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Imaging-by-sequencing methods are an emerg-
ing alternative to conventional optical micro- or
nanoscale imaging. In these methods, molecular
networks form through proximity-dependent asso-
ciation between DNA molecules carrying random
sequence identifiers. DNA strands record pairwise
associations such that network structure may be re-
covered by sequencing which, in turn, reveals the
underlying spatial relationships between molecules
comprising the network. Determining the computa-
tional reconstruction strategy that makes the best
use of the information (in terms of spatial localiza-
tion accuracy, robustness to noise, and scalability)
in these networks is an open problem. We present
a graph-based technique for reconstructing a diver-
sity of molecular network classes in 2 and 3 dimen-
sions without prior knowledge of their fundamen-
tal generation mechanisms. The model achieves
robustness by obtaining an unbiased sampling of
local and global network structure using random
walks, making use of minimal prior assumptions.
Images are recovered from networks in two stages
of dimensionality reduction first with this structural
discovery step followed by the manifold learning
step. By breaking the process into stages, compu-
tational complexity could be reduced leading to fast
and accurate performance. Our method represents
a means by which diverse molecular network gen-
eration strategies could be unified with a common
reconstruction framework.
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Imaging-by-sequencing methods (Zador et al., 2012;
Glaser et al.,, 2015; Schaus et al., 2017; Boulgakov
et al., 2018; Weinstein et al., 2019; Hoffecker et al.,
2019; Gopalkrishnan et al., 2020; Boulgakov et al.,
2020; Greenstreet et al., 2022) arose recently as a
potential alternative molecular imaging strategy based
entirely on DNA sequencing information in contrast to
optical or optics-coupled techniques like spatial omics
(Ke et al., 2013; Lee et al., 2015; Stahl et al., 2016;
Wang et al., 2018; Karaiskos et al., 2017; Satija et al.,
2015; Achim et al., 2015; Halpern et al., 2017), sin-
gle molecule localization microscopy (Séderberg et al.,
2006; Jungmann et al., 2010; Rust et al., 2006; Betzig
et al., 2006), or fluorescence imaging more broadly. In-
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Figure 1. Imaging-by-sequencing by staged graph embedding: A. (i) in situ net-
work formation, (i) harvesting, sequencing, and cataloging of network edges,
(iii) re-assembly of an abstract network. B. Beginning from an NxN pairwise
binary adjacency matrix, an initial structural discovery step uses random walk
sampling to compress the data into an NxD matrix. C. The remaining dimen-
sionality reduction is carried out with manifold learning. D. The recovered Nx3
or Nx2 set of coordinates is an approximation of the original (unknown) set of
relative molecular positions.

dividual nanoscale molecular associations in imaging-
by-sequencing lead to unique sequence-based records
that denote local proximity between molecules. This no-
tion of proximity-dependent association is extended to
form large interconnected networks that encompass a
global space (Fig.1 A). We can formally represent this
spatial information as a graph, where strand origins are
nodes and strand-to-strand associations are edges. An
open computational problem is that of optimal image re-
covery, i.e. the task of how to quickly and accurately
reorganize a collection of local pairwise associations
obtained from sequencing into a spatial representation
reflecting the underlying nano- or microscale molecular
distribution.

Imaging-by-sequencing has seen a variety of network
generating rules giving rise to different systematic pat-
terns of sub-graphs or network structural motifs. For
example: networks where nodes are connected to
most other nodes (Weinstein et al., 2019), locally con-
nected Voronoi meshes (Hoffecker et al., 2019), locally
connected neighbor networks (Boulgakov et al., 2018;
Schaus et al., 2017; Gopalkrishnan et al., 2020; Boul-
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gakov et al., 2020), "GPS" networks (Greenstreet et al.,
2022), or boundary-sharing cell networks (Zador et al.,
2012; Glaser et al., 2015). Strategies moreover fall into
distance-weighted(Weinstein et al., 2019; Gopalkrish-
nan et al., 2020; Greenstreet et al., 2022) or binary
unweighted categories(Schaus et al., 2017; Hoffecker
et al., 2019; Boulgakov et al., 2018). These design dif-
ferences at the fundamental structure level seem to indi-
cate that there cannot be a one-size-fits-all reconstruc-
tion strategy. Moreover, a still greater challenge arises
when attempting reconstruction while lacking complete
knowledge of the microscopic processes driving net-
work formation which are likely more physically com-
plex than their design. In this study, we show how to
achieve robust spatial reconstruction from a class of ar-
bitrary network motifs under conditions of minimal prior
knowledge of the underlying generating rules.
Following in situ self assembly, harvesting, and se-
quencing of a spatial DNA network (Fig.1 A), our pro-
cessing pipeline begins from a pairwise adjacency ma-
trix of the form

