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Abstract 10 

Wild populations are increasingly threatened by human-mediated climate change and land use 11 

changes. As populations decline, the probability of inbreeding increases, along with the potential 12 

for negative effects on individual fitness. Detecting and characterizing runs of homozygosity 13 

(ROHs) is a popular strategy for assessing the extent of individual inbreeding present in a 14 

population and can also shed light on the genetic mechanisms contributing to inbreeding 15 

depression. However, selecting an appropriate program and parameter values for such analyses is 16 

often difficult for species of conservation concern, for which little is often known about 17 

population demographic histories or few high-quality genomic resources are available. Herein, 18 

we analyze simulated and empirical data sets to demonstrate the downstream effects of program 19 

selection on ROH inference. We also apply a sensitivity analysis to evaluate the effects of 20 

various parameter values on ROH-calling results and demonstrate its utility for parameter value 21 

selection. We show that ROH inferences can be biased when sequencing depth and the 22 

distribution of ROH length is not interpreted in light of program-specific tendencies. This is 23 

particularly important for the management of endangered species, as some program and 24 

parameter combinations consistently underestimate inbreeding signals in the genome, 25 

substantially undermining conservation initiatives. Based on our conclusions, we suggest using a 26 

combination of ROH detection tools and ROH length-specific inferences to generate robust 27 

population inferences regarding inbreeding history. We outline these recommendations for ROH 28 

estimation at multiple levels of sequencing effort typical of conservation genomics studies.  29 

Running title: Testing runs of homozygosity inference tools 30 

Key words: inbreeding, population genomics, PLINK, BCFtools  31 
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Introduction 32 

Climate change and expanding human land use are increasingly partitioning wild populations 33 

into smaller and smaller areas of available and suitable habitat, often leading to declining 34 

populations sizes (Diffenbaugh & Field, 2013; Haddad et al., 2015). Decreases in population size 35 

can lead to increased inbreeding, which has been reported to have negative fitness consequences 36 

for inbred individuals in many wild populations (e.g., Crnokrak & Roff, 1999; Robinson et al., 37 

2019). When inbreeding depression is sufficiently severe, populations can be threatened with 38 

extirpation; thus, assessing inbreeding extent is crucial for understanding and mitigating risk in 39 

small populations of conservation concern. Prior to widespread application of whole-genome 40 

sequencing strategies to non-model species, genetic estimates of inbreeding were obtained using 41 

allozyme or microsatellite data or inferred from known pedigrees (Gibbs & Grant, 1989; Liberg 42 

et al., 2005; Saccheri et al., 1998; Slate, Kruuk, Marshall, Pemberton, & Clutton-Brock, 2000). 43 

These studies have been critically important to understanding the genetic dynamics of stable and 44 

shrinking populations and have led to increasing recognition of inbreeding depression’s 45 

prevalence and ability to affect wild population persistence (Keller & Waller, 2002; O’Grady et 46 

al., 2006). However, applying whole genome sequencing strategies to identify runs of 47 

homozygosity (ROHs; genomic regions where both inherited haplotypes are identical) opens up 48 

lines of inquiry previously not accessible via pedigree- or microsatellite-based studies (Kardos, 49 

Taylor, Ellegren, Luikart, & Allendorf, 2016).  50 

One long-standing question important for ongoing conservation efforts is whether 51 

inbreeding depression primarily occurs as a result of increasing homozygosity of recessive 52 

deleterious alleles or absences of heterozygote advantage (Hedrick & Garcia-Dorado, 2016). 53 

Analyses of genome-wide data have addressed parts of this question by quantitatively 54 
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documenting and illustrating inbreeding depression (Huisman, Kruuk, Ellis, Clutton-Brock, & 55 

Pemberton, 2016; Harrisson et al., 2019; Stoffel, Johnston, Pilkington, & Pemberton, 2021) and 56 

identifying support for increasing homozygosity of strongly deleterious mutations as a genetic 57 

mechanism of inbreeding depression (Robinson et al., 2019; Stoffel et al., 2021). Theoretical 58 

predictions regarding the genetic mechanisms of inbreeding depression mitigation have also been 59 

empirically tested. For example, coupling genomic and fitness data reveals positive correlations 60 

between ROH length and mutational load resulting from genetic purging (Stoffel, Johnston, 61 

Pilkington, & Pemberton, 2021; Szpiech et al., 2013), suggesting that ROH length distribution 62 

data can provide actionable insight for managers. Analyses of ROHs in ancient samples have 63 

even clarified the genomic and demographic changes preceding historic species extinction events 64 

(Liu et al., 2021; Palkopoulou et al., 2015). Despite these advances and insights, causative 65 

mechanisms of inbreeding depression remain unclear for many taxonomic groups, and this can 66 

hinder management efforts that seek to mitigate fitness declines in wild populations. 67 

Estimating ROHs can provide crucial insights into populations’ evolutionary histories, 68 

but these histories can in turn affect which ROH-calling software and combination of parameter 69 

values are most appropriate. For example, the settings best suited for inferring ROHs in a small, 70 

long-isolated population experiencing high levels of inbreeding would not be suitable for 71 

individuals sampled from a large, genetically diverse population because underlying sources of 72 

error in these two scenarios are very different (e.g., differences in ROH length distributions, 73 

numbers of variable sites, expected minor allele frequencies; Ceballos, Joshi, Clark, Ramsay, & 74 

Wilson, 2018). While some studies include comparisons of results from multiple programs or 75 

parameter value combinations (e.g., Saremi et al., 2019; Grossen, Guillaume, Keller, & Croll, 76 

2020; von Seth et al., 2021; Mueller et al., 2022), many more studies rely on default settings and 77 
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do not explore the effects of varying these parameter values on their results. Without extensive 78 

knowledge of a population’s demographic history (e.g., prevalence and degree of 79 

consanguineous mating or immigration), it can be challenging to determine the most appropriate 80 

combination of parameter values, and it is always impossible to know how close the resulting 81 

estimates approximate reality. 82 

We address this challenge by leveraging simulated and empirical genomic sequencing 83 

data to compare ROH identification programs and test a systematic process for determining 84 

software parameter values. We focus on whole-genome sequencing data because although 85 

previous studies have examined ROH inference for data sets with lower marker densities 86 

(Ceballos, Hazelhurst, & Ramsay, 2018; Duntsch, Whibley, Brekke, Ewen, & Santure, 2021; 87 

