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Abstract 19 

Previous studies have shown that it is possible to accurately predict wheat grain quality and yields using 20 

microbial indicators. However, it is uncertain what the best timing for sampling is. For optimal usefulness 21 

of this modeling approach, microbial indicators from samples taken early in the season should have the best 22 

predictive power. Here, we sampled a field every two weeks across a single growing season and measured 23 

a wide array of microbial parameters (amplicon sequencing, abundance of N-cycle related functional genes, 24 

and microbial carbon usage) to find the moment when the microbial predictive power for wheat grain baking 25 

quality is highest. We found that the highest predictive power for wheat grain quality was for microbial 26 

data derived from samples taken early in the season (May–June) which coincides roughly with the seedling 27 

and tillering growth stages, that are important for wheat N nutrition. Our models based on LASSO 28 

regression also highlighted a set of microbial parameters highly coherent with our previous surveys, 29 

including alpha- and beta-diversity indices and N-cycle genes. Taken together, our results suggest that 30 

measuring microbial parameters early in the wheat growing season could help farmers better predict wheat 31 

grain quality. 32 
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Introduction 40 

As the world population climbs towards the 9-billion-mark, agricultural production is under the 41 

pressure of climate change. The productivity gains from the green revolution have plateaued, traditional 42 

breeding efforts can hardly keep up, and the level of pesticide and inorganic fertilizer use is unsustainable. 43 

New solutions are needed. Integrated microbiocentric approaches to optimize plant production are 44 

promising and have often been proposed to solve some of the many problems agricultural production faces 45 

(Figuerola et al. 2012; Schloter et al.2018). Soil microorganisms play a key role in many ecosystem 46 

processes that are central to agricultural production. For instance, soil microorganisms recycle organic 47 

matter, cycle nutrients, abate abiotic stresses, change soil structure and porosity, and promote plant growth 48 

(Ortiz & Sansinenea 2022). However, although it is theoretically known how to modify microbial 49 

communities (Agoussar & Yergeau 2021), it is in practice still a very daunting task because of the 50 

complexity of the communities and their interactions. A first step towards this goal would be to create 51 

microbial-based models predicting agricultural processes, to identify clear targets and key functions or taxa 52 

to manipulate.  53 

 However, soil microbial communities are very dynamic, which makes it difficult to predict process 54 

rates and to identify key players that would be amenable to manipulation. Soil microbial communities are 55 

strongly influenced by biotic and abiotic factors, such as temperature, precipitations, and plant growth stage, 56 

which all vary in time, often in an unpredictable manner. We recently showed that dry-rewetting cycles 57 

lead to a complete overhaul of the soil microbial communities, much more than small decreases in soil 58 

water content (Wang et al. 2022.). Soybean and wheat growth stages were shown to profoundly influence 59 

the microbial diversity associated with the plant, often in interaction with plant compartment, plant 60 

genotype, soil water content and soil history (Moroenyane et al. 2021; Azarbad et al. 2022; Azarbad et al. 61 

2002). Similarly, the effect of the genotype on root and rhizosphere microbial communities varied over 62 

time (years) and with wheat growth stages (Quiza et al. 2022). These microbial shifts related to plant growth 63 

stages were previously linked to changes in the composition and concentration of plant root exudates during 64 
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development (Chaparro et al. 2013). The timing of sampling is thus expected to influence the predictive 65 

power microbial parameters, but it is still uncertain what the best sampling time would be and whether 66 

robust time-independent indicators could be identified. 67 

 Recent microbial-based modeling from our group showed that early sampling of wheat field soil 68 

microbial communities, around seeding or emergence could accurately predict wheat yield and grain baking 69 

quality obtained at the end of the growing season (Asad et al. 2021; Yergeau et al. 2020) . For instance, 70 

with as little as 5 predictors, such as the abundance of archaeal ammonia-oxidizers, measured shortly after 71 

seeding in May, we were able to predict wheat grain quality with an accuracy of up to 81% (Yergeau et al. 72 

2020). In contrast, different ammonium nitrate fertilization regimes did not significantly influence yields 73 

or grain baking quality. In another study encompassing 80 fields across a transect of 500km, microbial 74 

indicators from samples taken in May-June could robustly predict the wheat grain quality and yields at the 75 

end of the growing season (Asad et al. 2021). In line with this, earlier work showed that the growth of 76 

willows after 100 days in highly contaminated soil could be predicted by the initial soil microbial diversity 77 

(Yergeau et al., 2015), whereas willows Zn accumulation after 16 months of growth could be predicted by 78 

the relative abundance of specific fungal taxa present at 4 months (Bell et al. 2015). Therefore, it seems 79 

that the early soil microbial data can accurately predict ecosystem processes, such as plant productivity and 80 

produce quality. However, these studies did not compare microbial data taken at different timepoints, so it 81 

is unclear if early sampling has the highest predictive power in microbial-based models.  82 

Here, we sampled the same experimental field every two weeks over the course of a single growing 83 

season. We sequenced the 16S rRNA gene and the ITS region, quantified the abundance of key N-cycle 84 

genes, and measured the community level physiological profiles as microbial indicators and linked them to 85 

grain baking quality using statistical learning approaches. Our goals were to 1) identify the most appropriate 86 

sampling date for modelling, and 2) identify robust microbial indicators linked to grain baking quality.   87 
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Methods 88 

Experimental design and sampling 89 

Four rainfall manipulation treatments were set-up in 2016 at the Armand-Frappier Sante 90 

Biotechnologie Centre (Laval, Québec, Canada) using 2m x 2m rain-out shelters that excluded passively 91 

0%, 25%, 50%, and 75% of the natural precipitation. The rainfall exclusion treatments were performed 92 

using rain-out shelters, which were covered with various amount of transparent plastic sheeting. The rain 93 

was intercepted by the plastic sheeting and guided in a gutter and downspout and collected in 20L buckets 94 

that were manually emptied following significant rainfall events. Two wheat genotypes were seeded under 95 

these shelters (drought sensitive, Triticum aestivum cv. AC Nass and drought tolerant, Triticum aestivum 96 

cv. AC Barrie), and the experiment was replicated over 6 fully randomized blocks, resulting in 48 plots (4 97 

treatments x 2 genotypes x 6 blocks). Seeds harvested from each of the plots were re-seeded in the exact 98 

same plot the following year. Soil was sampled every 2 weeks on May 10th  (seeding time, T = 0), May 24th, 99 