0 a2 ai,N
az,1 0 ... Q2 N
A= 0T )
anN,1 aNg2 ... 0
such that
1, if 3 connection betweennodeiandnode j
Aij= i
0, otherwise

(2
We then reduce the dimensionality of the initial NxN
matrix in two stages. First, we perform a structure
discovery step based on graph representation learn-
ing (Hamilton, 2020), which performs random walks to
sample the local and global structural characteristics in
the neighborhood of each node in the graph (Node2Vec
(Grover and Leskovec, 2016)), a step we shall refer to
as structural embedding (Fig.1 B). The output yields an
intermediate multi-dimensional vector of the form

911 91,2 .-~ 91,D
92,1 922 .-~ 92.D

G=| . ) . (3)
gN,1 gN,2 9dN.D

such that typically D < N. Second, the intermediate
vector is fed into a subsequent dimensionality reduction
stage (Fig.1 C) that uses manifold learning to embed N
points into either 2 or 3 dimensions, i.e. spatial coordi-
nate vectors of the form

/
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These reconstructed points (Fig.1 D) approximate the
original image within some accuracy. All reconstruc-
tions are obtained using the hyperparameters in Table
2, which are found to be a compromise between re-
construction accuracy and low computational complex-
ity. For a grid search involving such parameters, refer to
Fig.S1.
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Figure 2. 2 stage reconstruction by structural discovery and manifold learn-
ing. A. Original (left) set of points and resulting reconstructed (right) points
in i. 3 dimensions and ii. 2 dimensions. B. Types of proximity graphs (i-vii)
and illustrated corresponding edge drawing rules, featuring probability clouds
for stochastic rules. C. Probability that nodes i and j are neighbors (share an
edge) given that their Euclidean distance is d;; for each type of proximity graph
(i-vii) respectively. D. Neighbor count frequency with distance. E. Correlation
between Euclidean distance and Shortest-path distance for each network type
for each type of proximity graph (i-vii) respectively.

We use a staged process to reduce computational com-
plexity. Compressing the adjacency matrix to the form
in Eq.3 through structural embedding is beneficial as
the computational complexity for manifold learning be-
comes effectively linear ~ O(N) since D < N as will
generally be the case for large networks. Furthermore,
structural embedding has an upper bound time com-
plexity O(NlogN), a major improvement compared
to directly applying manifold learning with complexity
O(N?), where D= N.

Redistributing tasks to reduce overall complexity is a
strategy that is also employed in an aesthetic graph
drawing method (Harel and Koren, 2002), whereby
shortest-path distances from key nodes are computed
for structural embedding, and subsequent reduction is
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carried out with principal component analysis (Wold
et al.,, 1987) (PCA). Our method differs in that ran-
dom walk structural embedding is less computationally
demanding than determining shortest-path-distances.
Furthermore, we desire strict preservation of all ge-
ometric relationships, and thus used UMAP(Mclnnes
et al., 2018) over PCA for its superior preservation of
local geometry.

Using structural discovery followed by manifold learn-
ing, we reconstructed both 2 and 3-dimensional simu-
lated point distributions (Fig.2 A). Initial molecule po-
sitions were randomly distributed over the space of a
square or cube of characteristic length L = 1 with no
prior knowledge of molecule identity relative to position
so as to model the dispersion of DNA in an imaging-by-
sequencing experiment.

To explore the method’s robustness to variation in net-
work motif, we chose multiple different rule sets for de-
termining how randomly dispersed points assemble into
an interconnected network. Each rule can be seen as
representing a different model of the physical associa-
tion process (Fig.2 B), i.e. different mappings of proxim-
ity to edges. The different "proximity graph" (Zemel and
Carreira-Perpifian, 2004) definitions are summarized in
Table 1. We explored 3 deterministic (KNN-graph, e-ball
graph, Voronoi tessellation) and 4 stochastic proximity
graphs (based on arbitrary probabilistic rules). For com-
pleteness, we also examined a KNN distance-weighted
graph in contrast to the binary graphs represented by
Eqg.2, whereby edges are weighted by some function of
separation distance (in this case the inverse distance).

