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Abstract

Better detectors and automated data collection have generated a flood of high-resolution cryo-

EM maps, which in turn has renewed interest in improving methods for determining structure

models corresponding to these maps. However, automatically fitting atoms to densities becomes

difficult as their resolution increases and the refinement potential has a vast number of local minima.

In practice, the problem becomes even more complex when one also wants to achieve a balance

between a good fit of atom positions to the map, while also establishing good stereochemistry

or allowing protein secondary structure to change during fitting. Here, we present a solution to

this challenge using Bayes’ approach by formulating the problem as identifying the structure most

likely to have produced the observed density map. This allows us to derive a new type of smooth

refinement potential - based on relative entropy - in combination with a novel adaptive force scaling

algorithm to allow balancing of force-field and density-based potentials. In a low-noise scenario, as

expected from modern cryo-EM data, the Bayesian refinement potential outperforms alternatives,

and the adaptive force scaling appears to also aid existing refinement potentials. The method is

available as a component in the GROMACS molecular simulation toolkit.

I. INTRODUCTION

Cryo-electron microscopy (cryo-EM) has undergone a revolution the last few years due

to better detectors, measurement techniques and algorithms[1], and the technique now al-

lows for rapid reconstruction of biomolecular ”density maps” at near-atomic resolution[2, 3].

These density maps describe interactions between the sample and an electron beam in real

space. They (including similar ones derived from X-ray structure factors) provide the ba-

sis for reasoning in structural biology. In particular, for cryo-EM, Bayesian statistics has

revolutionized the reconstruction of the density maps from micrographs. This provides a

framework to soundly combine prior assumptions about the three-dimensional density map

model with the likelihood function that connects this model to the measured data and de-

termine the density map most likely to have generated the observed data instead of directly

trying to solve the underdetermined inverse problem[4].

However, to understand the structure and function of biological macromolecules, merely

having an overall cryo-EM density is typically not sufficient - it is also necessary to model
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coordinates of individual atoms into the maps[5]. This enables understanding of e.g. binding

site properties, interactions with lipids or other subunits, structural rearrangements between

alternative conformations, and in particular it makes it possible to model structural dynam-

ics on nanosecond to microsecond time scales via molecular dynamics (MD) simulation[6]. If

the interaction descriptions (force fields) used in these simulations were perfect and one had

access to infinite amounts of sampling, computational methods should be able to further im-

prove the structure just by starting refinement from a rough initial density, but in practice

both force fields and sampling have shortcomings. Nevertheless, it remains an attractive

idea to combine the best of both worlds by using cryo-EM data as large-scale constraints

while force fields are employed to fine-tune details - in particular details such as local stere-

ogeometry or interactions on resolution scales that go beyond what the cryo-EM data can

resolve. Cryo-EM data and stereochemical constraints have been combined favorably in the

past to aid structure modeling into three-dimensional cryo-EM densities either by adding

force field terms enforcing desired stereochemistry to established modeling tools[7–11] or by

adding a heuristic density-based biasing potential to molecular dynamics simulations[12, 13]

or elastic network models[14].

In practice, it is not straightforward how to best combine experimental map data with

simulations and achieve both satisfactory results and rapid convergence. Density-based bi-

asing potentials can in principle achieve arbitrarily good fits to a map, but it comes at a cost

of distorting the protein structure. To address the challenges of balancing desired stereo-

chemical properties with cryo-EM data, refinement protocols have been expanded to include

secondary structure restraints[12], multiple resolution ranges [11, 15], as well as multiple

force constants[11, 16]; the latter two either consecutively in individual simulations[11] or

via Hamiltonian replica exchange[15, 16]. A common challenge of all these approaches is

the increase in the ruggedness of the applied bias potential function as the resolution of

the cryo-EM density maps increases, and how to correctly balance molecular mechanics and

forces from the biasing potential. This leads to an apparent modeling paradox that further

improving structural models for cryo-EM densities with molecular dynamics appears to be

harder the more high-resolution data is available for these models.

To attack this challenge from a fundamental standpoint, Bayes approach has been used

to derive probabilities for all-atom structural models given a cryo-EM density[17] and to

weigh cryo-EM data influence against other sources of data[18]. These modeling approaches
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offer valuable insight into the data content in cryo-EM maps and provide promising new

ways to model cryo-EM densities by treating them as generic experimental data. However,

they do not reflect the underlying physics of data acquisition and density reconstruction

from micrographs and have previously not yielded refinement potentials of a new quality to

be applicable, e.g., in molecular dynamics simulations.