June 7th, June 21st, July 5th, July 19th, and August 1st   2018. A composite soil sample was prepared by 100 

collecting 10-cm deep soil cores from the 4 corners and the centre of each plot (4 treatments x 6 blocks x 2 101 

cultivars x 7 sampling dates = total 336 samples). From 2016 to 2018, the average daily rainfall recorded 102 

on this site was 2.2 mm-3.5 mm. Soil water content within rainfall exclusion treatments showed significant 103 

differences among soil sampling dates  (Wang et al. 2022). 104 

Amplicon sequencing and data analysis 105 

Total genomic DNA was extracted from the 336 soil samples with the DNeasy PowerLyzer Power 106 

Soil Kit (Qiagen) following the manufacturer’s instructions. The concentration and the quality of the DNA 107 

was checked using a Nano Drop ND-1000 Spectrophotometer (Nano Drop Technologies Inc., Thermo 108 

Scientific, U.S.A.). The amplicon sequencing libraries for the bacteria and archaeal 16S rRNA gene and 109 

ITS regions were prepared according to the previously described protocols (Asad et al. 2021). The primers 110 

pairs used for the amplification were 515F/806R (Caporaso et al. 2012) and ITS1F/58A2R (Martin & 111 

Rygiewicz, 2005), for the bacterial and archaeal 16S rRNA gene and the fungal ITS region, respectively. 112 
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PCR amplifications were conducted in a T100™ Thermal Cycler (Bio-Rad, U.S.A.) as previously described 113 

(Wang et al. 2022). PCR products were confirmed through visualization in 1% agarose gel and purified 114 

using AMPure XP beads (Beckman Coulter, Indianapolis, U.S.A.). PCR libraries were pooled together and 115 

sent to the Centre d’expertise et de services Genome Québec (Montréal, Canada) for Illumina MiSeq 2 x 116 

250 bp amplicon sequencing as detailed previously (Wang et al. 2022). A total of 17,084,986 16S rRNA 117 

gene reads and 22,411,001 ITS region reads were produced. The raw sequencing data and its meta data 118 

were deposited in the NCBI BioProject under accession PRJNA686206.  119 

Sequence pre-processing, including filtering and quality testing, was performed using UCHIME 120 

(Edgar et al. 2011), following previously published bioinformatic pipelines (Wang et al. 2022). The 121 

classification of Operational Taxonomic Units (OTUs) was performed using the RDP 16S rRNA Reference 122 

Database (Wang et al. 2007) and the UNITE ITS Reference Database (Nilsson et al. 2019). The uniformity 123 

of the amplicon sequences belonging to the same operational taxonomic units (OTUs) was tested using 124 

UPARSE (Edgar et al. 2013). Sample rarefaction was performed using an in-house galaxy pipeline as 125 

previously discussed (Wang et al. 2022.). Alpha (e.g., Shannon, Simpson, Chao1, Abundance-based 126 

Coverage Estimators), beta (Bray-Curtis dissimilarity) and phylogenetic diversity were calculated as 127 

detailed in Wang et al (2022). 128 

Quantitative real-time PCR (qPCR) and community level physiological profiling (CLPP) 129 

We measured the abundance of the 16S rRNA gene, the ITS region, and N-cycle related genes 130 

(bacterial and archaeal amoA, nirK, nosZ) for the 336 samples using real-time PCR SYBR Green assays, 131 

as previously described (Asad et al. 2021). The Fungal:Bacterial (F:B) ratio was then calculated by dividing 132 

the ITS region abundance by the 16S rRNA gene abundance. EcoPlates colorimetric assays (Biolog, 133 

Hayward, CA) were used to measure microbial carbon use patterns with diluted soil (1/10 in water) and a 134 

168-hour incubation, as previously described (Asad et al. 2021). 135 

Wheat grain and flour quality 136 
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Wheat grain was harvested from the 48 plots at the end of the growing season (8th August 2018) 137 

and the grain and flour baking quality were analyzed in the quality control laboratory of Les Moulins de 138 

Soulanges (St-Polycarpe, QC). Four main quality indicators were used in our modeling efforts: grain protein 139 

content, grain gluten content, flour peak maximum time (PMT; time for the dough to reach its maximum 140 

consistency following hydration), flour maximum recorded torque (BEM, maximal consistency as 141 

measured as resistance to mechanical mixing) (Freund and Kim 2006). A good quality grain for bread is 142 

expected to have a high protein and gluten content. A good quality flour will have a high maximum torque 143 

(high consistency) and a short PMT (rapid to reach maximal consistency) when hydrated. 144 

Statistical analysis 145 

All the statistical analyses were performed in R (v.4.1.2). To visualise the differences in the 146 

microbial community (amplicon and CLPP datasets) across sampling dates, treatments, and cultivars, we 147 

used the function cmdscale of the vegan package to produce principal coordinate analysis (PCoA) based on 148 

the Bray-Curtis dissimilarity index. The effect of sampling date, treatments, block, genotypes on the 149 

microbial community structure and carbon utilisation patterns was tested using permutational multivariate 150 

analysis of variance (PERMANOVA) based on the Bray-Curtis dissimilarity index (adonis2 function of the 151 

vegan package). Three-way repeated measures analysis of variance (rmANOVA) using the aov function 152 

was used to test for significant differences in alpha diversity, N-cycle related genes and ITS region and 16S 153 

rRNA gene abundance. The normality of the residuals was examined graphically using ggqplot and was 154 

tested by the Shapiro-Wilk test using the shapiro.test function.  If the data did not meet the requirements of 155 

the tests, it was log or square root transformed. The homoscedasticity of the data was evaluated using the 156 