Table 1. Proximity graph rules

Proximity graph Rule: connect origin node to candidate...
i. KNN graph if among the k closest neighbors
ii. e-ball graph if within distance e to origin node

iii. Voronoi tessellation
iv. Decaying rule
v-vii. Random rules

if Voronoi cell shares border with origin cell
according a distance-decaying probability
according to arbitrary probability distribution

Network generation rules exhibit characteristic neighbor
acceptance probability distributions as a function of dis-
tance between neighbor and origin node (Fig.2 C). For
an arbitrary set of randomly distributed points, different
rules produce distinct neighbor frequency distributions,
i.e, (normalized) number of neighbors encountered as
a function of distance from a given node (Fig.2 D). We
observed that all network rules gave rise to monotonic
relationships between the average Euclidean distance
and graph shortest-path distance (Fig.2 E). This obser-
vation suggests a basis for geometry preservation be-
tween Euclidean and graph space - i.e. that there exists
a unique expected Euclidean distance corresponding
to each shortest-path-distance in a given reconstructed
network. A geometric relationship between a set of
points represented as a set of shortest-path-distances
in graph space may thus be expected to have a corre-
sponding (though probabilistic) relative geometric rela-
tionship in Euclidean space due to this mapping.

Ground truth access via simulation enables us to com-
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Figure 3. A. Distortion map for the 2D and 3D cases on left and right respec-
tively. Line segments connect original and reconstructed points and are colored
according to the displacement (distortion) between them. Relative scale bars
for the mean distortion, the maximum distortion and the characteristic length
are shown underneath. B. Quality metric dependence with proximity graph type
and system size for 2D and 3D respectively: i. and iv. Local quality metric,
ii. and v. Global quality metric, iii. and vi. Mean distortion. C. Computational
complexity for the staged approach (blue) and the not staged approach (red) for
time complexity (left) and memory complexity (right).

pare original and reconstructed points to assess accu-
racy. We quantify accuracy according to three stan-
dards: a local quality metric, a global quality metric and
a mean distortion quality metric. The local quality met-
ric (KNN, Supplementary Section E) examines the dif-
ference between original and reconstructed neighbor-
hoods of every point, and is an indicator of the fine
structure. Conversely, the global quality metric (CPD,
Supplementary Section F) examines the pairwise dis-
tance Pearson correlation between original and recon-
structed points and is an indicator of the coarse struc-
ture. Similar assessments of the local and global struc-
tures are common practice when comparing high and
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low-dimensional data (Kobak and Berens, 2019). Lastly,
the mean distortion is obtained by performing an affine
transformation (Supplmentary Section G) on the recon-
structed points. Distortion simply measures the dis-
placement between original and reconstructed points:
the less displacement there is, the better the reconstruc-
tion. The mean distortion is obtained by averaging the
distortion of all points.

Fig.3 A shows a visualization of distortion following re-
construction of 10000 points for 2D and 3D cases. While
central points show below-average distortions, border
points seem to exhibit higher distortions. We speculate
that this may be attributed to differences in characteris-
tic topology near the boundaries which diverge from the
patterns exhibited in the core of the point cloud.

Reconstruction accuracy dependence is measured via
three parameters: dimension, system size and proximity
graph type (Fig.3 B). Interestingly, accuracy in all three
categories does not appear to vary much by proximity
graph type (weighted or unweighted) as shown in Ta-
ble 3. Even random proximity rules (e.g. an arbitrary
bimodal neighbor acceptance probability) exhibit stable
quality trends in line with the other graph types. We ob-
served that accuracy worsens as system size increases,
with trends in 3D less severe than 2D. Local reconstruc-
tion quality according to the KNN metric for the 2D case
(Fig.3 B i.) was robust to proximity graph type, with a
maximum variation of 1.5% but diminished with system
size. For instance, reconstructed and original points
shared less than 40% overlap in neighbors for N = 10°.
Conversely, the 3D case (Fig.3 B ii.) exhibited a grad-
ual decrease with the system size, suggesting that 3D
reconstruction tolerates more points. It is also more ro-
bust, with a maximum variation of 0.7% between prox-
imity graph types. The global quality metric (Fig.3 B
iii-iv.) showed that pairwise distances between original
and reconstructed points were linearly correlated (Pear-
son coefficient is markedly close to 1), indicating that
relative distances are preserved during reconstruction.
Global quality in the 2D case exhibits the largest varia-
tion to proximity graph type, with a maximum of ~ 6%,
whereas the maximum variation in 3D was an order of
magnitude lower at 0.6%. Distortion also does not vary
much with proximity graph type (Fig.3 B v-vi.). However,
in agreement with the other metrics, distortion worsens
with increasing points. An exception to this tendency
was when system size was small enough in the 3D case
(N = 1000), with distortion improving within this incre-
ment (N > 20000). Overall we note that the pipeline
works without user supplied knowledge of or adaptation
to these structural differences, as this is managed au-
tomatically in the structural discovery stage. This would
be a major advantage in an experimental setup with im-
perfect knowledge of the molecular processes leading
to proximity associations. The reconstruction accuracy
size dependence might be mitigated by adjusting hyper-
parameters of the structural discovery step, for example
greater random walk lengths for larger systems.

