of this work is to identify 

14 optimal sets of features and develop a machine learning-based software tool for predicting bacteriocin protein sequences with 

15 high accuracy. We extracted potential features from known bacteriocin and non-bacteriocin sequences by considering the 

16 physicochemical and structural properties of the protein sequences. Then we reduced the feature set using statistical 

17 justifications and recursive feature elimination technique. Finally, we built support vector machine (SVM) and random forest 

18 (RF) models using the selected features and our models can achieve accuracy up to 95.54%. We compared the performance of 

19 our method with a popular sequence matching-based approach and a deep learning-based method. We also developed a software 

20 tool called Bacteriocin Prediction (BacPred) that implements the prediction model using the optimal set of features obtained 

21 from this study. The software package and its user manual are available at 

22 https://github.com/suraiya14/ML_bacteriocins/BacPred.

23 Introduction

24 Bacteria become antibiotic resistant due to the excessive use of drugs in healthcare and agriculture. In the United 

25 States, around 3-million people get infected and approximately 35000 individuals die because of antibiotic-resistant organisms 

26 [1]. Therefore, the resistance nature of bacteria drives the need for inventing novel antimicrobial compounds to treat antibiotic-

27 resistant patients. Researchers developed several approaches to extract natural products as antimicrobial compounds by mining 

28 the bacterial genomes [2]. Bacteriocin is one type of natural antimicrobial compound which is a bacterial ribosomal product. 

29 Due to narrow killing spectrum, bacteriocins became attractive choices in the discovery of novel drugs that can produce less 

30 resistance in bacteria [3-5]. Current whole genome sequencing technology provides many genes that encode bacteriocins and 

31 these sequences are publicly available for future research. Researcher introduced several methods to identify bacteriocins from 

32 bacterial genomes based on bacteriocin precursor genes or context genes. For example, BAGEL [6] and BACTIBASE [7] are 
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33 two publicly available online tools that curate huge experimentally validated and annotated bacteriocins. Like the widely used 

34 protein searching tool BLASTP [8, 9], these methods also allow users to identify putative bacteriocin sequences based on the 

35 homogeneity of known bacteriocins. However, these similarity-based approaches often fail to detect sequences that have the 

36 high dissimilarity with known bacteriocin sequences; thereby, generating an undesired number of false negatives. To resolve 

37 this problem, some prediction tools, such as BOA (Bacteriocin Operon Associator)  [10], were developed based on locating 

38 conserved context genes of the bacteriocin operon, but they still rely on homology-based genome searches.

39 Machine learning technique can be applied as a substitute for sequence similarity and context-based methods that can 

40 utilize potential peptide (protein) features of bacteriocin and non-bacteriocin to make strong prediction in identifying novel 

41 bacteriocin sequences. Recently some machine learning-based bacteriocin prediction techniques were proposed that utilized 

42 the presence or absence of k-mer (i.e., subsequences of length k) as potential features and represented peptide sequences using 

43 word embedding [11, 12]. There are also deep learning-based methods for bacteriocin prediction, for example RMSCNN [13] 

44 used a convolutional neural network [14, 15] for identifying marine microbial bacteriocins. However, these existing approaches 

45 did not consider the primary and secondary structure information of peptides that are crucial to find highly dissimilar 

46 bacteriocins. Also, those strategies did not apply any feature evaluation algorithm to eliminate the unnecessary features that 

47 may reduce the achievement of a machine learning classifier. 

48 In this work we present a predictive pipeline for identifying bacteriocins by generating features from the 

49 physicochemical and structural characteristics of peptide sequences. We evaluated and selected subsets of the candidate features 

50 based on Pearson correlation coefficient, t−test, mean decrease Gini (MDG), and recursive feature elimination (RFE) analyses. 

51 The reduced feature sets called optimal feature sets are then used to predict bacteriocins using support vector machine (SVM) 

52 [16, 17] and random forest (RF) [18] machine learning models. BLASTP, a sequence matching tool and RMSCNN, a deep 

53 learning model were used to compare the performance of our best machine learning model. One of the main objectives was to 

54 develop a software package called Bacteriocin Prediction (BacPred) with a simple and intuitive graphical user interface (GUI) 

55 that can generate all required features to get prediction results for testing protein sequences. The software provides options to 

56 users to test multiple sequences and add new training bacteriocin or non-bacteriocin sequences to the machine learning model 

57 for improving the prediction capability.