Mauchly's sphericity test of the rstatix package. Correlation analyses between microbial parameters and 157 

wheat grain quality were performed with the cor.test function together with the p.adjust function to adjust 158 

the p-value with the Benjamin-Hochberg correction for multiple tests. 159 

Predictive modeling 160 
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Our goal was to model grain quality (protein, gluten, BEM and PMT) using the microbial indicators 161 

measured (bacterial and fungal alpha diversity, bacterial and fungal beta-diversity, carbon utilization 162 

patterns, F:B ratio, and N-cycle gene abundance), for each sampling date separately to find the optimal 163 

sampling date for modeling. Since our PERMANOVAs revealed that the two wheat genotypes harbored 164 

significantly different microbial communities, we modeled them separately. This resulted in 14 different 165 

microbial datasets containing each 24 samples. We excluded outlier data points using the rstatix package.   166 

To reduce the dimensionality of the 16S rRNA gene and ITS region amplicon OTU tables and of 167 

the microbial carbon usage, we performed a procedure called orthogonalization. In brief, we performed a 168 

principal component analysis (PCA function of the FactomineR package) on Hellinger-transformed 169 

(decostand function of vegan package) OTU tables or carbon usage patterns and used the 5 first principal 170 

components in the models. Individual OTUs and carbon substrates were then correlated to these 5 171 

components to have an idea of the taxonomic composition of the OTUs or carbon substrates influencing 172 

each of the components. We kept OTUs and carbon substrates with correlation having a P<0.05. For the 173 

OTUs, a taxonomic summary at the genus level was generated using the Phyloseq package. 174 

We chose least absolute shrinkage and selection operator (LASSO) regression as a modeling 175 

method to predict wheat quality for the following reasons: i) to avoid overfitting, which may be problematic 176 

with other regression methods (least square regression or general linear model), especially when there are 177 

many explanatory variables, (ii) to be  able to select only the most important predictive variables (i.e., 178 

feature), to reduce the mean error of the model, and (iii) to have an interpretable model. The microbial 179 

features included: principal components 1-5 derived from the microbial OTU and carbon usage tables, the 180 

abundance of N-cycle related gene, the F:B ratio, and the bacterial and fungal alpha-diversity. First, we 181 

standardized the data (other than the PCs) using the scale function and then selected the optimal lambda 182 

values with 10-fold cross validation.  We selected the best penalty score based on the lowest lambda value, 183 

which indicates non-collinear effects and low levels of inflated variance in the selected variables. Then, we 184 

evaluated the model accuracy and performance using the best lambda values. The predictive strength of the 185 
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best LASSO model for grain quality was tested using the prediction function of the caret package. The 186 

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) were also calculated to 187 

evaluate the models’ performance. Finally, we compared the accuracy and performance across the different 188 

sampling dates.   189 
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Results 190 

Effect of experimental treatments on microbial parameters 191 

The sampling date significantly affected all microbial parameters, including microbial carbon utilization, 192 

microbial diversity, the F:B ratio, and the abundance of N-cycle-related genes (Tables 1 and 2). 193 

Furthermore, the structure of the bacterial and archaeal community was influenced by sampling dates and 194 

blocks whereas the fungal community was influenced by sampling dates, block, and wheat genotypes 195 

(Table 2). The alpha diversity of microbial communities (16S and ITS) was not significantly affected by 196 

the precipitation exclusion treatments and wheat genotypes (P >0.05). However, significant differences in 197 

the Shannon (P<0.001) and Simpson (P < 0.001) diversity indices, as well as the phylogenetic diversity (P 198 

<0.001) of the bacterial and archaeal, and fungal communities were observed among sampling dates. There 199 

was a significant interactive effect (P < 0.05) of the precipitation treatment and wheat genotype on the 200 

abundance of archaeal amoA, nirK and nosZ genes, and a significant difference in the F: B ratio across 201 

sampling dates (P < 0.001) (Table 1).  202 

Correlation between microbial and grain quality parameters 203 

We did not find a significant effect of rainfall exclusion treatment on grain qualities but found a 204 

significant effect of wheat genotype on protein content (P<0.001) and PMT (P<0.001), so we decided to 205 

treat the two genotypes separately and all the precipitation treatments together. Correlations between grain 206 

quality and microbial carbon use fluctuated over time (Table 3). The carbon sources were all negatively 207 

correlated to grain quality indicators for the DT genotype whereas both positive and negative correlations 208 

were found for the DS genotype (Table 3). The absolute abundance of microbial N-cycling genes was found 209 

to be correlated to grain quality measurements for soil collected on the early sampling dates (Table 4). The 210 

amoA (archaeal and bacterial), nirK and nosZ genes quantified in the DT genotype samples on May 10 and 211 

May 24 were negatively correlated to protein and gluten content (Table 4). Only the F:B ratio was positively 212 

correlated to protein content (Table 4). For the DS genotype, the amoA (archaeal and bacterial) and the 213 

nosZ genes were negatively correlated to the grain quality parameters and the F:B ratio was positively 214 
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correlated to PMT for soil samples collected on May 24 (Table 4). Many significant correlations between 215 

microbial richness/diversity indices and grain baking quality were found, mostly for the DT genotype 216 

(Table 5). Significant correlations between microbial community descriptors (PCA axes for OTUs and 217 

microbial carbon use) and grain quality indicators for sampling dates in May and June were also identified. 218 

Model performance in predicting grain quality at different plant growth stages 219 

We applied least absolute shrinkage and selection operator (LASSO) regressions for each sampling date 220 

separately, to identify the date where model accuracy would be maximal to predict grain quality. In the case 221 

of the DT genotype, we obtained a high model accuracy to predict certain grain quality indicators, with 222 

mean square errors ranging from 0.08 to 0.51, and AIC values inferior to -8.35 (Table 6). The best models 223 

identified were based on microbial indicators from May 10, May 24, and June 07. Gluten and protein 224 

content predicted with the LASSO regression had the highest accuracy for microbial indicators measured 225 

from samples collected on May 10. These models selected 11 and 8 variables, resulting in R2 of 0.95 and 226 

0.76, for gluten and protein respectively (Table 6 and Figure 1). These models were cross validated with 227 

lambda ʎ values of 0.04 to 0.15, which resulted in the lowest mean square errors (0.08 to 0.36). The model 228 

accuracy for gluten and protein prediction decreased over time, and it was even impossible to generate a 229 

significant model for some dates (Table 6). The best sampling dates for the other quality indicators were 230 

later in the growing season with June 7 being the best sampling time to predict BEM (R2=0.92) and May 231 