One way of circumventing the number of model assumptions that are necessary to reflect

the reconstruction of three-dimensional cryo-EM densities is to employ Bayesian models that

directly connect micrographs and all-atom ensembles[19]. These attempts have previously

proven to be prohibitively costly as a way to derive driving forces for molecular dynamic

simulation because projections of model atom coordinates onto millions of cryo-EM particle

images (i.e., images of molecules) are required for a single force evaluation.

In this work, we show how it is possible to borrow the highly successful approach to

density reconstruction and use Bayesian modeling of cryo-EM density maps from structures

to derive a new biasing potential that is smooth, long-ranged, and provides fewer barriers

to refinement than established potentials based on cross-correlation[11, 13] or inner product

(equivalent to using potentials proportional to inverted cryo-EM density[12]). This provides

a number of advantages, including an ability to overcome density barriers and in particular

avoid excessive biasing forces resulting from large local gradients in cryo-EM density maps.

It also avoids the need for constraints e.g. on secondary structure and rather allows the

simulation to freely explore local conformational space, while the experimental data is used

to bias sampling to experimentally favored regions of the global conformational space.

We further demonstrate how better balancing between the force field and cryo-EM density

components can be achieved by adaptive force scaling derived from thermodynamic princi-

ples. This allows refinement with a single fixed parameter at low computational cost for a

range of system sizes and initial model qualities. Additionally, to evaluate biasing potentials

based on model to cryo-EM density comparison, we suggest a transformation of all-atom

structure to model density that reflects cryo-EM specific characteristics while minimizing

computational effort.

We investigate advantages and drawbacks of the newly derived potential in practical

applications when compared to established inner-product and cross-correlation biasing po-

tentials in a noise-free and experimental cryo-EM data. Finally, we show how the proposed

refinement methods rectify a distorted initial model with cryo-EM data. A full open-source
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implementation is freely available as part of the GROMACS molecular dynamics simulation

code[20].

II. RESULTS

A. Deriving refinement forces via Bayes approach

Our canonical algorithm to refine all-atom models into a cryo-EM density map ρ with

molecular dynamics is based on initially roughly aligning density map and target structure,

generating a model density from coordinates ~x, and then determining a dimensionless simi-

larity score S between the generated model density and the target cryo-EM density (Fig. 1).

The similarity is used to derive fitting forces, which are then combined with the force field

potential Uff based on a heuristic balance between the density-derived forces and force field

determined by a force constant k. The combined driving forces are determined by the total

potential energy,

Utot(~x, ρ) = Uff(~x)− kS(ρ, ~x) . (1)

We find that applied density forces imply a similarity score between the model structure

and target density, and vice-versa. Assuming that a single configuration of atoms gives rise

to the observed cryo-EM density, Bayes’ approach quantifies the probability density that

the given model describes the cryo-EM data as[17]

p(~x|ρ) ∝ p(~x)p(ρ|~x) . (2)

Boltzmann inversion at temperature T connects the left-hand sides of Eqs. (1) and (2)[21]

where c is an arbitrary potential energy offset

log p(~x) = − 1

kBT
Uff(~x) + c (3)

log p(ρ|~x) =
k

kBT
S(ρ, ~x) + c . (4)

In this formalism, the force field provides the prior p(~x) that would have determined

the model without any additional observations, while the similarity measure provides the

conditional probability that a particular given structure yields a target density p(ρ|~x), scaled

with force-constant k.
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Figure 1. Atomic structure models are refined into a cryo-EM density using biasing forces that

maximize similarity between model and map. A refinement/simulation is initialized with an atomic

model (orange) and a density map (blue). A model density is generated in each voxel (grey

boxes). Voxel-wise similarity scores between model density and cryo-EM density are akin to a

noise model (light blue curve). The gradient of the similarity score determines the fitting forces

(blue arrows). Together with a molecular dynamics force field (red arrows), the fitting forces enable

model coordinate updates (dark orange) that make the model more similar to the density under

force field constraints. New model densities are generated iteratively from the updated model in

each time step of the simulation until acceptable convergence is reached.
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Note that this does not assume any particular form of the similarity, but it provides a

general relationship that also relates established similarity measures like cross-correlation or

inner-product to their implicit assumptions about the likelihood function above, and in turn

enables the construction of new similarity scores that drive refinement procedures depending

on the assumptions about the underlying measurement process.