58 Materials and methods
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59 The overall workflow of our methods is depicted in Fig 1. The steps in our methods include gathering datasets of 

60 bacteriocin and non-bacteriocin protein sequences, generating potential features, performing feature evaluation and recursive 

61 feature elimination analyses to remove irrelevant and weakest features, and finally building machine learning models using the 

62 selecting features to compare the prediction performance with the sequence matching and deep learning-based approaches.

63 Fig 1. Illustrating the steps involved in the prediction of bacteriocin protein sequences.

64 Data collection

65 We retrieved bacteriocin sequences (positive sequences) from two publicly available databases BAGEL [6] and 

66 BACTIBASE [7]. Non-bacteriocin sequences (negative sequences) were collected from the data used in RMSCNN [13]. 

67 Initially, we gathered a total of 483 positive and 500 negative sequences. As many of these accumulated sequences are duplicate 

68 or of high similarity, we utilized CD-HIT tool [19] to obtain the unique positive and negative sequences by removing the 

69 sequences having ≥90% similarity. Finally, we obtained 283 and 497 unique positive and negative sequences, respectively. To 

70 deal with the imbalanced dataset problem, we reduced the negative sequences from 497 to 283 by random sampling to make 

71 the number of positive and negative examples equal. We considered 80% and 20% of the total sequences as training and testing 

72 datasets, respectively. Positive and negative training sequences, in FASTA format, are listed in S1 File. Positive and negative 

73 testing sequences are presented in S2 File. 

74 Feature extraction

75 After collecting the positive and negative protein sequences, we generated potential candidate features from the 

76 sequences. Since there are 20 natural amino acids, we generated a 20D (‘D’ indicates dimension) amino acid composition 

77 (AAC) feature vector for every protein sequence where each value in the vector gives the fraction of a specific amino acid type. 

78 We extracted 400D dipeptide composition (DC) feature vectors for the sequences where each value indicates the fraction of 

79 dipeptides in a protein sequence [20]. Pseudo amino acid composition (PseAAC) and amphiphilic pseudo amino acid 

80 composition (APseAAC) feature vectors of 30D and 40D, respectively, were created for each sequence as proposed by Chou 

81 [21, 22]. 

82 We used the composition/transition/distribution (CTD) model [23] to generated 147D feature vectors for various 

83 physicochemical amino acid properties. Amino acids are divided into three classes in the CTD model. For each sequence, we 

84 obtained 3D, 3D and 15D feature vectors for each physicochemical property as measurements of the composition, transition, 
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85 and distribution of the classes, respectively. Finally, we generated 6D feature vectors from the secondary structure (SS) of each 

86 sequence. The SS features includes position index, spatially consecutive states, and segment information of the 3 structure 

87 states: alpha helices, beta sheets and gamma coils. In total, we obtained a total of 643 features as listed in Table 1.

88 Table 1. List of features.

Feature Dimension
AAC 20
DC 400
PseAAC 30
APseAAC 40
CTD 147
SS 6

89

90 Feature evaluation

91 Unnecessary features may worsen the prediction performance of a machine learning model. We performed statistical 

92 analyses on the training data to identify the optimal or best feature sets to build our machine learning models. At first, we 

93 estimated Pearson correlation coefficient 𝑥,𝑦 given by Eq (1), to measure the correlation values among features.

94                                                                     𝜌𝑥,𝑦 = 𝐸[(𝑥 ― µ𝑥)(𝑦 ― µ𝑦)]
𝜎𝑥 𝜎𝑦

                                                                  (1)

95 Here, x and y are two features, 𝐸 indicates the expectation, 𝜎𝑥 and 𝜎𝑦 indicate the standard deviation, and µ𝑥 and µ𝑦 are mean 

96 values of 𝑥 and 𝑦, respectively. High absolute the value of 𝑥,𝑦 indicates strong correlation with other features. If a feature is 

97 highly correlated with another feature, we can consider one of these two features and ignore the other one. We removed one of 

98 the two features if they have correlation value was ≥0.9, which resulted in the number of features decreasing from 643 to 590.