Meyermans, Gorssen, Buys, & Janssens, 2020), the insights from these previous works do not 88 

cover the spectrum of issues encountered when analyzing whole genome data. Specifically, we 89 

test a wide array of setting combinations for two programs commonly used in population 90 

genomic studies—PLINK and BCFtools/RoH—and, for PLINK, apply a sensitivity analysis to 91 

evaluate the effects of parameter values on ROH inference. Based on these results, we outline a 92 

set of recommendations for ROH estimation at multiple levels of sequencing effort typical of 93 

conservation genomics studies. These guidelines are particularly relevant when population 94 

histories are poorly understood or when a reference genome assembly is more fragmented than 95 

for a typical model species—two common conditions for species that are targets of conservation 96 

action. 97 
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Methods 98 

Part I: Simulated data 99 

Data generation and genotype calling 100 

We used SLiM v3.6 and modifications of Recipe 7.3 distributed with SLIMgui to simulate a 101 

population (N = 10,000), wherein each individual consisted of a homologous pair of 30-Mb 102 

chromosomes (Haller & Messer, 2019a, 2019b). The population was simulated for 10,000 103 

generations, followed by a bottleneck to 250 individuals that was sustained for 5,000 additional 104 

generations. Recombination rate (1 ×	10-7 per site per generation), base mutation rate (1.75 ×	10-7 105 

per site per generation), and population parameters were selected to produce a final population 106 

with FROH values ranging from 0.075 to 0.440 when considering ROHs ≥ 100 kb in length. The 107 

VCF file output from SLiM was converted to FASTA sequence files using a custom script in R 108 

v4.0.3 and a haploid ancestral sequence produced by SLiM (R Core Team, 2020). 109 

Using the known genotypes for all individuals, we generated two files: (i) a record of all 110 

true heterozygous sites and (ii) the start and end coordinates for all true ROHs ≥ 100 kb in 111 

length. We imposed this lower limit on ROH length because ROHs less than 100 kb in length 112 

likely originated in a single common ancestor approximately 500 generations ago (assuming a 113 

recombination rate of 1 cM/1 Mb; Thompson, 2013), and would not be expected to influence 114 

contemporary individual fitness as strongly as more recently acquired autozygous segments 115 

(Stoffel et al., 2021). This threshold has also gained popularity in population genetics studies of 116 

non-model species (Robinson et al., 2019; Hasselgren et al., 2021; Sánchez‐Barreiro et al., 2021; 117 

Xie et al., 2022), and we follow this convention for all downstream analyses. 118 
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 For 100 randomly selected individuals, FASTQ read files were generated from each of 119 

the two FASTA files representing homologous chromosomes using ART (version MountRainier-120 

2016-06-05) (Huang, Li, Myers, & Marth, 2012). We simulated 150-bp paired-end reads using 121 

the HiSeq 2500 error model to a depth of 50X per individual (i.e., 25X per homologous 122 

chromosome). Each FASTQ file was quality-checked using FASTQC v0.11.9 (Andrews, 2015). 123 

We aligned reads to the ancestral sequence using the BWA-MEM algorithm implemented in 124 

BWA v0.7.17 and downsampled the resulting BAM files using SAMtools v1.11 to simulate four 125 

additional levels of coverage per individual: 5X, 10X, 15X, and 30X (Li, 2013; Li et al., 2009). 126 

 For each sorted BAM file, we called genotypes using the ‘HaplotypeCaller’ algorithm in 127 

Genomic Variant Call Format (GVCF) mode as implemented in GATK v4.1.9.0 (McKenna et 128 

al., 2010). For each level of coverage, individual GVCF files were combined using 129 

‘CombineGVCFs’ and genotyped using ‘GenotypeGVCFs’. We applied ‘VariantFiltration’ to 130 

these VCF files in GATK to flag SNPs with low variant confidence (QualByDepth < 2), 131 

exhibiting strand bias (FisherStrand > 40), or with low mapping quality (RMSMappingQuality < 132 

20). Finally, SNPs failing these filters and indels were removed using ‘SelectVariants.’ 133 

ROH calling: hidden Markov model approach (BCFtools) 134 

We applied the same ROH calling approaches to all multisample VCF files produced from the 135 

simulated data set using two of the programs most commonly applied to non-model species. 136 

First, we tested an extension of the BCFtools software package, BCFtools/RoH v1.11 137 

(Narasimhan et al., 2016). This program uses a hidden Markov model to detect regions of 138 

autozygosity, requiring only a VCF file for all samples, population allele frequency information, 139 

and an optional recombination map. Because additional genetic information is not likely to be 140 
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available for many wild populations, we relied on allele frequencies calculated from each of our 141 

sample sets. The main decision faced when running BCFtools/RoH is whether to estimate 142 

autozygous regions using called genotypes or genotype likelihood values. We tested the effects 143 

of this decision on ROH estimation by either including the --GTs-only setting to limit inference 144 

based on genotypes (hereafter, BCFtools Genotypes) or omitting it and allowing genotype 145 

likelihood values to be considered (hereafter, BCFtools Likelihoods) (Table 1). 146 

ROH calling: sliding window approach (PLINK) 147 

We tested a large number of parameter value combinations in PLINK v1.90b6.26 (Chang et al., 148 

2015; Purcell et al., 2007). Unlike BCFtools/RoH, PLINK employs a sliding window approach 149 

to ROH identification: for each window placement, SNPs are examined for conformity to the 150 

PLINK parameter values (e.g., fewer than the number of heterozygous or missing calls allowed). 151 

It is then determined, for each SNP, whether a sufficient proportion of windows overlapping that 152 

SNP are homozygous and thus, whether the SNP is determined to be located within in a ROH. 153 

PLINK has multiple parameters that can be set by the user, and we initially tested a total of 486 154 

combinations of six of these parameters for each level of coverage (see Table 1 for list of 155 

parameters, initial values, and parameter descriptions). We focus on how changing software 156 

parameters affect ROH inference rather than the effects of various SNP-filtering strategies, as 157 

these questions have been addressed elsewhere (Howrigan, Simonson, & Keller, 2011; 158 

Meyermans et al., 2020). 159 

Before comparing the results from the two BCFtools/RoH approaches and PLINK, we had to 160 

select one set of PLINK parameter values. We applied an iterative approach designed by Mathur 161 

et al. (2021; non-peer-reviewed preprint) to identify a combination of parameter values that 162 
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minimizes the effect of value selection on inferred FROH (i.e., the bias in FROH inference due to 163 

each parameter value). For each iteration and level of coverage, we performed four steps: 164 

1. Run PLINK with all possible combinations of different parameters to be tested, 165 

ultimately generating a matrix of parameter values (predictor variables) and inferred FROH 166 