24 being the best time to predict PMT (R2=0.57) (Table 6 and Fig. 1). The most parsimonious model across 232 

all indicators was the one predicting PMT which only included 2 predictors (Table 6). For some sampling 233 

dates, no descriptive variable in the microbial dataset was selected by the LASSO procedure, resulting in a 234 

null model (Table 6). This was the case for gluten on June 7, July 19, and August 1, for PMT on May 10, 235 

June 7, June 21, July 5 and July 19, and for BEM on June 21 and July 05 (Table 6). 236 

The overall model performance in predicting grain quality for the DS genotype was lower than the 237 

DT genotype (Table 7). Maximum accuracy of LASSO regression model was observed on June 7 for gluten 238 
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and PMT, on May 10 for protein, and June 21 for BEM (Table 7). The best PMT and BEM predictive 239 

models used about half the number of the total predictors used in the best gluten and protein predictive 240 

models (PMT: 4, BEM: 6, gluten: 14 and protein: 11) (Table 7 and 9). These models included many fungal 241 

indicators (Table 9). Predictive modeling of protein content between May 24 and July 05, and on August 1 242 

was unsuccessful and the level of accuracy of the model weas lower on July 19 (Table 7). A similar trend 243 

was observed for PMT: sampling dates after June 7 resulted in less accurate or no model at all (Table 7). 244 

BEM prediction was also unsuccessful for samples collected on June 07. Similar to the DT genotype, the 245 

predictive models for the DS genotype dataset showed the best accuracy for quality prediction with 246 

microbial data from the May and June samplings.  247 

Microbial features selected in the optimal models  248 

The best LASSO models for the DT genotype contained microbial features that varied but were 249 

often the principal components derived from OTU tables or carbon utilization patterns, or the alpha 250 

diversity indices. Bacterial and archaeal OTUs from the Nitrosphaera, Rhodoplanes, Solirubrobacter, and 251 

Terrimicrobium were the main contributors to the principal component 2 (explained variance: 5.1%) 252 

calculated from the May 10 dataset that was selected in the models for gluten and protein content (Fig. 2). 253 

In contrast, the main contributors to the bacterial and archaeal principal component 1 (explained variance: 254 

6.0%), 2 (5.2%) and 3 (5.1%) selected for the model predicting BEM on June 7 were from the Conexibacter, 255 

Gaiella, Nitrososphaera, Hyphomicrobium and Gp16 genera (Fig. 2). The fungal OTUs that contributed to 256 

the principal components selected in the May and June models belonged to the Mortierella, Ganoderma, 257 

and Giliomastix genera (Fig. 2). We found a negative relationship between the fungal phylogenetic diversity 258 

index and gluten content and a positive relationship between bacterial Simpson diversity and gluten content 259 

and BEM in the May 10 and June 7 models (Table 8).  260 

Principal components derived from carbon utilization patterns were also included in all our most 261 

accurate models for the DT genotype (Table 8). The models predicting protein and gluten content (May 10) 262 
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selected 4 of the top 5 principal components included, for which the most important contributing carbon 263 

substrates were Putrescine (rs=-0.91; P<0.001), L-Arginine (rs=0.74; P <0.001), Pyruvic Acid methyl ester 264 

(rs=-0.62; P<0.001), Glycogen (rs=0.59; P<0.001) and L-Threonine (rs= -0.56; P<0.001). The model 265 

predicting BEM (June 7) selected principal component 2 (explained variance: 9.3%), 3 (7.4%), and 4 (4.7%) 266 

and the most important contributing carbon substrates of the principle components  were alpha-cyclodextrin 267 

(rs=0.69; P=0.002), alpha-keto butyric Acid (rs=0.68; P=0.003), γ-amino butyric acid (rs= -0.66; P =0.006), 268 

Glucose 1-phosphate (rs=-0.71; P=0.001). Finally, the principal component 2 (explained variance: 7.5%) 269 

selected in the model predicting PMT (May 24) was correlated to glycogen (rs=0.59; P=0.002), alpha-270 

cyclodextrin (rs=0.68; P<0.001) and γ-amino butyric acid (rs=-0.65; P=0.004). We also observed a negative 271 

relationship between protein content and nirK (regression coef. = -0.183) and gluten content and nosZ 272 

(regression coef. = -0.235) in the models obtained on May 10 (Table 7).  273 

As for the DT genotype models, the models for the DS genotype were mainly composed of principal 274 

components calculated from the OTU tables and from the carbon utilization patterns, and from alpha-275 

diversity indices (Table 9). The LASSO model predicting protein content selected the bacterial principal 276 

component 4 (explained variance: 4.9%) for the May 10 sampling date (Table 9). This principal component 277 

was correlated with OTUs belonging to the Nitrososphaera, Rhodoplanes, Solirubrobacter, and 278 

Terricomicrobium (Fig. 3). On the same date, the fungal OTUs contributing the most to the principal 279 

component 1 (explained variance: 7.3%), 3 (5.6%), 4 (5.5%), and 5 (5.2%) belonged to the Acremonium, 280 

Mortierella, Pezizella, and Tetracladium (Fig. 3). On June 7, the models predicting gluten content and PMT 281 

selected the bacterial principal components 2, 4, and 5 (Table 9). These axes explained 4.7-4.5% of the 282 

variation and were correlated to OTUs related to Giella, Gp6, Hyphomicrobium, Nitrososphaera, 283 

Rhodoplanes, and Solirubrobacter (Fig. 3). On June 21, the model predicting BEM selected the bacterial 284 

principal components 2 and 4 (Table 9), which explained 4.8% and 4.7% of the variation and were 285 

correlated to OTUs related to Nitrososphaera, Giella, Gp6, Pseudonocardia, Bradyrhizobium, and 286 

Lysinibacillus (Table 9). The fungal PC 1 (7%), 2 (6.2%), 4 (5.0%), and 5 (4.9%) selected for the June 7 287 
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were correlated to OTUs related to Acremonium, Mortierella, and Tetracladium (Fig. 3). The fungal PC2 288 

(5.8%) selected in the model for BEM in June 21 was linked to OTUs related to Ganoderma, Mortierella, 289 