99 Then we considered two additional statistical approaches to feature reduction. First, a standard t-test was applied to 

100 each of the 590 features to see if a statistical significant difference existed between the values of the feature in the positive and 

101 negative bacteriocin sequences of our dataset. We estimated the p-values for all 590 features to check if it was possible to 

102 discard the null hypothesis of no statistically significant difference. A low p-value for a feature indicates high importance of 

103 the feature for predicting bacteriocin sequences, and in that situation, we can discard the null hypothesis. We considered a 

104 threshold p-value of 0.05 and eliminated all features having p > 0.05. After filtering the features based on the t-test results, our 

105 feature vector was reduced from 590D to 140D, and we called the resulting data the t-test-reduced feature set. The p-values of 
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106 the selected features are shown in Fig 2 on linear and logarithmic scales. We noticed that the composition and distribution 

107 features of the CTD model were the top selected features in the t-test-reduced feature set. 

108 Fig 2. Trends of the p−values of the reduced feature set: (a) p−value vs. selected features and (b) −𝒍𝒐𝒈𝟏𝟎(p-value) vs. 

109 selected features.

110 Lastly, we built the random forest (RF) model with the 590 features (obtained from the Pearson correlation coefficient 

111 analysis) to estimate the mean decrease Gini (MDG). In the RF model, MDG corresponds to the feature importance that 

112 indicates each feature’s contribution to the homogeneity of the nodes and leaves [24, 25]. Eq (2), where 𝑃𝑖 is the probability of 

113 being in class i (positive or negative), was used to calculate the Gini index. A node is purer when its Gini index is closer to 0. 

114                                                                            𝐺 = 1 ― ∑2
𝑖=1 𝑃2

𝑖                                                                 (2)

115 Gini index of 0 and 1 corresponds to complete homogeneity and heterogeneity of the data, respectively. MDG is 

116 computed from the mean of all the drop of Gini indices across the whole of the trees built in the RF model. Greater MDG value 

117 indicates a more important feature, and with consideration of MDG values for the features, we reduced the dimension of the 

118 feature set to 44D and named it the MDG-reduced feature set. Features of the CTD model, PseAAC, and SS were identified as 

119 top selected features in the MDG-reduced feature set.

120 Recursive feature elimination

121 We further filtered features from the t-test-reduced and MDG-reduced feature sets using the recursive feature 

122 elimination (RFE) technique where a machine learning model is fitted, and features were ranked based on the evaluation of the 

123 training performance of the model. We considered two machine learning models RF and SVM in the RFE analyses and we 

124 obtained 42 (RF with MDG-reduced feature sets), 57 (RF with t-test-reduced feature sets), 44 (SVM with MDG-reduced feature 

125 sets) and 131 (SVM with t-test-reduced feature sets) features. We applied 5 times repeated 10-fold cross-validation to assess 

126 the capability of the SVM and RF in the training phase in the RFE analyses.

127 BacPred software tool

128 Fig 3 shows the GUI of our BacPred software tool. All the required features in the BacPred tool were generated using 

129 R and the GUI was designed using Python3.  In this tool, users can upload and save input file that should contain all protein 

130 sequences in FASTA format. If a user chooses the option of predicting bacteriocin, the BacPred software tool will consider all 
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131 protein sequences in the input file as testing sequences and generate all required features with their feature values for the testing 

132 protein sequences automatically, classify them as bacteriocin or non-bacteriocin sequences and save the results in an output 

133 file. Users can add new bacteriocin or non-bacteriocin protein sequences to the training dataset and return to the original training 

134 dataset supplied with this tool, if desired. The tool has a textbox in the GUI where users can see the prediction results. The 

135 software package and the manual to use this software can be found at https://github.com/suraiya14/ML_bacteriocins/BacPred. 

136 Fig 3. Graphical user interface (GUI) and various service menus of the BacPred software tool.

137 Code and data availability

138 All experimental data and scripts of this work are available at https://github.com/suraiya14/ML_bacteriocins.

139 Results and discussion

140 We measured the performance of SVM and RF machine learning models with the selected feature sets. We also 

141 performed a comparative analysis with sequence-matching and deep-learning approaches.