B. Bayes approaches yield negative relative entropy as similarity score

To derive a new refinement potential from the likelihood of measuring a density given the

structure, we assume that cryo-EM densities are linked to atom-electron scattering prob-

abilities, where electron-atom interaction leads to a phase shift in electrons. With this

assumption, two steps are necessary to calculate the density likelihood p(ρ, ~x) from coordi-

nates. First, an electron-scattering probability density ρs is created from a given structure.

Second, this density is compared to a given measured density. Cryo-EM micrographs are

typically normalized to unity variance around the particle region[22]. As a consequence, cryo-

EM densities are scaled by a free parameter, and they may thus be rescaled as ρ̂v = rρv.

Including this re-scaling in our model, the likelihood to observe a density, given coordinates

~x is p(ρ|~x) =
∫
r=0
∞p(r)p(ρ|ρs(~x), r). Two further assumptions enable the derivation of new

similarity scores.

First, we assume that measured scattering probabilities per voxel are independent of other

voxel values. This does not exclude spatial correlation between density data but states that

the scattering process in one voxel does not influence the electron interaction in other voxels.

With this result, it suffices to define a probability distribution at each voxel ρsv.

For the per-voxel scattering probability, we present two different sets of assumptions,

leading each to a refinement potential in their own right. Many more assumptions may

be laid out; here we choose to present those that go beyond previous modeling, yet are

well-treatable in model complexity and integratable into a molecular dynamics framework

where forces have to be calculated numerically stable and fast. Therefore, we choose not to

integrate the full image formation from the microscope detector to three-dimensional density

but rather start the modeling process with a three-dimensional density and some additional

assumptions on what each voxel represents. By presenting two different approaches to what

voxel values in a density present, it should become even clearer how to adapt our modeling
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to more complex models.

Using the assumption that an incident electron will scatter at one voxel and that the

probability at which voxel to scatter is proportional to the density values, the scaling factor

r for the density is fixed to r =
∑

v ρ. With a scaling factor s that describes the expected

number of interactions in the simulated density, this turns into a Dirichlet distribution to

describe the scattering process as

p

(
ρ|ρs(~x), r =

∑
v

ρv

)
= ρsρ

s
v−1

v . (5)

From this follows
k

kBT
SI(ρ, ρ

s) = s
∑

v∈voxels

ρsv log ρv. (6)

In this picture the reported density is treated as a probability density, requiring the removal

of negative values and normalization to unity. The resulting potential of this modeling

approach is proportional to the Kullback-Leibler divergence between simulated and exper-

imental density with a free scaling parameter. This potential in turn can be seen as an

inner-product based potential where density is replaced by its logarithm.

In an alternative picture, reported cryo-EM densities at each voxel represent interaction

counts. They are assumed to be proportional to the number of interactions of N incident

electrons that each interact with probability ρsv. This assumes that vitreous ice is not visible

and does not contribute to the scattering, which is commonly achieved by shifting the offset

of cryo-EM densities so that water density is represented with voxel values that fluctuate

around zero. Only accounting for positive density, we describe this scattering interaction

process by a Poisson distribution with parameter λ = Nρsv. While it is theoretically possible

to expand the model to include noise fluctuations and negative densities, we omit this for

the sake of reducing model complexity.

With these assumptions (the detailed algebraic transformations are laid out in the Sup-

porting Information S1 Appendix), we obtain a similarity score between simulated model

density and cryo-EM density proportional to the negative relative entropy, or Kullback-

Leibler divergence, with

k

kBT
SII(ρ, ρ

s) =

∫ ∞
r=0

p(r)
∑

v∈voxels

rρv

(
log

ρsv
rρv

)
dr. (7)
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To distinguish both relative-entropy based potentials, we call the potential derived from

the first set of assumptions ”swapped relative-entropy” and keep referring to the latter as

relative entropy.