Pezizella and Pseudeurotium. The protein and BEM models of the DS genotype selected the fungal Chao1 290 

index, which positively influenced the quality whereas the gluten and protein models selected fungal 291 

phylogenetic diversity indices that positively affected gluten content on June 07, and negatively affected 292 

protein content on May 10 (Table 9). 293 

For the May 10 model (protein), the carbon substrates contributing the most to the selected principal 294 

components were beta-methyl D-glucoside (rs=0.61; P=0.001), D-glucosamine acid (rs= -0.58; P=0.003), 295 

D-galactonic acid y- lactone (rs =-0.53; P=0.008). For the June 7 models (gluten and PMT), the carbon 296 

substrates contributing the most to the selected PC were Glucose 1-phosphate (rs=0.81; P<0.001), D- 297 

galactonic acid y-lactone (rs=0.64; P=0.0005), 4-hydroxy benzoic acid (rs= -0.66; P=0.0005), 2-hydroxy 298 

benzoic acid (rs=0.56, P=0.003). Finally, for the June 21 model (BEM), the carbon substrates contributing 299 

the most to the selected PC were L-phenylalanine (rs= 0.55; P= 0.003) and alpha-cyclodextrin (rs=-0.49; 300 

P=0.011). We also observed that the models selected the fungal: bacterial ratio, which negatively influenced 301 

the gluten content on June 7 and positively influenced BEM on June 21. There was a negative relationship 302 

between the abundance of the bacterial amoA gene and gluten content, and a positive relationship between 303 

nosZ and gluten content on June 7 (Table 9).  304 
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Discussion 305 

Plant- and soil-associated microbial communities vary throughout the seasons/plant growth stages 306 

(Chaparro et al. 2013, 2014; Moroenyane et al. 2021; Azarbad et al. 2022; Azarbad et al. 2021; Wang et 307 

al. 2022) and it was unsure what was the best timing to create models to predict wheat grain quality. By 308 

sampling the same field every 2 weeks and measuring a wide range of microbial parameters, we were able 309 

to show with LASSO regression that the predictive value of microbial parameters is optimal during the 310 

earlier stages of wheat growth, at the seedling (May) or tillering stages (June). Many microbial parameters 311 

were consistently singled out by the regression models, which could allude to a mechanistic link between 312 

grain quality and the parameter identified, or simply to covariation between the microbial parameter and 313 

grain quality due to a third unmeasured parameter. Our work focused on wheat, and although it would be 314 

interesting to see if similar patterns apply to other crops, it is the first and necessary step to start building 315 

microbial-based predictive models for crop yields and quality.   316 

All the best models were made with data collected before the end of June, which is at the early 317 

stages of wheat growth in Quebec. This is coherent with our previous results that showed that good 318 

predictive models could be made with soil samples taken in May or June (Yergeau et al. 2020; Asad et al. 319 

2021) even though different sampling point were not compared. Other work done on willows showed that 320 

early microbial community composition could predict the potential of the trees to decontaminate soil or to 321 

survive (Bell et al. 2014; Yergeau et al. 2015). Navarro-Noya et al. (2022) showed that the complexity of 322 

microbial structure and diversity increases with maize development, and that the effect of agricultural 323 

practices on the soil microbiome was more evident at the early stages, which could explain why early 324 

microbial indicators performed better. This is encouraging for future work, as the ultimate goal of this type 325 

of predictive modeling is to have a tool that could be used to guide management strategies for farmers. 326 

Maximum usefulness will happen if indicators of yields or quality can be measured early, when it is still 327 

possible to intervene. It could be that the sampling dates highlighted are the ones that are the most critical 328 

for wheat grain quality, but for wheat, it is generally thought that the grain filling stage (around mid July in 329 
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Quebec) is the most critical stage in term of N nutrition for high quality grain (Zörb et al. 2018). However, 330 

unless there is an unlikely massive microbial immigration, the microorganisms that can modulate or are 331 

indicative of soil N availability are already present in the soil early at seeding, and it is likely that their 332 

abundance and diversity at this stage could predict wheat grain quality. In fact, it was recently suggested 333 

that, because of their potential to be influenced by legacy and current environmental conditions, microbial 334 

communities act as multivariate integrators of the current and past physico-chemical conditions of their 335 

immediate environment, making them highly suitable predictors for ecosystem processes (Correa-Garcia et 336 

al. 2022).  337 

Microbiome data have characteristics (sparsity, high dimensionality, zero-inflated) that often make 338 

them challenging to use in models. Here, we transformed the OTU and carbon utilization patterns tables 339 

using eigenvalue decomposition, namely principal component analysis, which reduces the dimension of the 340 

datasets to n-1 principal components that are orthogonal (not collinear) and ordered in decreasing order of 341 

variance explanation, moving from several thousands of descriptors to 23, in the case of the OTU tables. 342 

We further reduced the dimensionality by only utilizing the first 5 principal components in our LASSO 343 

regression, with the idea that these components contained a large part of the variation in the original dataset. 344 

One downside of this approach is that it makes the models less directly interpretable, with principal 345 

components being composite variable for many OTUs or carbon sources. However, using correlation 346 

analyses of individual OTUs with the principal components we were able to identify taxonomic groups and 347 

carbon sources that were linked with the principal components. We also used LASSO regression that selects 348 

of the most significant variables and shrinks the regression coefficient of the other variable to zero, 349 

generally producing parsimonious, highly interpretable models containing a few variables. Although non-350 

parametric methods (neural network, random forest, support vector machine, etc.) could produce more 351 

accurate models, they are often less interpretable, meaning that the predictors influencing the output cannot 352 

be easily identifiable. Still, our models had high accuracy of 50-95%. The predictive performance of 353 

LASSO regression to predict biological characteristics from microbiome data was shown to be excellent 354 
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for zero-inflated data such as microbial OTU count tables (Xiao et al. 2018; Dong et al. 2020). We also had 355 

good results using linear regression coupled with forward/backward selection with a preselection of 356 

individual OTUs that showed the strongest correlations with the predictors (Yergeau et al. 2020; Asad et 357 

al. 2021).  358 

General community descriptors were often selected as the best explanatory variables in the models. 359 