(response variable) for each sample. 167 

2. Create a linear model for each combination of parameter values (𝐹!"# = 𝑎 +	𝑏$𝑥$ +168 

⋯+	𝑏%𝑥% + 𝑒; where bi = weight of parameter xi), where the values of parameter xi are 169 

standardized to 1. 170 

3. Extract standardized rank regression coefficients (SRC) from the linear regression models 171 

using the sensitivity package in R and visualize sensitivity indices (SRCi) to rank weights 172 

of each parameter (Iooss, Da Veiga, Janon, & Pujol, 2021). 173 

4. If SRCi » 0 with little individual variation, then set the parameter i to the default value. If 174 

SRCi is > 0 or < 0, then consider the effect described by SRCi (i.e., whether increasing 175 

the value of the parameter increases or decreases FROH and how SRCi varies with called 176 

FROH) and either select a new set of parameter values to test or select a value from the 177 

tested set. 178 

We began the first iteration by reading the results from the initial 486 combinations of 179 

parameter values into R v4.0.3 (R Core Team, 2020). Details of the parameter value selection 180 

process for the simulated data are provided in Box 1. Briefly, we applied the four steps outlined 181 

above by examining the results from Iteration 1 (486 parameter value combinations) and noting 182 

that increasing the value of one parameter (phwh) had a positive effect on inferred FROH whereas 183 

increasing the values of two other parameters (phws and phzs) had negative effects on inferred 184 

FROH. For phwh, we allowed one heterozygous site per window to avoid (i) discarding a true 185 
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homozygous window due to an erroneous heterozygous call and (ii) retaining too many spurious 186 

homozygous windows due to inclusion of true heterozygous calls. For phws (scanning window 187 

length in SNPs) and phzs (minimum number of SNPs that can comprise a ROH), we tested two 188 

additional sets of parameter values and used these outputs to select the values for phws and phzs 189 

that (Table S2 and Box 1). 190 

Data summarization and statistical analyses 191 

Output files from BCFtools/RoH and the final PLINK runs were read into R for summarization 192 

and statistical analyses. We also read in true ROH data (i.e., start and end coordinates for known 193 

ROHs ≥ 100 kb in length) and calculated true FROH values for each individual. We filtered all 194 

called ROHs to retain ROHs ≥ 100 kb in length and calculated inferred FROH for each individual, 195 

coverage level, and method. To describe relationships between true FROH and called FROH values, 196 

we constructed a linear model for each method and coverage level with true FROH as the 197 

predictor variable and called FROH as the response variable. For each model, we calculated the 198 

95% confidence intervals (CIs) for the slope and y-intercept parameters using the confint 199 

function in R. To determine whether true and called FROH values differed for each model, we 200 

tested whether the model’s y-intercept differed from zero and whether the slope differed from 201 

one (i.e., whether the 95% CIs included zero or one, respectively). We also used the y-intercept 202 

and slope parameters to determine whether each method over- or underestimated true FROH at 203 

each coverage level, and how the degree of over- or underestimation changed with increasing 204 

true FROH values.  205 

At each coverage level, we compared the mean FROH values among ROH identification 206 

methods to determine whether different methods produce significantly different results. We also 207 
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compared mean FROH across coverage levels within each method to test whether coverage 208 

significantly affects inferred FROH. For each method and coverage level combination, we 209 

randomly sampled 15 individuals (to mirror the sample size for the empirical data, see below) 210 

from the 100 individuals with simulated genotypes, calculated mean FROH, and repeated this 211 

process 1,000 times. We generated 95% CIs around this mean using the 95% quantile of these 212 

1,000 values. We interpreted non-overlapping 95% CIs as indicative of significant differences 213 

within and among ROH identification method and coverage levels. 214 

To further evaluate the accuracy of each ROH identification method, we also calculated 215 

false negative (i.e., failing to call a ROH present in an individual) and false positive (i.e., calling 216 

a ROH that was not present in an individual) rates for called ROHs. We began by identifying 217 

overlap between true and called ROHs on a per-position basis by summing the number of bases 218 

covered by both the true ROH and called ROH(s). From this information, we calculated (i) the 219 

false negative rate: the total chromosomal length covered by true ROHs but not by called ROHs 220 

divided by the total length of true ROHs; and (ii) the false positive rate: the total chromosomal 221 

length covered by called ROHs but not by true ROHs divided by the total chromosomal length 222 

not covered by true ROHs. For each method and level of coverage, we calculated median false 223 

positive and negative rates and compared these medians and the 50% quantiles between all 224 

method and coverage level combinations to provide insight into method-specific differences in 225 

ROH calling errors. 226 

We calculated FROH for ROHs in four different length bins to explore how ROH 227 

identification methods may differ in their capabilities to accurately call ROHs of different sizes. 228 

We defined length bins as: (i) 100 kb ≤ short ROHs < 250 kb; (ii) 250 kb ≤ intermediate ROHs < 229 

500 kb; (iii) 500 kb ≤ long ROHs < 1 Mb; (iv) 1 Mb ≤ very long ROHs. We examined how FROH 230 
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for each bin changed with increasing coverage and also how patterns of over- and 231 

underestimation of FROH varied with increasing coverage by subtracting true FROH from called 232 

FROH for each individual. For each method, level of coverage, and length bin, we compared mean 233 

called FROH – true FROH and the 95% CI around these means (again estimated using the quantiles 234 

function in R), with CIs < 0 indicating underestimation of true FROH and CIs > 0 indicating 235 

overestimation. We further explored relationships between true and called ROHs by examining 236 

how true and called ROHs overlap. We tabulated how many true ROHs each called ROH 237 

overlaps (or contains) and vice-versa for each unique combination of ROH detection method, 238 

coverage level, and ROH length bin. 239 

Part II: Empirical data 240 

Data curation and genotype calling 241 

To test the effects of program and parameter value selection on identifying ROHs from empirical 242 

data, we analyzed publicly available whole genome sequencing data for a species of conservation 243 

concern, the Tasmanian devil (Sarcophilus harrisii; BioProject PRJNA549794 in NCBI’s 244 

Sequence Read Archive; Wright et al., 2020). From the full dataset, we selected the 15 245 

individuals from this data set with the highest number of reads. The accession numbers and 246 

relevant metadata for each set of sequences are provided in Table S1.  Adapters and low-quality 247 

bases were trimmed from raw sequences using Trim Galore v0.6.6 (Krueger, 2019), and cleaned 248 

reads were mapped to the mSarHar1.11 S. harrissii reference genome (NCBI GenBank accession 249 