In a full Bayesian picture the unknown scaling factor r would be treated as a model

parameter whose marginal distribution is integrated out. However, the prior distribution for

this parameter is unknown and hard to estimate correctly due to the complex density recon-

struction algorithm. Even if we were to determine this scaling correctly, a ”correct” force

scale in such a Bayesian setting would most likely result in very large forces for conforma-

tions with significant deviants at the start of simulations, resulting in numerical instabilities

in a molecular dynamics setting. The unknown prior distribution p(r) results in an unknown

scaling in the force constant, which can be seen from so-called re-gauging with an additional

constant kBT
∑

v∈voxels log(ρ̂v/r),

r · k
kBT

SII(ρ, ρ
s) =

∑
v∈voxels

ρ̂v

(
log

ρsv
ρ̂v

)
. (8)

Here, we choose a scaling that ensures that the cryo-EM density has the properties of a

probability distribution and choose our arbitrary re-gauging such that
∑

v ρ̂v = 1. The force

constant balancing cryo-EM data vs. force field / stereo-geometry is thus a free parameter

and is chosen adaptively with a protocol described below.

The newly derived relative-entropy-based similarity score has a domain of [−∞, 0] with

perfect agreement at zero. Due to the log ρsv term, it differs prominently from established

similarity scores like cross-correlation[11] and inner-product (formulated as a force following

the gradient of a smoothed inverted density which is equivalent in this approach[12]; see

Supporting Information S1 Appendix). In contrast, the relative-entropy based score receives

the largest contribution from voxels where cryo-EM data has no corresponding model density

data.

This leads to a different behavior from established similarity scores with local minima for

locally good agreement with cryo-EM data while the relative-entropy based potential will

only have minima where there is good global agreement between structure and density. As

a consequence, the relative-entropy based density potential is expected to perform better in

situations where other potentials cannot escape local minima, at the cost of higher sensitivity

to noise in the data, and especially additional density data that is not accounted for in the
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atomic model.

C. The potential energy landscapes based on relative entropy are smooth

The proposed relative entropy density-to-density similarity measure has favorable prop-

erties in one-dimensional model refinement of one and two particles to a reference den-

sity (Fig. 2). Both newly derived potentials have the same analytical form for our one-

dimensional model case.

In contrast to cross-correlation and inner product similarity measures that have a steep

and sudden onset for refinement forces in one dimension, the relative-entropy similarity score

has a harmonic shape with long-ranged interactions that allow for efficient minimization.

Using relative-entropy, the particle to be refined is attracted by a harmonic spring-like

potential to the best-fitting position; far away from the minimum forces are large, but their

magnitude decreases monotonically as the minimum is approached. Inner-product and cross-

correlation based fitting potentials, however, exert almost no force on the particle outside

the Gaussian spread width, while exerting a suddenly increasing force when moving closer

to the Gaussian center, and are only insignificant very close to the minimum.

For the refinement of two particles, this advantage is only maintained for one of the newly

derived potentials, where the relative-entropy-based potential energy landscape is less rugged

and has fewer pronounced features and minima than the corresponding landscapes for the

inner-product and cross-correlation based potentials (Fig. 2). Only a single diagonal barrier

is found in the relative-entropy-based potential landscape, corresponding to a ”swapping”

of particle positions, which alleviates the search for a global minimum. The inner-product-

based free energy landscape has its minimum at a configuration where both particles are at

the same position at the highest density. This issue can be alleviated in practical applications

through a force-field prior that would enforce a minimum distance between the atoms (e.g.

through van der Waals interactions). The swapped relative entropy potential on the other

hand exhibits behavior similar to the inner-product, with similar minima but an overall

smoother energy landscape.

To model the influence of a force field, the two particles were connected with a harmonic

bond with increasing influence. The balance between density-based forces and bond strongly

determines the shape of the resulting energy landscape, but here too relative entropy provides
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Figure 2. Similarity score determines ruggedness of the effective refinement potential energy land-

scape, also when balancing it with structural bias. From top to bottom: a One-dimensional

refinement of a single particle (black circle) towards a Gaussian-shaped density (gray) with inner-

product (purple), cross-correlation (ochre), relative-entropy swapped (dark blue) and relative-

entropy (green) as similarity scores. b Expanded model with two particles (black circles, x1 smaller

and x2 larger) with two amplitude peaks in a one-dimensional density and target distribution (gray),

and the resulting two-dimensional effective potential energy landscapes for inner-product, cross-

correlation, swapped relative-entropy and relative-entropy similarity measures. c Combination of

the similarity measure and force field contribution to the potential energy landscape, exemplified

by a harmonic bond that keeps particles at half the distance between the Gaussian centers. For

all relative weights of the contributions of the refinement potential and bond potential energy

landscape (ratio 1:2 upper panel, 2:1 middle panel, as illustrated by the scale on the left), the

relative entropy similarity score produces smooth landscapes with minima at the positions that are

expected from the model input.
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a smoother landscape less sensitive to the specific relative weight of refinement and bond

potentials.