Alpha diversity indices and eigenvectors (such as principal components) derived from microbial 360 

community structures are integrators of many parameters. Interestingly, it suggests that shallow sequencing 361 

to recover alpha and beta diversity patterns together with community level carbon utilization profiling 362 

would be sufficient to model wheat grain quality. Additionally, some specific microbial parameters were 363 

consistently singled out by the analyses. For example, the negative relationships between wheat quality and 364 

the abundance of the nirK, nosZ and bacterial amoA genes were well aligned with previous work (Yergeau 365 

et al. 2020; Asad et al.2021). The relative abundance of OTUs belonging to the ammonia-oxidizing archaea 366 

taxon Nitrososphaera were also highly correlated with many of the principal components selected in the 367 

models, and the abundance of both the archaeal and the bacterial amoA genes was often negatively 368 

correlated to quality parameters. This further suggests the key role of nitrification and denitrification in 369 

wheat grain quality, as proposed before (Yergeau et al. 2020; Asad et al. 2021; Wang et al.2022). Since 370 

grain quality is linked to its protein content, it is energetically more efficient for the plant to uptake 371 

ammonia, which can directly be incorporated into amino acids, whereas nitrate will need to be transformed 372 

back to ammonia (Beeckman et al., 2018). Nitrate uptake also requires more energy than ammonia uptake 373 

(Beeckman et al., 2018). Finally, nitrate is prone to leach and is a substrate for denitrification, which will 374 

lead to loss of nitrogen to the atmosphere. Manipulating or inhibiting the activity of these microbial guilds 375 

using, for instance, natural or artificial nitrification inhibitors may increase wheat grain quality.  However, 376 

this strategy will need to be further studied to understand potential unwanted effects, as a common 377 

nitrification inhibitor, nitrapyrin, was shown to have off-target effects on the soil microbial community 378 

(Schmidt et al. 2022) and that nitrate stimulates lateral root elongation and affects various signaling 379 
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pathways in the plant (Beeckman et al. 2018). Microbiome manipulation is still in its infancy and, because 380 

of ecological processes underlying community assembly, it will be a challenge (Agoussar & Yergeau, 381 

2021). It is also unclear if microorganisms involved in nitrification and denitrification are sufficient 382 

indicators for accurate modeling of the grain quality, and, consequently, if solely targeting this group will 383 

result in the expected increase in grain quality. As our model showed, general community structure and 384 

diversity seem to also have a prime importance in determining wheat grain quality.  385 

Our previous work showed that significant predictive models could be parametrized using 386 

microbial data measured early in the growing season, across a transect of more than 500 km (Asad et al. 387 

2021). Here, we sought to confirm that early microbial measurements were optimal for such predictive 388 

models by focussing on a single field and sampling it every two weeks for a complete growing season. 389 

Taken together, the two studies confirm that our microbial-based models are effective at a large spatial 390 

scale and that they are optimally build using samples taken early in the season. Although we used a different 391 

modeling approach than previously, the selection of ammonia-oxidizers by the models was shared with our 392 

previous studies (Yergeau et al. 2020; Asad et al. 2021), suggesting a potential key role of this functional 393 

guild for wheat grain quality.  394 
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Figure legends. 480 

Figure 1. Observed values vs. predicted values from LASSO regression models for wheat grain gluten 481 

and protein content and flour maximum torque (BEM) and peak maximum time (PMT) for the drought-482 

tolerant (A) and drought-sensitive genotypes (B). 483 

Figure 2. The relative abundance of the bacterial and archaeal (A, C) and fungal (B, D) genera 484 

significantly correlated with the first five principal components for the drought tolerant genotype for the 485 

May 10 (A, B) and June 7 (C, D) sampling dates. Others: various genera with relative abundances below 486 

0.1%.  487 

Figure 3. The relative abundance of the bacterial and archaeal (A, C) and fungal (B, D) genera 488 

significantly correlated with the first five principal components for the drought sensitive genotype for the 489 

May 10 (A, B) and June 7 (C, D) sampling dates. Others: various genera with relative abundances below 490 

0.1%.  491 
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Table 1. Three-way repeated measure ANOVA for bacterial and archaeal ammonia monooxygenase, nitrite 493 

reductase, nitrous oxide reductase gene abundance and the 16S: ITS genes ratio for the effect of 494 

precipitation exclusion treatments, sampling dates and genotype.  495 

 AOA AOB nirK nosZ F:B ratio 

treatment 1.449 0.241 0.940 1.027 0.467 

date 46.382*** 40.379*** 40.176*** 79.707*** 86.755*** 

genotype 0.205 0.006 0.388 0.689 0.043 

block 2.180* 3.175** 2.682* 0.995 0.918 

treatment × genotype 4.782** 0.993 4.356** 3.188** 0.854 

F-values are shown in the table. 496 

Treatment: treatments with precipitation exclusion (0%, 25%, 50%, 75%). Date: sampling dates. Genotype: 497 

drought-sensitive wheat and drought-tolerant wheat. ANOVA significance, “.” 0.1 < P < 0.05; “*” P < 0.05; 498 

“**” P < 0.01; “***” P < 0.001 499 

  500 
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Table 2. Permanova based on Bray Curtis dissimilarities for microbial carbon utilization profiling (Biolog 501 

EcoPlate) and community structure based on 16S rRNA gene and ITS region amplicon for the effect of 502 

precipitation exclusion treatments, sampling dates and genotype. 503 

  Biolog   16S   ITS  

 R2 F  Pr(>F) R2 F Pr(>F) R2 F Pr(>F) 

treatment 0.013 4.95 0.002** 0.003 0.95 0.419 0.004 1.45 0.086 

date 0.105 39.71 0.001*** 0.01 5.06 0.001*** 0.01 2.90 0.001*** 

genotype 0.002 0.58 0.754 0.00 1.04 0.29 0.01 2.61 0.003** 

block 0.005 1.83 0.108 0.01 4.36 0.001*** 0.03 11.72 0.001*** 

genotype× treatment 0.002 0.81 0.506 0.00 1.51 0.061 0.00 1.71 0.039* 

Treatment: precipitation exclusion (0%, 25%, 50%, 75%). Date: sampling dates. Genotypes: drought-504 

sensitive wheat and drought-tolerant wheat. “.” 0.1 < P < 0.05; “*” P < 0.05; “**” P < 0.01; “***” P < 0.001 505 