We obtained accurate reconstructions from both
weighted and binary unweighted designs (Fig.3 B),
which is noteworthy as the unweighted designs store
less information than their distance-weighted counter-
parts. This would seem to support the validity of setups
that only record whether an interaction happened or not
(binary design) versus setups that record a measure of
the distance between points (weighted design).

Staged embedding significantly improves computational
complexity (Fig.3 C). We compare our approach to di-
rect application of manifold learning to the shortest-
path distance matrix (obtained by running a Breadth-
First-Search algorithm at the graph in Eqg.1). While
this nonstaged approach can also reconstruct 2 and 3-
dimensional images, its computational complexity be-
comes prohibitive for a large number of points, both
time-wise and memory-wise (Fig.3 C i. and ii.). How-
ever, the staged approach tackles the computational
complexity issue by effectively compressing the adja-
cency matrix using the random walk-based structural
discovery step (Eq.3). Subsequent manifold learning
task becomes less resource-consuming, dealing with a
D-dimensional vector instead of an [N-dimensional vec-
tor (where D < N). Whereas the nonstaged approach
exhibits near-quadratic empirical scaling O(N?) in both
time and memory, the staged approach has near-linear
complexity. This should enable large, fast reconstruc-
tions. Reconstructing a N = 10° image with the non-
staged approach would take years, and reconstructing
the same image using the staged approach took eight
hours.

Realizing the promise of imaging-by-sequencing will re-
quire robust, scalable reconstruction strategies. The
method presented here addresses robustness to un-
certainty regarding graph generating mechanisms, how-
ever the field will also need tools for dealing with sys-
tematic variations in network motifs as these might arise
in biological imaging scenarios, e.g. anomalously high
or low density regions. The problem of scalability will
also need to be continuously addressed, as falling se-
quencing prices enabling greater experiment through-
put will push the demand for computational efficiency.
Finally, while in this work we made use of quality met-
rics that compare reconstructed results to those of sim-
ulated ground truth data, however it will be important
to develop quality metrics that may be used without
ground-truth knowledge as will be the case in experi-
mental contexts.
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Table 2. Image reconstruction hyperparameters. Default value and definition

Parameter Default value Definition

neighbors 15 [UMAP] average number of neighbors per node

embedded dimension 32 [Node2Vec] each node is mapped into a vector of that many dimensions
1/q 1 [Node2Vec] the higher the more Breadth-First-Search alike random walks
1/p 1 [Node2Vec] the higher the more Depth-First-Search alike random walks
random walk length 10 [Node2Vec] number of visited nodes in each random walk

Table 3. Maximum and mean quality metric variation over the different proximity graphs, for the 2D and 3D case.

Mean variation - 2D Max variation - 2D Mean variation - 3D Max variation - 3D
KNN 0.011 0.015 0.002 0.007
CPD 0.032 0.058 0.003 0.006
Distortion 0.011 0.033 0.001 0.002

Supplementary Information

A. Node2Vec

Node2Vec (Grover and Leskovec, 2016) captures graph structural information through random walks, embedding
nodes into high-dimensional vectors. It effectively compresses the information of the adjacency matrix into a N x D
matrix (Eq.3). Storing information in such a way improves the overall computational complexity for the subsequent
manifold learning and the robustness of our approach. The structural embedding is optimized by maximizing the log-
likelihood of observing a node given a particular random walk context. In short, several random walks are performed
starting at each node while storing every visited node. This information is used to optimize randomly initialized
vectors. Negative sampling is used to reduce the optimization’s computational complexity.

B. UMAP

UMAP (Mclnnes et al., 2018) is a manifold learning technique focused on preserving local relations. Because of this,
it performs better when dealing with proximity information. It is worth noting that UMAP can directly recover images
without requiring a previous structural embedding step, as done in Fig.3 C. A dense version of the adjacency matrix
Eqg.1 can be obtained by computing the shortest-path distance between every node, where d;; is the shortest-path
distance between node ¢ and node j. The result is a NxN distance matrix, assigning N-dimensional vectors to each
node. Here, the linear relation between Euclidean distance and graph shortest-path distance (Fig.2 E) is exploited
to obtain high-dimensional vectors that preserve Euclidean distances.