142 Feature rankings

143 We mentioned earlier that SVM and RF machine learning models were used in the RFE approach to measure the 

144 training performance in terms of area under the ROC curve (AUC) by recursively considering subsets of the t-test-reduced and 

145 MDG-reduced feature sets independently.  Figs 4(a) and 4(b) show the AUC values for the subset of the features in the RFE 

146 approach where RFE-MDG-RF and RFE-MDG-SVM depict the RFE analyses with the MDG-reduced feature sets for RF and 

147 SVM machine learning models, respectively. Similarly, Figs 4(c) and 4(d) are RFE analyses with the t-test-reduced feature sets 

148 for RF and SVM machine learning models, respectively. We noticed gradual decreasing of AUC values with the elimination 

149 of the features from the machine learning models. Table 2 lists the maximum AUC values obtained from the machine learning 

150 models in the RFE analyses. We obtained highest AUC value in the RF model for the MDG-reduced feature set. 

151 Fig 4. Performance of the RF and SVM machine learning models for the training data in the RFE approach. 

152 Table 2. Highest AUC values obtained from RF and SVM for different feature sets.

Feature set Machine learning model  AUC
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RF 0.9873MDG-reduced

SVM 0.9809

RF 0.9864t-test-reduced

SVM 0.9794

153

154 The top-5 features obtained from the RFE analyses are listed in Table 3. Features of the CTD model and PseAAC 

155 features are among the top ranked features for all models. More specifically, distribution (first residue) for secondary structure 

156 (group 1), distribution (first residue) for hydrophobicity (group 3) and distribution (first residue) for normalized van der Waals 

157 Volume (group 3) of the CTD model were found common in the top-5 features of all RFE analyses.

158 Table 3. Top ranked features found from RF and SVM models in the RFE analyses.

Feature 

rank

Feature for RFE-MDG-

RF

Feature for RFE-MDG-SVM Feature for RFE-t-test-

RF

Feature for RFE-t-test-

SVM

1 Distribution (first residue) 

for hydrophobicity (group 

3)

PseAAC for the amino acid 

Leucine (L)

Distribution (first residue) 

for charge (group 2)

PseAAC for the amino 

acid Leucine (L) 

2 Distribution (first residue) 

for secondary structure 

(group 1)

PseAAC for the amino acid 

Arginine (R)

Distribution (first residue) 

for hydrophobicity (group 

3)

PseAAC for the amino 

acid Arginine (R)

3 Distribution (first residue) 

for charge (group 2)

Distribution (first residue) for 

hydrophobicity (group 3)

Distribution (first residue) 

for solvent accessibility 

(group 3)

Distribution (first residue) 

for hydrophobicity (group 

3)

4 Distribution (first residue) 

for solvent accessibility 

(group 3)

Distribution (first residue) for 

secondary structure (group 1)

Distribution (first residue) 

for secondary structure 

(group 1)

Distribution (first residue) 

for secondary structure 

(group 1)
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5 Distribution (first residue) 

for normalized van der 

Waals Volume (group 3)

Distribution (first residue) for 

normalized van der Waals 

Volume (group 3)

Distribution (first residue) 

for normalized van der 

Waals Volume (group 3)

Distribution (first residue) 

for normalized van der 

Waals Volume (group 3)

159

160 Prediction performance

161 For our reduced feature sets, we trained SVM and RF models with different feature subsets obtained after RFE 

162 analyses. We tuned the SVM model with radial basis function (RBF) and set of cost values C = {4, 8, 16, 32, 64, 128} to find 

163 the best parameters. Similarly, we tuned the RF model with setting ntree = {400, 500} and mtree = {5, 6}. The RBF-kernel 

164 SVM with cost values of 4, 4, 4 and 8, and RF with ntree values of 500, 400, 500 and 400 and mtree values of 6, 5, 6 and 6 

165 were found as best parameters for RFE-MDG-RF, RFE-MDG-SVM, RFE-t-test-RF and RFE-t-test-SVM feature sets, 

166 respectively.