506 
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Table 3: Significant (P<0.05) Spearman correlations between microbial carbon utilization and grain 507 

baking quality for each sampling date (N=24). 508 

Drought tolerant Drought Sensitive 

Carbon source Quality Rs P-value Carbon source Quality Rs P-value 

10-May    10-May    
Beta methyl D-

glucoside   

Protein -0.609 0.002 N-acetyl D-

glucosamine   

Gluten 0.537 0.008 

Phenylethylamine   BEM -0.587 0.003 07-Jun    

24-May 

 

  

4-hydroxy benzoic 

acid  

Gluten 0.522 0.009 

α-keto butyric acid   Gluten -0.628 0.001 21-Jun    
21-Jun    Tween.40  Protein -0.601 0.002 

N-acetyl D-

glucosamine  

PMT -0.562 0.005 05-Jul 

   
05-Jul    L-Serine  Protein -0.547 0.007 

Glycogen   PMT  -0.552 0.006 D-L alpha glycerol 

phosphate 

Protein -0.550 0.007 

01-Aug    19-Jul    
Pyruvic acid methyl 

ester  

Gluten -0.599 0.002 L-phenylalanine  

PMT 

0.576 0.004 

    01-Aug    

    L-asparagine  PMT -0.575 0.006 

 509 
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Table 4: Significant (P<0.05) Spearman correlations between functional gene abundance and grain baking 511 

quality for each sampling dates (N=24). 512 

 Drought tolerant   Drought sensitive  
Gene Quality Rs P-value Gene Quality Rs P-value 

10-May    24-May    

 nosZ  Gluten -0.406 0.054  AOB  Gluten  -0.504 0.012 

24-May     AOA  Protein -0.406 0.055 

AOB Gluten -0.450 0.031  nosZ  BEM  -0.400 0.059 

 nirK Protein -0.441 0.035  F:B ratio PMT  0.425 0.043 

 AOA  Protein -0.578 0.004 07-Jun    

 F: B Ratio  Protein  0.547 0.007  nirK Gluten  -0.441 0.035 

07-Jun    21-Jun    

 F: B Ratio  Protein  0.426 0.048  F: B Ratio  Protein 0.406 0.054 

21-Jun     F: B Ratio  PMT  -0.406 0.055 

 AOA  Protein -0.563 0.005  F: B Ratio  BEM  0.492 0.017 

 AOA  PMT  0.404 0.056 19-Jul    

05-Jul     nirK Gluten  0.558 0.009 

 nirK Gluten  -0.443 0.034     

 nosZ  PMT  0.401 0.058     

 F: B Ratio  BEM  0.479 0.021     

19-Jul   

 

   

 

 AOA  Protein -0.426 0.042     

01-Aug        
 nosZ  PMT  0.392 0.058     

 513 
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Table 5: Significant (P<0.05) Spearman correlations between bacterial and archaeal and fungal richness 515 

and diversity and grain baking quality for each sampling dates (N=24). 516 

 16S   

 

ITS   

 Quality Rs P-value  Quality Rs P-value 

Drought tolerant   Drought tolerant   
07-Jun    10-May    
ACE    Protein  -0.409 0.058 Shannon    Gluten  -0.444 0.034 

05-Jul    Simpson    Gluten  -0.416 0.048 

Chao1    BEM  0.472 0.023 Drought sensitive 

  

ACE    PMT  -0.467 0.025 21-Jun  

  

Drought sensitive   ACE    BEM  -0.465 0.025 

10-May    PD    Gluten  0.439 0.036 

Chao1    Protein  -0.454 0.029 01-Aug  

  

24-May    Chao1    PMT  0.512 0.015 

Shannon    BEM  0.468 0.024 Chao1    BEM  -0.483 0.023 

Chao1    Protein  -0.414 0.050 ACE    PMT  0.493 0.020 

21-Jun    PD    PMT  0.491 0.020 

PD    Protein  -0.472 0.023     
Chao1    Protein  -0.482 0.020     

Chao1    Gluten  -0.520 0.011     

ACE    Protein  -0.418 0.047     

ACE    Gluten  -0.446 0.033     

19-Jul        

Chao1    Gluten  0.549 0.007     

ACE    Gluten  0.549 0.007     

01-Aug        
Simpson    PMT  0.434 0.044     

 517 
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Table 6:  Comparative analysis of the LASSO model performance for the wheat grain quality of the drought-tolerant 519 
genotype (DT). 520 

 T1 T2 T3 T4 T5 T6 T7 

Date 10-May 24-May 07-Jun 21-Jun 05-Jul 19-Jul 01-Aug 

Gluten (DT) 
       

C.V (best Lambda) 0.04 0.38 
 

0.56 0.72 
  

AIC -16.14 2.00 
 

1.33 2.00 
  

BIC -15.09 3.04 
 

2.42 3.09 
  

Nb of variables: 11 
  

1 1 
  

MSE (Mean Square Error) 0.08 0.95 
 

0.92 0.95 
  

 R2 0.95 0.15 
 

0.54 0.54 
  

Protein (DT) 
       

C.V (best Lambda) 0.15 0.24 0.19 0.28 0.46 0.36 0.18 

AIC -11.64 -9.21 -9.56 -3.40 2.00 2.00 -8.24 

BIC -10.51 -8.07 -8.47 -2.26 3.14 3.14 -7.15 

Nb of variables: 8 5 7 2 1 1 2 

MSE (Mean Square Error) 0.36 0.47 0.43 0.73 0.96 0.96 0.53 

R2 0.76 0.69 0.72 0.33 0.22 0.14 0.57 

PMT (DT) 
       

C.V (best Lambda) 
 

0.21 
    

0.42 

AIC 
 

-8.35 
    

2.00 

BIC 
 

-7.21 
    

3.18 

Nb of variables: 
 

2 
    

1 

MSE (Mean Square Error) 
 

0.51 
    

0.96 

R2 
 

0.57 
    

0.19 

BEM (DT) 
       