C. Hyperparameters

We use the values shown in Table 2 as hyperparameters when using Node2Vec and UMAP. We found them to be a
good compromise between reconstruction accuracy and low computational complexity.

We also investigated the influence on the local and global quality metric over deviations from the default parameters
(Fig. S1).

D. The local and global structure

Local structure is preserved when points that are close to each other in the original image are also close in the
reconstructed image. In this work, local structure is investigated through the KNN quality metric, which evaluates
the fraction of neighbors preserved in the reconstruction. Conversely, global structure is preserved when points that
are separated far apart in the original image are equally far in the reconstructed image. In this case, the quantity
to be preserved is separation distance, and it can be investigated by computing the correlation between pairwise
distances.

E. KNN
The KNN quality metric can be formally defined as

1 qii 1, if 4, neighbors in both original and reconstructed
KNN = — =1 TR ’ S1
Nzl:zj: k % {0, otherwise. 1)

Here, N is the total number of elements and k is the number of considered neighbors. We used k = 15 for quality
metrics presented in this manuscript. Effectively, KNN computes the fraction between original and reconstructed
neighbors (inner summation) for every node (outer summation) and averages it over the total number of elements.

Supplementary Information | 6


https://doi.org/10.1101/2022.09.29.510142
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.29.510142; this version posted September 30, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

A

073 074 096 099 099 099 096  0.99
-0.8
E} ] -08
T 074 074 T 09 099 099 099 099 099
g 06 g
g 0.74 0.73 g2 09 0.99 0.99 0.99 0.99 0.99 0.6
=z a
[ E g 2
g x g ©
o 075 074 0.4 o 09 099 099 099 099 099 0.4
2 g
I 073 073 ¢ 096 099 099 099 098 098
2 0.2 2 0.2
4 g .
.7 ﬂ 0.69 ‘ (VRPN W 0.99 099  0.99
i i -0.0 | ) | 0.0
g 0 E g e £ 8 £ £ g g 5
o 3 E = = & @ 8 S - - 2
S H 2 = € 2
g s 2 g z
071 091 082 084 083 084 08 099 097 098 098 098 098
o ’ ] -0.8
] ] .
T 072 o091 081 084 083 084 T 099 097 097 098 097 098
06 &
2/ 073 09 081 08 08 084 2 100 097 097 099 097 098 - 0.6
=z a
o Z o a
3 2 g O
o 074 087 08 085 083 0.83 0.4 o 100 097 098 098 097 098 -04
g 2
2 E
¢ 075 084 081 085 084 0.83 ¢ 1.00 098 097 098 098 098
2 0.2 2 L02
i 3 .
0.67 PEGMN (IG5 081 079 078 ORIl 087 098 097 097
g 0 V 0 - 0.0 " ' ' ' -0.0
] 1 £ g & £ g 4 £ g 2 s
@ S 5 ~ = il b s 5 = = B
5 2 2 5 2 2
(] s z g ° z

Figure S1. A. Parameter grid search for the 2D case and B. Parameter grid search for the 3D case.

F. CPD

The CPD quality metric is the Pearson correlation between original and reconstructed pairwise distances. As op-
posed to KNN, CPD measures concern not only neighboring points but also distant points. The motivation to mea-
sure correlation is to evaluate distance preservation. If pairwise distances in the original image are linearly correlated
with pairwise distances in the reconstructed image, then the reconstructed image is equivalent to the original im-
age up to an affine transformation. Dealing with scalability often require workarounds: for N points, there are
W o N? pairwise distances, which can be computationally prohibitive for large N. The adopted solution is to
randomly sample N = 1000 points and compute their 499500 pairwise distances for the original and reconstructed
points, to later obtain a representative Pearson correlation.

G. Distortion

Point cloud alignment is necessary to compute distortion, i.e, the distance between each original and reconstructed
point pair. Consequently, we wish to align the original and reconstructed point cloud. To perform such an alignment
we apply a affine transformation, i.e, a composition of translation, rotation, scaling and reflection such that distortion
is minimized. In particular, we apply the coherent point drift algorithm (Myronenko and Song, 2010). However, if
the point clouds are initially far apart, such algorithm becomes computationally demanding. To solve this, we first
perform a set of transformations over the reconstructed points involving scaling obtained by computing the correlation
between pairwise distances, point-to-point translation and rotation, and the set of coordinate reflections that minimize
distortion.
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