167 To find the best optimal feature set, we measured test performance of our tuned models, SVM and RF, for the reduced 

168 feature sets. We evaluated the prediction performance using Eqs (3) and (4), where TP, TN, FP, and FN correspond to true 

169 positives (correctly classified as positives values), true negatives (correctly classified as negative values), false positives 

170 (incorrectly classified as positive values), and false negatives (incorrectly classified as negative values), respectively. The 

171 Matthews correlation coefficient (MCC) [26, 27] estimation is considered to measure the effectiveness of our classifiers and 

172 the MCC value ranges from -1 to +1. The larger the MCC value, the better prediction is. 

173                                                                𝑇𝑒𝑠𝑡𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁                                                              (3)

174                                                𝑇𝑒𝑠𝑡𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 ― 𝐹𝑃 × 𝐹𝑁

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)                                              (4)

175 The prediction results of the models with corresponding best parameters are shown as confusion matrices in S1-S8 

176 Tables where ‘1’ and ‘-1’ indicate positive (bacteriocin) and negative (non-bacteriocin) sequences, respectively. The diagonal 

177 entries show the correctly classified test sequences. The testing MCC and accuracy values (indicated as 𝑇𝑒𝑠𝑡𝑀𝐶𝐶 and 𝑇𝑒𝑠𝑡𝐴𝑐𝑐 , 

178 respectively) of the RF and SVM models for different feature subset after RFE analyses are listed in Table 4. We found that 

179 the SVM machine learning model provides best prediction values (based on MCC and accuracy values) for the RFE-t-test-

180 SVM feature set. 
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181 Table 4. MCC and accuracy values obtained from RF and SVM for testing data for different RFE feature subsets.

Feature set after RFE Machine learning models 𝑻𝒆𝒔𝒕𝑴𝑪𝑪 𝑻𝒆𝒔𝒕𝑨𝒄𝒄

RFE-MDG-RF RF 0.8763 0.9464

RFE-MDG-SVM RF 0.8934 0.9464

RFE-MDG-RF SVM 0.8219 0.9107

RFE-MDG-SVM SVM 0.8219 0.9107

RFE-t-test-RF RF 0.8763 0.9375

RFE-t-test-SVM RF 0.8593 0.9286 

RFE-t-test-RF SVM 0.7862 0.8929

RFE-t-test-SVM SVM 0.9109 0.9554

182

183 Performance comparison

184 Our best machine learning model's prediction performance was compared to the sequence matching strategy-BLASTP 

185 [8, 9]. To identify bacteriocins sequences, BLASTP takes positive sequences of the training set as subject sequences and 

186 positive sequences of the testing set as query sequences and estimates the sequence similarity (percent identity) for each query 

187 sequence by aligning them with the subject sequences. Similarly, to detect non-bacteriocin sequences from BLASTP, we 

188 considered all negative sequences of the training and testing sets as subject and query sequences, respectively. Fig 5 shows the 

189 number of true positives and negatives with respective percent identity threshold for BLASTP tool. According to S8 Table, 

190 our best classifier SVM model with RFE-t-test-SVM has 53 true positives and 54 true negatives. BLASTP can identify a similar 

191 number of true positives and true negatives as our best classifier if we set the percent identify threshold of BLASTP lower than 

192 30 and 20 for finding the true positives and true negatives, respectively. However, setting such a low percent identify threshold 

193 in BLASTP is very unrealistic and will increase false positive and false negative results. 

194 Fig 5. Identification of test sequences using BLASTP as a function of percent identity threshold (a) using bacteriocin 

195 sequences from the training data and (b) using non-bacteriocin sequences from the training data.

196 We also compared the performance of our method with a recent deep learning-based approach RMSCNN [13] 

197 developed for the bacteriocin prediction. RMSCNN takes positive and negative training protein sequences in FASTA format 
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198 as inputs, encodes all amino acids of each protein sequences to some numbers defined in a protein dictionary, then constructs 

199 a matrix of the encoded sequences.  This matrix is used to train a convolutional neural network where a random model is used 

200 to modify the scale of the convolutional kernel. To compare the prediction accuracy and runtime with our BacPred software 

201 tool, we ran RMSCNN with the same training and testing datasets that we used in our machine learning models. The runtime 

202 of RMSCNN or BacPred is defined as the total time required in training and testing phases. Note that our BacPred software 

203 was implemented based on our best model discussed earlier, that is, the SVM machine learning model with RFE-t-test-SVM 

204 feature set. Both RMSCNN and BacPred were executed in a machine with macOS operating system, 2.3 GHz 8-Core Intel 

205 Core i9 processor, and 32 GB 2667 MHz DDR4 memory configuration. Table 5 shows the prediction accuracy and runtime of 

206 both methods/tools, and our BacPred outperforms RMSCNN in terms of both accuracy and runtime.