D. Adaptive force scaling reduces work exerted during refinement and allows for

comparison of density-based potentials

For now, we cannot derive the force constant for density-guided simulations automati-

cally from the cryo-EM density alone and it is thus set heuristically. Established protocols

where the force constant has to be determined manually require an iterative trial-and-error

approach. We address this by introducing an adaptive force-scaling as depicted in Fig. 3a

to automatically balance force-field and density-based forces during the refinement.

Cryo-EM refinement simulations are non-equilibrium simulations with the aim to drive a

system from an initial model state to a final state that is as similar to the cryo-EM density

as possible while avoiding structural distortions that result e.g. from unphysical paths. To

avoid or at least reduce the latter during refinement, a heuristic protocol has been devised

that aims to minimize work exerted on the system while still requiring as little time as

possible for the refinement. To minimize the exerted work formulated as

Wfit =

∫ Send

S=Sstart

∂SkS dS ≈
∑
frame

kframe∆Sframe , (9)

the adaptive-force scaling starts from a low force constant k. This is then increased if

similarity decreases and conversely decreased if the similarity is increasing (Fig. 3b). Any

feedback protocol of this type is guaranteed to exert less work to reach the same similarity

score than keeping the force constant fixed at the final value of the adaptive scaling protocol,

given that the score is monotonically increasing.

A one-dimensional Brownian diffusion model system (Fig. 3c) is used to test the perfor-

mance of the concrete scaling protocol as described in the methods section of this paper. In

this model, the similarity score simply increases with increasing particle coordinate value.

Biasing the system towards increasing coordinate values with adaptive force scaling in con-

trast to a constant force allows for the particle to reach a given coordinate value in the same

average first-passage time at a much lower average work input. Without any coupling of the

free energy landscape to the adaptive force scaling protocol other than through the particle

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2023. ; https://doi.org/10.1101/2022.09.30.510249doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.510249
http://creativecommons.org/licenses/by/4.0/


Figure 3. Adaptive scaling of contributions from force-field and cryo-EM density data overcomes

potential energy barriers without excessive work input. a Adaptive force scaling heuristically

balances force-field and density influence during refinement simulations. b Particle in energy

landscape where density similarity increases from left to right along the black curve. For the upper

leg alternative, the similarity decreases despite biasing forces (burgundy arrow), which causes the

bias strength to be increased. Conversely, in a scenario where the similarity remains high (lower

leg), the biasing force will gradually be reduced to allow the system to better sample the local

landscape. c Brownian diffusion in a potential with fixed (grey) and adaptive (burgundy) biasing

forces, respectively. The constant biasing force is scaled such that both force-adding schemes yield

the same average mean first passage time moving from left to right. The relative-entropy approach

leads to significantly lower exerted work on the system (area under the grey and burgundy curves,

respectively), which reduces perturbation of the dynamics of the system.
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trajectory, the adaptive force scaling increases the force just sufficiently to allow overcoming

energy barriers but then reduces it again.

Adaptive force scaling further enables the comparison of relative entropy to other estab-

lished density-based potentials in simulations with cryo-EM data because it disentangles the

effect of the force constant choice from the choice of refinement potential. To carry out this

comparison on cryo-EM data with our newly derived similarity score within the Bayesian

framework, a model density generation protocol is required which is shown below.

E. Deriving an optimal model density generation for cryo-EM data refinement

To evaluate similarities between structural models and cryo-EM densities, a model elec-

tron scattering probability density is generated from atom positions. Two dominant effects

are convoluted when modeling electron scattering probabilities: The scattering cross-section

of each atom and their thermal motion. Both are approximated with Gaussian functions of

amplitude A and width σ. The scattering cross sections determine A (Table 6 in Supporting

Information S1 Appendix). For convenience, we approximate scattering amplitudes by unity

for all heavy atoms and zero for hydrogens. The magnitude of thermal fluctuation of atoms

at cryogenic temperatures determines the spread width σ.