GCA_902635505.1) using BWA-MEM (Li, 2013).  250 

We used Qualimap v2.2.1 to determine mean coverage per individual from each sorted 251 

BAM file (Okonechnikov, Conesa, & García-Alcalde, 2016). These results were used to 252 
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calculate the downsampling proportions required to approximate 5X, 10X, 15X, and 30X 253 

coverage for each individual. Following downsampling, BAM files were processed in the same 254 

manner as for the simulated data, with additional SNP filtering criteria applied in VCFtools 255 

v0.1.17 (Danecek et al., 2011), including filtering SNPs within 5 bp of indels and requiring 256 

minor allele frequencies ≥ 0.05 and < 20% missing data across individuals. 257 

ROH calling and sensitivity analyses 258 

We called ROHs from the final multisample VCF files using the same approaches as for the 259 

simulated data. We called ROHs in two ways, (i) using BCFtools/RoH (i.e., relying on genotypes 260 

or on genotype likelihood values) and (ii) testing 486 parameter combinations in PLINK at each 261 

level of coverage and identifying robust values for each parameter following the same sensitivity 262 

analysis process described above. Parameter values for all iterations tested are provided in Table 263 

S2 with additional details provided for the empirical data in the Supplementary Material. 264 

Data summarization and statistical analysis 265 

Output files from BCFtools/RoH and the final PLINK runs for the empirical data were read into 266 

R for summarization and statistical analyses. Following the approach we used for the simulated 267 

data, we filtered all called ROHs to retain ROHs ≥ 100 kb in length and calculated inferred FROH 268 

for each individual, coverage level, and method. We also calculated FROH for ROHs in four 269 

different length bins, where length bins were defined as: (i) 100 kb ≤ short ROHs < 500 kb; (ii) 270 

500 kb ≤ intermediate ROHs < 1 Mb; (iii) 1 Mb ≤ long ROHs < 2 Mb; (iv) 2 Mb ≤  very long 271 

ROHs. To compare results across methods, coverage levels, and ROH lengths, we calculated 272 

mean FROH values and compared the 95% CIs around these means among methods and coverage 273 

levels. 274 
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Results 275 

Part I: Simulated data 276 

Data collection and curation 277 

For the simulated data set, all analyses were based on 100 individuals randomly sampled from 278 

the small simulated population (N = 250) that underwent a strong bottleneck 5,000 generations 279 

ago. Mean heterozygosity for these 100 individuals was 7.68 x 10-5 (SD = 5.88 x 10-6). After 280 

retaining only ROHs ≥ 100 kb in length, mean FROH was 0.151 (SD = 0.045) and ranged from 281 

0.083 to 0.293. Following downsampling and SNP filtering, the final mean coverage was 4.80, 282 

9.70, 14.62, and 28.91 for the 5X, 10X, 15X, and 30X downsampled sets, respectively. 283 

ROH calling results 284 

We used our simulated data set and linear models to determine whether each approach tends to 285 

over- or underestimate true FROH. Both of the BCFtools methods (Genotypes and Likelihoods) 286 

underestimated FROH, with all model intercepts across coverage levels negative and different 287 

from zero (i.e., no 95% CIs for intercepts included zero; Fig. 1; Table S3). For BCFtools 288 

Genotypes, model slopes were approximately one (i.e., all 95% CIs for slopes included one; 289 

Table S3), whereas the slopes of all BCFtools Likelihoods models were significantly less than 290 

one, indicating that FROH estimated using Likelihoods can vary relative to true FROH. PLINK 291 

tended to produce overestimates of FROH, but estimates at the highest coverage levels were 292 

accurate (i.e., the 95% CI for model intercepts included zero at 30X and 50X). The 95% CI for 293 

the PLINK 5X model was larger and did not overlap the 95% CIs for the other PLINK coverage 294 

level model intercepts, indicating greater overestimation occurred using 5X PLINK compared to 295 

using PLINK at other coverages. PLINK model slopes did not differ from one at 5X or 10X, but 296 
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did differ at 15X, 30X, and 50X, with these slope estimates exceeding one, again indicating that 297 

the estimated FROH varied with true FROH. 298 

 We also compared  FROH values across methods and observed the largest differences for 299 

FROH calculated from 5X coverage data (Fig. 2A-C). We compared the 95% CIs around mean 300 

FROH and found that at 5X, BCFtools Likelihoods produced significantly smaller FROH estimates 301 

than BCFtools Genotypes, and both BCFtools estimates were smaller than PLINK’s estimate. At 302 

all other coverage levels, mean FROH did not differ between the two BCFtools methods and 303 

PLINK again produced significantly higher FROH estimates. For both BCFtools approaches, there 304 

were no significant differences in mean FROH across coverage levels, but for PLINK, FROH 305 

estimated at 5X was significantly greater than estimates at higher coverage levels. For all 306 

methods and at all coverage levels, inferred mean FROH differed from the true mean FROH value 307 

(i.e., none of the bootstrapped 95% CIs included the true mean FROH value). Raw results for all 308 

individuals are presented in Fig. S1. 309 

We calculated false negative (i.e., failing to call a ROH present in an individual) and false 310 

positive (i.e., calling a ROH that was not present in an individual) rates to further assess each 311 

method’s accuracy. With respect to false positive rates, PLINK performed poorly relative to the 312 

other methods, with median false positive rates of 0.078 for PLINK, 0.018 for BCFtools 313 

Genotypes, and 4.09 x 10-8 for BCFtools Likelihoods across all tested coverage levels (Fig. 3A). 314 

For all three methods, increasing coverage to 10X corresponded to decreasing false positive 315 

rates, but these tended to level off at high coverages. Variation in false positive rates among 316 

samples at each coverage level was smallest for BCFtools Likelihoods, followed by BCFtools 317 

Genotypes, with PLINK showing the greatest variation across samples (summary statistics 318 

provided in Table S4). Generally speaking, the patterns in false negative rates were in the 319 
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opposite direction and magnitude to those we observed with false positives: both BCFtools 320 

methods performed poorly relative to PLINK, with BCFtools Genotypes producing slightly 321 

lower rates (overall median = 0.552) than BCFtools Likelihoods (overall median = 0.744; Fig. 322 

3B). PLINK exhibited lower false negative rates than the BCFtools approaches (overall median = 323 