207 Table 5. Accuracy and runtime (in seconds) of RMSCNN and BacPred.

Method/tool 𝑻𝒆𝒔𝒕𝑨𝒄𝒄 Runtime (sec.)

RMSCNN 0.9375 2007.86

BacPred 0.9554 217.84

208

209 Based on Table 5, we can infer that our method was able to identify the most important features to detect highly 

210 diverse bacteriocin sequences with higher accuracy and lower runtime. Researchers can easily use our optimal feature-based 

211 software tool to discover novel bacteriocin sequences. Since our software tool is open source, they can modify our tool to fit it 

212 in similar or completely new biological applications.

213 Conclusion

214 Discovery of new bacteriocins is crucial to develop new antibiotic drugs to combat against antibiotic resistance. In 

215 this paper, we presented a machine learning-based approach for identifying novel bacteriocins. We extracted the applicant 

216 features from the primary and secondary attributes of protein sequences and then we analyzed all features based on Pearson 

217 correlation coefficient, t−test, and MDG values. We obtained two reduced feature sets of 140 and 44 features, and we further 

218 filtered out features using RFE technique. The final selected feature sets were considered as optimal sets of features and used 

219 to build the SVM and RF machine learning models. We found that SVM shows better prediction performance with the RFE-t-

220 test-SVM-reduced feature set. The performance of our best model is compared to that of the sequence matching-based tool 
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221 BLASTP. For BLASTP to obtain true positive as well as true negative results comparable to our best model requires a percent 

222 identity threshold so low that it is impractical. Also, our method showed better prediction accuracy with lower runtime 

223 compared to a deep learning-based method RMSCNN.

224 We also implemented a software package BacPred based on our best model to identify bacteriocin sequences by 

225 integrating all necessary tools and programs required for generating the optimal set of features automatically. Using our 

226 software tool, users will be able to predict unseen testing data for bacteriocin detection and can include new known bacteriocin 

227 and non-bacteriocin sequences to train data that eventually improve the predictive power of the machine learning model. 

228 Currently, our model is suitable to identify single bacteriocin protein sequence and we plan to update it to discover protein 

229 clusters of tailocins i.e., phage tail-like bacteriocins [28, 29]. Also, in the future, we will consider better characterized features 

230 such as position specific scoring matrix [30] and develop a more robust feature selection algorithm for better characterized 

231 features to increase the prediction accuracy of the machine learning models. Whenever more bacteriocin sequences are 

232 available, we will retain our model.

233 References

234 1. Control CfD, Prevention. Antibiotic resistance threats in the United States, 2019: US Department of Health and 

235 Human Services, Centres for Disease Control and Prevention; 2019.

236 2. Fields FR, Lee SW, McConnell MJ. Using bacterial genomes and essential genes for the development of new 

237 antibiotics. Biochemical pharmacology. 2017;134:74-86.

238 3. Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annual Reviews in Microbiology. 

239 2002;56(1):117-37.

240 4. Fields FR, Freed SD, Carothers KE, Hamid MN, Hammers DE, Ross JN, et al. Novel antimicrobial peptide 

241 discovery using machine learning and biophysical selection of minimal bacteriocin domains. Drug Development Research. 

242 2020;81(1):43-51.

243 5. Hamid MN, Friedberg I. Bacteriocin detection with distributed biological sequence representation.

244 6. Van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP. BAGEL3: automated identification of genes 

245 encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. Nucleic acids research. 

246 2013;41(W1):W448-W53.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510068
http://creativecommons.org/licenses/by/4.0/


An optimal feature set-based bacteriocin prediction tool

13

247 7. Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I. BACTIBASE second release: a database and tool platform 

248 for bacteriocin characterization. Bmc Microbiology. 2010;10(1):1-5.

249 8. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web 

250 interface. Nucleic acids research. 2008;36(suppl_2):W5-W9.