C.V (best Lambda) 0.38 0.25 0.03 
  

0.14 0.20 

AIC -2.34 -7.31 -17.00 
  

-8.92 -5.32 

BIC -1.21 -6.17 -15.91 
  

-7.78 -4.14 

Nb of variables: 1 2 10 
  

7 4 

MSE (Mean Square Error) 0.77 0.55 0.09 
  

0.48 0.65 

R2 0.35 0.50 0.92 
  

0.58 0.47 

AIC= Akaike Information Criterion 521 

BIC=Bayesian Information Criterion 522 

C. V= Cross validation 523 
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Table 7: Comparative analysis of the model performance of LASSO for the wheat grain quality of drought-sensitive 525 

genotype (DS). 526 

 T1 T2 T3 T4 T5 T6 T7 

Date 10-May 24-May 07-Jun 21-Jun 05-Jul 19-Jul 01-Aug 

Gluten (DS)        

AIC -8.28 2.00 -16.01 -14.60 -1.97 -14.66 0.67 

BIC -7.14 3.14 -14.84 -13.46 -0.83 -13.52 1.76 

C.V (best Lambda) 0.18 0.45 0.08 0.09 0.34 0.10 0.32 

Nb of variables: 6 1 14 11 1 10 1 

MSE (Mean Square Error) 0.51 0.96 0.21 0.23 0.78 0.23 0.89 

R2 0.61 0.22 0.83 0.81 0.30 0.81 0.17 

Protein (DS)        

C.V (best Lambda) 0.06 
   

 0.17  

AIC -15.15     -7.69  

BIC -14.02 
    -6.55  

Nb of variables: 11    
 6  

MSE (Mean Square Error) 0.21    
 0.54  

 R2 0.81    
 0.53  

PMT (DS)        
C.V (best Lambda) 0.19 0.41 0.33  0.38 

 0.24 

AIC -5.76 -3.94 -3.56  2.00  -1.55 

BIC -4.63 -2.80 -2.38 
 

3.14  -0.46 

Nb of variables: 4 1 4  1  1 

MSE (Mean Square Error) 0.62 0.70 0.73  
0.96 

 0.79 

 R2 0.35 0.45 0.50  0.15 
 0.24 

BEM (DS)        

C.V (best Lambda) 0.13 0.36  0.19 0.18 0.13 0.17 

AIC -10.11 -0.70  
-10.37 -8.21 -8.67 2.00 

BIC -9.02 0.39  
-9.28 -7.11 -7.58 3.04 

Nb of variables: 11 2  6 5 4 1 

MSE (Mean Square Error) 0.40 0.83  0.39 0.49 0.47 0.95 

 R2 0.65 0.32  0.71 0.61 0.56 0.03 

AIC= Akaike Information Criterion 527 

BIC=Bayesian Information Criterion 528 

C. V= Cross validation 529 
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Table 8: Microbial parameters included in the LASSO models for wheat grain quality of the drought-tolerant genotype 531 

(DT).  532 

Gluten-May10 Protein-May10 PMT-May21 BEM-June07 
 

Variables Coefficients Variables Coefficients Variables Coefficient Variables Coefficient 

Intercept -1.60×10-14 Intercept -2.50×10-15 Intercept -2.00×10-16 Intercept 3.63×10-14 

Bacteria.PC2 0.492 Bacteria.PC2 -0.141 Biolog.PC2  -0.433 Bacteria.PC1 -0.184 

Fungi.PC3 -0.011 Fungi.PC1 -0.184 ACE fungi 0.225 Bacteria.PC2 0.254 

Biolog.PC2 0.354 Fungi.PC3 -0.188 
  

Bacteria.PC3 -0.051 

Biolog.PC3 0.016 Fungi.PC5 -0.072 
  

Fungi.PC2 -0.102 

Biolog.PC4 -0.153 Biolog.PC1 0.111 
  

Fungi.PC4 -0.099 

Biolog.PC5 -0.086 Biolog.PC4 -0.185 
  

Fungi.PC5 0.643 

Simpson bacteria  0.628 Biolog.PC5 -0.122 
  

Biolog.PC2 0.365 

PD bacteria -0.997 nirK -0.183 
  

Biolog.PC3 -0.249 

ACE bacteria 0.270 
    

Biolog.PC4 0.381 

Chao1 fungi -0.202 
    

Simpson bacteria 0.498 

nosZ -0.235 
    

Chao1 bacteria -0.080 

 PD: Phylogenetic diversity, ACE: Abundance-based Coverage Estimators, PC: principal component. 533 
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Table 9: Microbial parameters included in the LASSO models for the wheat grain quality of the drought-sensitive 535 

genotype (DS).  536 

Gluten-June 07 
 

Protein-May10   PMT-June 07 
 

BEM-June21 
 

Variables Coefficients Variables Coefficients Variables Coefficients Variables Coefficients 

Intercept 7.96×10-15 Intercept -1.80×10-17 Intercept 3.57×10-16 Intercept    -8×10-17 

Bacteria.PC2 -0.018 Bacteria.PC4 -0.541 Bacteria.PC4 -0.009 Bacteria.PC2 -0.010 

Bacteria.PC5 0.216 Fungi.PC1 -0.219 Fungi.PC4 0.146 Bacteria.PC4 -0.263 

Fungi.PC1 0.012 Fungi.PC3 -0.093 Fungi.PC5 0.120 Fungi.PC2 -0.086 

Fungi.PC2 -0.361 Fungi.PC4 -0.262 Biolog.PC5 0.026 Biolog.PC4 -0.151 

Fungi.PC4 -0.026 Fungi.PC5 0.141 
  

Chao1 fungi 0.182 

Fungi.PC5 -0.072 Biolog.PC3 0.027 
  

F:B ratio 0.213 

Biolog.PC1 0.317 Biolog.PC4 -0.099 
    

Biolog.PC3 -0.078 Biolog.PC5 -0.009 
    

Biolog.PC5 0.024 Chao1 bacteria -0.284 
    

Simpson bacteria 0.089 Chao1 fungi 0.154 
    

PD fungi -0.150 PD fungi 0.012 
    

AOB -0.460 
      

nosZ 0.115 
      

F:B ratio -0.031 
      

PD: Phylogenetic diversity, F:B: Fungal: Bacterial ratio, PC: principal component. 537 
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Figure 1.                                                                                      539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

  548 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510160doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510160


Figure 2. 549 
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Figure 3. 551 
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