0.165) and less variation among samples at each coverage level. All three methods produced 324 

false negative rates that increased with increasing coverage up to 10X. Examples of false 325 

negative and false positive scenarios can be seen in Fig. 4, which illustrates a 6-Mb window of 326 

true and called ROHs for one exemplar individual (full chromosome-level examples can be seen 327 

for three individuals in Fig. S2). 328 

 We also examined how true and called values of FROH varied for ROHs of different 329 

lengths. For the simulated data, all three methods almost always underestimated the proportion 330 

of the genome located in short ROHs, with the 95% CI less than zero for all tests other than 331 

PLINK at 5X coverage (Fig. 5A-C). For ROHs of intermediate, long, and very long lengths, all 332 

of the 95% CIs included zero. PLINK produced the highest overestimates of FROH and the most 333 

variation across samples of the three approaches, followed by BCFtools Genotypes. However, 334 

95% CIs for BCFtools Likelihoods included zero for these three length bins, and variation 335 

among individuals decreased with both increasing coverage and increasing ROH length, 336 

suggesting increased accuracy with increasing depth and ROH length (Fig. 5B). PLINK and 337 

BCFtools Genotypes almost exclusively overestimated FROH for very long ROHs, even though 338 

most (94/100) of the simulated individuals had no very long true ROHs (Fig. 5D). Finally, one 339 

coverage-related trend emerged across ROH length categories and methods, with FROH estimates 340 

calculated at 5X coverage often exceeding estimates calculated at higher coverage levels. Across 341 

all length bins combined, individual estimates of FROH calculated at 5X were greater than those 342 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510155doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510155
http://creativecommons.org/licenses/by-nc-nd/4.0/


calculated at 10X for 34%, 56%, and 72% of BCFtools Likelihoods, BCFtools Genotypes, and 343 

PLINK estimates, respectively. 344 

 To further investigate how called ROHs correspond to true ROHs, we identified regions 345 

of overlap between true and called ROHs within each individual and at each coverage level using 346 

a unique identifier for each true and called ROH. We found no instances of true ROHs being 347 

split into multiple called ROHs, but multiple true ROHs were often lumped together into a single 348 

called ROH. This pattern held true for all three methods and at most coverage levels (Fig. 6). For 349 

BCFtools Genotypes and PLINK, increasing coverage did not appear to ameliorate this problem 350 

(i.e., the mean number of true ROHs lumped into a single called ROH changed very little with 351 

increasing coverage). However, for BCFtools Likelihoods, the number of true ROHs contained 352 

in a single called ROH decreased with increasing coverage, reaching a 1:1 ratio at 30X. Across 353 

all three methods, the mean number of true ROHs combined into a single called ROH increased 354 

with increasing ROH length with the exception of BCFtools Likelihoods at coverage levels ≥ 355 

30X (Fig. S4). Examples of this lumping tendency can be seen in Fig. 4 and Fig. S2. 356 

Part II: Empirical data 357 

Genotype and ROH calling results 358 

For the 15 sets of reads we downloaded from NCBI, the mean number of reads per sample was 359 

9.75 x 108. Read mapping rates to the mSarHar1.11 S. harrissii reference genome were high, 360 

with an average of 95.4% of reads mapped and properly paired. For the final sets of filtered 361 

SNPs (n = 1,532,598), average depth across samples was 48.43 for the full coverage set (i.e., not 362 

downsampled) and 6.37, 11.84, 16.63, 30.75 for the 5X, 10X, 15X, and 30X downsampled sets, 363 

respectively (Table S1). 364 
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Across methods, FROH estimated at 5X coverage was significantly higher than FROH 365 

estimates at all higher levels of coverage (95% CIs did not overlap, Fig. 2 D-F). At 5X coverage, 366 

FROH estimates produced by the two BCFtools approaches significantly differed from one 367 

another, with neither approach’s estimates differing from PLINK’s. For all higher levels of 368 

coverage, FROH estimates produced by BCFtools Genotypes and PLINK did not differ but 369 

estimates from both methods differed from those produced by BCFtools Likelihoods. 370 

 When comparing how the three methods estimated length-specific FROH values, patterns 371 

varied across ROH length categories. For short ROHs, PLINK produced the highest FROH 372 

estimates, followed by BCFtools Likelihoods and then by BCFtools Genotypes, with differences 373 

among the three methods significant (i.e., non-overlapping 95% CIs) at 5X-30X coverage and 374 

differences between BCFtools Genotypes and the other two methods significant at 50X (Fig. 7). 375 

For longer ROHs, BCFtools Genotypes generally had higher FROH estimates than the other two 376 

approaches, and these differences were significant at all coverage levels for long and very long 377 

ROHs. Across all methods and ROH length bins, FROH estimated at 5X coverage were all 378 

significantly different from estimates at all other coverage levels within each method and ROH 379 

length bin combination. 380 

 

Discussion 381 

In this manuscript, we highlight the quantitative differences in ROH detection between multiple 382 

programs and effects on downstream interpretations associated with these differences. However, 383 

these are dependent on our ability to choose appropriate program parameter values, which is 384 

particularly complicated when there are a large number of possible parameter value 385 
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combinations. Although some studies describe testing multiple sets of PLINK parameter values 386 

(e.g., Saremi et al., 2019; Grossen et al., 2020; von Seth et al., 2021; Mueller et al., 2022), many 387 

do not and there is no widely used, previously published approach to systematically compare 388 

results produced by different parameter value combinations.  389 

In Box 1, we demonstrate the exploratory utility of the sensitivity analysis process we 390 

followed to select parameter values for our data (see the Supplementary Material for 391 

corresponding information for the empirical data). This process is important because disparate 392 

sequencing data characteristics are likely to require different parameter values, meaning that it 393 

may not be appropriate to use the values we used herein when analyzing other data. For example, 394 

studies that use fewer SNPs (e.g., populations that are less genetically diverse, studies with 395 

reduced sequencing efforts) should test the effects of altering the minimum SNP density required 396 

on ROH inference results. Interactions between specific parameters should also be visualized, 397 

such as between the number of heterozygous calls allowed in a window and window size in 398 

SNPs, particularly if a reference genome is not assembled to chromosome-level or if mapping 399 

rates are somewhat heterogenous across the genome. Sensitivity analysis provides a quick and 400 

convenient way to visualize how different parameter values affect FROH estimates for an entire 401 

data set and the degree of variation in those effects across individuals. For samples where 402 

inbreeding is anticipated to be highly variable across individuals or for data sets where coverage 403 

varies between 5X and 10X, evaluating inter-individual variation in FROH inference results is 404 

particularly important, especially in light of the length-specific ROH inference issues we 405 

describe for our results. 406 
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Inferred FROH value accuracy varies with method and level of coverage 407 