251 9. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, et al. BLAST: a more efficient report with 

252 usability improvements. Nucleic acids research. 2013;41(W1):W29-W33.

253 10. Morton JT, Freed SD, Lee SW, Friedberg I. A large scale prediction of bacteriocin gene blocks suggests a wide 

254 functional spectrum for bacteriocins. BMC bioinformatics. 2015;16(1):1-9.

255 11. Hamid M-N, Friedberg I. Identifying antimicrobial peptides using word embedding with deep recurrent neural 

256 networks. Bioinformatics. 2019;35(12):2009-16.

257 12. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint 

258 arXiv:13013781. 2013.

259 13. Cui Z, Chen Z-H, Zhang Q, Gribova VV, Filaretov VF, Huang D-s. RMSCNN: A Random Multi-Scale 

260 Convolutional Neural Network for Marine Microbial Bacteriocins Identification. IEEE/ACM Transactions on Computational 

261 Biology and Bioinformatics. 2021.

262 14. O'Shea K, Nash R. An introduction to convolutional neural networks. arXiv preprint arXiv:151108458. 2015.

263 15. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. 

264 Pattern recognition. 2018;77:354-77.

265 16. Kononenko I, editor Estimating attributes: Analysis and extensions of RELIEF. European conference on machine 

266 learning; 1994: Springer.

267 17. Robnik-Šikonja M, Kononenko I, editors. An adaptation of Relief for attribute estimation in regression. Machine 

268 learning: Proceedings of the fourteenth international conference (ICML’97); 1997.

269 18. Leo B. Random forests. Machine learning. 2001;45(1):5-32.

270 19. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. 

271 Bioinformatics. 2012;28(23):3150-2.

272 20. Bhasin M, Raghava GP. Classification of nuclear receptors based on amino acid composition and dipeptide 

273 composition. Journal of Biological Chemistry. 2004;279(22):23262-6.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510068
http://creativecommons.org/licenses/by/4.0/


An optimal feature set-based bacteriocin prediction tool

14

274 21. Chou KC. Prediction of protein cellular attributes using pseudo‐amino acid composition. Proteins: Structure, 

275 Function, and Bioinformatics. 2001;43(3):246-55.

276 22. Chou K-C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics. 

277 2005;21(1):10-9.

278 23. Dubchak I, Muchnik I, Holbrook SR, Kim S-H. Prediction of protein folding class using global description of amino 

279 acid sequence. Proceedings of the National Academy of Sciences. 1995;92(19):8700-4.

280 24. Calle ML, Urrea V. Stability of Random Forest importance measures. Briefings in bioinformatics. 2011;12(1):86-9.

281 25. Chowdhury AS, Reehl SM, Kehn-Hall K, Bishop B, Webb-Robertson B-JM. Better understanding and prediction of 

282 antiviral peptides through primary and secondary structure feature importance. Scientific reports. 2020;10(1):1-8.

283 26. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in 

284 binary classification evaluation. BMC genomics. 2020;21(1):1-13.

285 27. Chicco D, Tötsch N, Jurman G. The Matthews correlation coefficient (MCC) is more reliable than balanced 

286 accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData mining. 

287 2021;14(1):1-22.

288 28. Patz S, Becker Y, Richert-Pöggeler KR, Berger B, Ruppel S, Huson DH, et al. Phage tail-like particles are versatile 

289 bacterial nanomachines–A mini-review. Journal of advanced research. 2019;19:75-84.

290 29. Ghequire MG, De Mot R. The tailocin tale: peeling off phage tails. Trends in microbiology. 2015;23(10):587-90.

291 30. Guigo R. An introduction to position specific scoring matrices. Bioinformatica upf edu. 2016.

292  Supporting information

293 S1 File. Training dataset composed of known bacteriocin and non-bacteriocin protein sequences. 

294 (FASTA)

295 S2 File. Testing dataset composed of known bacteriocin and non-bacteriocin protein sequences. 

296 (FASTA)

297 S1-S8 Tables. Confusion matrixes of the machine learning models. 

298 (DOCX)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510068
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510068
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510068
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510068
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510068
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510068
http://creativecommons.org/licenses/by/4.0/