The patterns of FROH we estimated tended to vary with program choice and an individual’s 408 

inbreeding history, potentially leading to uncertainty when incorporating these inbreeding values 409 

into management action plans. Between the two BCFtools methods when considering identified 410 

ROHs of all lengths, Genotypes produced more accurate overall FROH estimates than 411 

Likelihoods, with FROH estimates from Likelihoods also increasingly diverging from the true 412 

FROH value with increasing true FROH (Fig. 1A,B). For populations expected to have considerable 413 

variation in FROH among individuals (e.g., a population that has remained somewhat small for an 414 

extended period of time with evidence of recent immigration), applying the BCFtools 415 

Likelihoods approach could result in increasingly skewed values for the individuals with the 416 

highest levels of inbreeding. For example, using the linear model parameters estimated for 15X 417 

coverage, an individual with a true FROH of 0.10 would be assigned an inferred FROH of 0.01 418 

(difference = -0.09), whereas an individual with a true FROH value of 0.40 would be assigned 419 

0.23 (difference = -0.17). This could be particularly problematic when dealing with species or 420 

populations of conservation concern because the individuals with the highest true FROH also have 421 

the largest magnitude of error, meaning that concerning signals of inbreeding could go 422 

undetected. 423 

In contrast to the underestimations produced by the BCFtools/RoH methods, the sliding 424 

window approach implemented in PLINK overestimated FROH. This was particularly evident at 425 

5X coverage where FROH estimates differ more from their true values than any other method and 426 

coverage level combination in our study (Fig. 1C). However, at coverages above 5X, PLINK 427 

produced better estimates than either BCFtools approach (i.e., in our linear models, intercepts for 428 

PLINK at 10X-50X are closer to zero than for either BCFtools method and 95% CIs for these 429 
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parameter estimates do not overlap with any BCFtools intercept 95% CIs). In the context of 430 

endangered species conservation, small overestimations of FROH may be more desirable than 431 

underestimations because these are likely to be more conservative (i.e., indicating more close 432 

inbreeding than is present in reality) in many situations. Importantly though, as with BCFtools 433 

Likelihoods, FROH estimates diverged from true FROH at increasing values of true FROH. However, 434 

these values diverged at a much lower rate in the PLINK estimates compared to BCFtools 435 

Likelihoods. Again using our simulated data as a model, an individual with a true FROH value of 436 

0.40 would be estimated to have an FROH of 0.46 (difference = 0.06) when estimated at 10X-50X 437 

with PLINK.  438 

For the two BCFtools methods, patterns of underestimation were consistent with these 439 

approaches’ high false negative rates and low false positive rates (Fig. 3). Conversely, PLINK 440 

produced higher false positive rates and lower false negative rates than either BCFtools method, 441 

consistent with overestimation of FROH. In terms of absolute difference between true and called 442 

FROH values, PLINK outperformed BCFtools at 10X coverage and above, suggesting that PLINK 443 

will often provide the most robust estimate of FROH. However, at lower coverages (5X-10X), 444 

BCFtools Genotypes could be considered, given that this method produces FROH estimates closer 445 

to true FROH than either PLINK or BCFtools Likelihoods. On the other hand, the underestimates 446 

produced by this approach are likely related to the high false negative rates we observed 447 

(especially relative to PLINK), and the appearance of convergence on true FROH may be due to 448 

length-specific ROH calling rates by this program (see below) and therefore highly variable 449 

across populations. It is important to note that while the trends we describe may be consistent 450 

with some empirical results (e.g., Robinson et al., 2019), individual variation in genomic 451 
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characteristics exerts strong influence over FROH inference results as suggested by comparisons 452 

between our simulated and empirical results. 453 

Coverage ≤ 10X strongly influences called ROH lengths 454 

For the empirical data at 5X coverage, relative to higher coverage levels, all methods 455 

consistently produced lower FROH estimates for short ROHs and higher FROH estimates for longer 456 

ROHs (Fig. 7). The overcalling of intermediate to very long ROHs at 5X could be related to the 457 

ROH-lumping issue noted in the simulated results, wherein multiple true ROHs are erroneously 458 

called as a single ROH (Fig. 6). While we cannot confirm the accuracy of FROH inference for the 459 

empirical data, comparisons between results generated at 5X and higher levels of coverage are 460 

consistent with the simulated results, suggesting that these patterns are accurate (Fig. 2). For the 461 

Tasmanian devil samples we analyzed, the results from 5X coverage suggest much more 462 

frequent, recent inbreeding than the results from ≥ 10X coverage, painting a much more dire 463 

demographic scenario than is presented when more coverage is obtained. If one of the goals of a 464 

whole-genome sequencing project is to assess recent or historical patterns of inbreeding from 465 

ROH lengths, ~10X coverage appears to be a minimum requirement for generating robust 466 

inferences. 467 

Patterns of under- or overestimation may vary with ROH length distributions 468 

In our simulated and empirical data, we observed patterns indicating that underlying ROH length 469 

distributions influence the patterns of FROH under- and overestimation. For example, even though 470 

PLINK produced higher FROH estimates than both BCFtools methods for the simulated data and 471 

PLINK and BCFtools Genotypes produced statistically indistinguishable estimates for the 472 

empirical data (Fig. 2), length-specific FROH estimates suggest that differences in underlying true 473 
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ROH length distributions between the simulated and empirical data may be responsible for the 474 

differences in relative FROH results we observed. For the simulated data, BCFtools Genotypes 475 

increasingly overestimated FROH as ROH length increased (Fig. 5, Fig. S2), with increasing 476 

numbers of true ROHs erroneously combined into single called ROHs (Fig. 6). Although we 477 

cannot know the true ROH length distributions for the empirical data, long ROHs were called at 478 

higher frequencies in the empirical data (at 15X:  382, 397, and 1,281 total ROHs ≥ 1 Mb in 479 

length called by PLINK, BCFtools Likelihoods, and BCFtools Genotypes, respectively, in 15 480 

individuals) relative to the simulated data (31 total true ROHs ≥ 1 Mb in length in 25 481 

individuals). The tendency of BCFtools Genotypes to overestimate FROH for long ROHs 482 

combined with the presence of more called long ROHs in our empirical data set may have 483 

minimized differences in overall FROH estimates between BCFtools Genotypes and PLINK in the 484 

empirical results relative to the simulated results (Fig. 2). Increased frequencies of long ROHs in 485 

the empirical data may have also led to greater differences in FROH between 5X and 10X across 486 

all three methods for the empirical results compared to the simulated results (Fig. 2). All three 487 

methods call significantly more intermediate to very long ROHs from the empirical data at 5X 488 

than at 10X (Fig. 7B-D), and this may be related to the increased false positive rates we noted at 489 

5X in the simulated data. These results again illustrate the effects of a population’s or 490 

individual’s actual ROH complement, which is determined by typically unknown demographic 491 

and breeding patterns, on the relative reliability and utility of ROH identification programs.  492 

Particularly for endangered species with potentially complicated demographic histories, 493 

interpreting ROH patterns in a population may be most accurate when multiple tools are used to 494 

create an integrated picture. For example, comparing overall and length-specific FROH estimates 495 

between BCFTools/RoH and PLINK can be used to understand the underlying length 496 
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distributions; an abundance of shorter ROHs would be indicated by higher overall FROH 497 

estimates in PLINK compared to BCFtools Genotypes but similar length-specific FROH patterns, 498 

whereas a ROH complement comprising many longer ROHs would be indicated by similar 499 

overall FROH estimates between PLINK and BCFtools Genotypes but higher intermediate to very 500 

long FROH estimates from BCFtools Genotypes related to PLINK. These accurate assessments of 501 

past and ongoing inbreeding could then be used to inform management options, such as 502 

translocations to ameliorate close inbreeding.  503 

Conclusions 504 

Inferring the presence and characteristics of ROHs can shed important light on population 505 

demographic histories, detect inbreeding depression when combined with fitness information, 506 

and even disentangle the mechanisms underlying or loci contributing to inbreeding depression. 507 

However, given the variation in ROH-calling accuracy (overall and length-specific) 508 

demonstrated here, we caution against direct comparisons of FROH values generated from 509 

different data types or sources or using different inference parameters. Data from disparate 510 

studies could be combined and re-analyzed in a standardized fashion, although special attention 511 

should be paid to variation in reference genome assembly quality for interspecific comparisons 512 

(Brüniche-Olsen, Kellner, Anderson, & DeWoody, 2018). Regardless of the number of data sets 513 

to be analyzed, we strongly recommend that studies relying on ROH inference (i) employ at least 514 

two ROH-calling programs and interpret their results with each method’s biases in mind and/or 515 

(ii) compare multiple parameter value combinations via sensitivity analysis, taking care to vary 516 

parameters of particular relevance to a data set. 517 
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Data Availability 668 

Code for all bioinformatic analyses available at https://github.com/avril-m-669 

harder/roh_inference_testing and https://github.com/kennethb22/roh_parameter_project_kk. All 670 

FASTA files for simulated individuals and final VCF files (for simulated and empirical data and 671 

all coverage levels) will be uploaded to a public repository upon manuscript acceptance. 672 
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Figure Captions 676 

Figure 1. Both BCFtools methods underestimate true FROH whereas PLINK produces 677 

overestimates. A-C) True vs. called FROH for each method and level of coverage. Each regression 678 

line represents linear model results for a single level of coverage with the shaded areas 679 

representing 95% confidence intervals. Each point represents data for a single simulated 680 

individual; dashed line is 1:1 line. For PLINK, increasing coverage increases FROH estimation 681 

accuracy, whereas accuracy decreases for both BCFtools approaches.  682 

Figure 2. Increasing coverage from 5X to 10X can have significant effects on FROH estimates. A-683 

C) True and inferred FROH values for simulated data and D-F) inferred FROH values for empirical 684 

data at varying coverage levels for all three methods. True mean FROH values for simulated data 685 

are indicated by horizontal dashed line. For the simulated data, error bars are bootstrapped 95% 686 
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CIs and points represent mean values (n=100); lines for 15 randomly subsampled individuals are 687 

displayed for simplicity (all individual data presented in Fig. S1). For the empirical results, 688 

points represent mean values (n=15) and error bars correspond to 95% CIs. Across methods and 689 

data types, mean FROH decreases from 5X to 10X, with significant differences detected when 690 

simulated data are analyzed with PLINK and for all three methods applied to the empirical data. 691 

Figure 3. PLINK outperforms BCFtools with respect to false negative rates, but underperforms 692 

with respect to false positive rates. A) False positive (i.e., calling a ROH that was not present in 693 

an individual) and B) false negative (i.e., failing to call a ROH present in an individual) rates for 694 

simulated data across coverage levels and methods. Horizontal lines indicate median values and 695 

shaded boxes are 50% quantiles. Note difference in scale of y-axis between panels A and B. Both 696 

BCFtools approaches outperform PLINK with respect to false positive rates but the reverse is 697 

true for false negative rates. Increasing coverage corresponds to decreasing false positive rates 698 

and to increasing false negative rates. 699 

Figure 4. True and called ROH positions for a ~6-Mb window in one exemplar individual. 700 

Evidence of false negative and false positive calls can be seen across all methods and coverage 701 

levels, and the lumping issue (i.e., the erroneous combining of multiple true ROHs into a single 702 

called ROH) is apparent for BCFtools Genotypes, BCFtools Likelihoods (at 5X coverage), and 703 

PLINK. Full chromosome plots are provided for three individuals in Fig. S2. 704 

Figure 5. BCFtools Likelihoods produces more accurate length-specific FROH estimates than 705 

BCFtools Genotypes or PLINK (but see the Discussion for additional context of this result). A-706 

C) Called FROH – true FROH across methods, ROH length bins, and coverage levels. Dashed 707 

horizontal line is at y = 0 and values above this line indicate overestimation of FROH whereas 708 
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values below this line indicate underestimation. Length bins were defined as: (i) 100 kb ≥ short 709 

ROHs < 250 kb; (ii) 250 kb ≤ intermediate ROHs < 500 kb; (iii) 500 kb ≥ long ROHs < 1 Mb; 710 

(iv) 1 Mb ≥ very long ROHs. D) Histograms for bin-specific true FROH values (i.e., total 711 

frequencies sum to 100 individuals within each plot). Despite very few very long ROHs present 712 

in simulated individuals, PLINK and BCFtools Genotypes consistently overestimate FROH for 713 

this bin. All individual data for called FROH – true FROH are presented in Fig. S2. 714 

Figure 6. For BCFtools Genotypes and PLINK (and BCFtools Likelihoods at low coverage), 715 

multiple true ROHs are increasingly lumped into single called ROHs with increasing true ROH 716 

length. A) Illustration of relationships between true ROHs and the called ROHs they are often 717 

lumped into. B-E) Number of true ROHs lumped into a single called ROH for each ROH length 718 

bin, method, and coverage level. Total number of called ROHs falling into each length bin is 719 

provided in the upper right corner of each panel. Degree of circle transparency corresponds to the 720 

number of called ROHs matching that particular y-value. Transparency levels are normalized to 721 

the total number of called ROHs within each panel (all methods and coverage levels combined). 722 

Diamonds represent mean values. A simplified version of this figure showing trends in mean 723 

values is provided in Fig. S4. Lumping patterns can also be seen in Figs. 4 and S2. 724 

Figure 7. For the empirical data, PLINK tends to call more short ROHs than the BCFtools 725 

approaches whereas BCFtools Genotypes tends to call more intermediate to very long ROHs 726 

than the other two methods. ROH length-specific FROH values for A) short, B) intermediate, C) 727 

long, and D) very long ROHs. Length bins were defined as: (i) 100 kb ≤ short ROHs < 500 kb; 728 

(ii) 500 kb ≤ intermediate ROHs < 1 Mb; (iii) 1 Mb ≥ long ROHs < 2 Mb; (iv) 2 Mb ≥ very long 729 

ROHs. Points correspond to mean values and error bars are 95% CIs. Across all methods and 730 
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ROH length bins, FROH estimates at 5X coverage are significantly different from estimates at all 731 

other coverage levels within each method and ROH length bin combination. 732 
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Table 1. Parameter values applied during ROH calling for both simulated and empirical data. For PLINK, a total of 486 combinations 
were tested. PLINK default values are underlined. ROH = run of homozygosity. 

Program Parameter Abbreviation Values Description 

BCFtools/RoH --GTs-only -- 30 If set, uses genotypes only and ignores likelihood values 

PLINK --homozyg-window-het phwh 0, 1, 2 Number of heterozygous sites allowed within a window; 
default = 1 heterozygous site 

 --homozyg-window-
missing 

phwm 2, 5, 50 Number of missing calls allowed in a window; default = 5 
missing calls 

 --homozyg-window-snp phws 50, 100, 1000 Scanning window length in SNPs; default = 50 SNPs 

 --homozyg-density phzd 50 Minimum density in kb (i.e., maximum inverse density 
(kb/variant); e.g., to specify minimum 1 SNP per 50 kb, set 
to 50); default = 50 kb 

 --homozyg-gap phzg 500, 1000 Threshold distance in kb at which to split a ROH into two if 
two SNPs are too far apart; default = 1000 kb 

 --homozyg-window-
threshold 

phwt 0.01, 0.05, 0.1 Proportion of overlapping windows that must be called 
homozygous to assign any SNP to a ROH; default = 0.05 

 --homozyg-snp phzs 10, 100, 1000 Minimum number of variants that must be included in a 
ROH of minimum length --homozyg-kb to report it; default 
= 100 SNPs 

 --homozyg-kb phzk 100 Required minimum length of sequence (in kb) spanned by 
number of homozygous sites specified by --homozyg-snp; 
default = 1000 kb 
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Box 1. PLINK parameter exploration through sensitivity analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When considering which PLINK parameter values to apply to your data, it is 
important to determine how individual variation across samples interacts with 
specific parameter values to influence FROH estimates. Herein, we demonstrate 
how we applied sensitivity analysis to select a set of parameter values for our 
simulated data (downsampled to 15X). In panel A, standardized regression 
coeffecient (SRC) values are plotted for each parameter, with values SRC values 
> 0 indicating that increasing the value of a parameter increases mean called 
FROH (in the plot, each point corresponds to a single individual). In panel B, SRC 
values are plotted across mean called FROH values to show how the relationship 
between SRC and FROH  changes  with FROH.  The parameter  values tested are 
provided  in  the  table  at  left,   with  the  default  PLINK  settings  underlined. 

Parameter descriptions are provided in Table 1. 
For phwh in Iteration 1, SRC values were > 0, indicating a positive effect on FROH (panel A), with the effect 

slightly weakening at higher called FROH values (trendline in panel B).  Allowing  zero  heterozygous  calls  within  
a  window  would discard  many  windows  due  to genotyping  error,  so  we  conservatively  retained  the lowest 
setting > 0 for this parameter, setting it to 1 to avoid inflated FROH values. Varying phwm, phwt, and phzg had 
nearly no effect on FROH, so we retained default values for these parameters. The variable effects of changing phws 
and phzs across individuals (i.e., the vertical spread of points in panel A and B) indicate that we should further 
explore these parameter values, because appropriate values for sliding window length and minimum number of sites 
per ROH are data-dependent, and thus, value selection will differentially affect ROH estimates due to individual 
variation in genetic architecture and sequencing errors. We first tested large values (e.g., ≥ 500 for phws and ≥ 200 
for phzs) and found that these settings result in no ROH calls for many individuals (Table S2). We next tested two 
sets of values near the default value for phws and a more narrow range of values near the default value for phzs 
than in Iteration 1. 
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In Iteration 2, we tested values at the smaller end of the ranges tested for phws in Iteration 1. For the values tested, 
increasing phws still had a negative effect on FROH, but the effect was somewhat constant across FROH values (panels 
C and D). Increasing phzs also corresponds to decreased FROH, but compared to Iteration 1, the variation in that 
effect across individuals was much smaller (panels C and D). For both phws and phzs, these results indicate that 
selecting a value somewhere within the tested range is unlikely to have substantial sample-specific impacts on called 
FROH values. 

 
In Iteration 3, we tested slightly higher values for phws than in Iteration 2. Although this change minimized the 
effect that varying the value of phzs has on FROH, variation in the effects of phws settings across individuals 
increased substantially when compared with Iteration 2. In this iteration, mean called FROH values have also shifted 
towards zero, indicating that increasing phws to the tested values may be leading to some ROHs not being called 
in some individuals. Based on this comparison with the Iteration 2 results, we opted to retain the default values for 
both phws and phzs, which were included in the Iteration 2 tested values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because we tested this approach on simulated data, we can also examine the relationship between true FROH values 
and SRCs. For Iteration 2 (the set of values we retained for all downstream analyses), although increasing the values 
of both phws and phzs decreased called FROH, there is no consistent pattern in variation across individuals as true 
FROH varies and the variation is small. For Iteration 3, however, there is substantial individual variation in how 
varying values of phws affect called FROH. This variation is likely due to variation in individuals’ true ROH length 
distributions, with individuals with a greater proportion of short ROHs more strongly affected by increasing phws. 
This is also reflected in lower mean values for called FROH relative to true FROH (panel J; vertical lines are ± 1 SD). 
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