In practice, these limitations to the model resolution are superseded by the finite per-

formance of the measurement instrument and the reconstruction process where structural

heterogeneity, detector pixel size, microscope lenses, and particle alignment limit the res-

olution. We do not account for structural heterogeneity, because it is an ensemble effect.

A connection between the approach presented here and an ensemble model may be made

though by employing a probability distribution p(~x) instead of ~x in Eq. (2) and leveraging

ensemble simulations[23]. Other resolution-limiting effects are approximated by additional

convolution of the generated maps with a Gaussian kernel. Rather than aiming to repro-

duce the same blur as in the experimental map, we strive to preserve as much information

as possible from the physical model.

A balance between information loss due to under-sampling on the grid on the one hand

and information loss due to coarse blurring is found where the Gaussian width at half

maximum height equals the resolution. The maximum representable resolution on a grid

corresponds to twice the Nyqvist frequency δ (corresponding to the pixel and voxel size) so
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that the Gaussian width σ is approximated in refinement simulations from the highest local

resolution or, where that data is not applicable, from the voxel-size,

σ =
resmax

2
√

log 4
≈ 2δ

2
√

log 4
. (10)

For computational efficiency Gaussian spreading is truncated at 4σ for all simulations

in this publication, accounting for more than 99.8% of the density (Fig. 1 in Supporting

Information S1 Appendix). The small limitation on the maximal distance between the initial

model structure and the cryo-EM density through this cutoff has proven to be irrelevant for

all practical purposes, as density-based forces will ”pull” structures into densities as soon as

there is minimal overlap between model density and cryo-EM density, which can easily be

achieved with an initial alignment. Interestingly, this approach results in a smaller Gaussian

spreading width than previously applied ones that aim to reproduce a density map with the

same overall resolution as the experimental cryo-EM density. As a result, it maintains

as much structural information as possible in the model density while still reducing the

computational costs.

F. Refinement against noise-free data

To separate additional noise effects in experimental data and possible limitations in the

above model, we first assess refinement with ideal data where a small straight helix model

system[14] has been refined against a synthetically generated target density of the same

helix in a kinked configuration. As illustrated in Fig. 4a, adaptive force scaling and relative-

entropy as similarity score efficiently fit the helix into the synthetic cryo-EM density [24].

The combination of adaptive force scaling and different similarity scores achieved a con-

sistent global fit when the helix was aligned to the density, with some fluctuations of the

results (Fig. 3c) due to the stochastic nature of molecular dynamics simulations. Simu-

lations starting from both the aligned and unaligned starting positions get stuck in local

minima, which can result in bad fits. The average total RMSD of all replicates was lowest

for relative-entropy starting from the aligned position and further improved when the helix

was initially unaligned (Tab. 1 and Tab. 2 in Supporting Information S1 Appendix). The

relative-entropy based potential shows markedly better results for the unaligned refinement

and achieved a fit with less 1Å RMSD in 6 out of 7 replicates while inner-product, cross-
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Figure 4. Refinement into noise-free data with adaptive force scaling. a Aligned (left) and unaligned

(right) starting conformations (black sticks) of a helix subject to refinement simulation into a

synthetically generated cryo-EM density (gray mesh). b RMSD per residue of the final refined

models starting from the aligned conformation compared to the ground truth model underlying

the synthetic density map. Each replicate (n=7) is colored by the similarity measure used, inner-

product (purple), cross-correlation (ochre), relative-entropy swapped (dark blue), and relative-

entropy (green). c RMSD per residue of the final refined models starting from the unaligned

conformation compared to the ground truth model underlying the synthetic density map. Each

replicate (n=7) is colored by the similarity measure used, inner-product (purple), cross-correlation

(ochre), relative-entropy swapped (dark blue), and relative-entropy (green)

correlation, and relative-entropy swapped based potentials in some instances completely fail

to align the helix (Fig. 5 in Supporting Information S1 Appendix). For a single helix this

is a slightly artificial case, but in a large structure undergoing significant transitions, it will

be common for some secondary structure elements to not overlap with the target density in

an initial phase of the refinement.
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Figure 5. Refinement of an all-atom X-Ray aldolase structure (PDB id 6ALD) into experimental

cryo-EM density (EMD-21023). a Final structure models from density-guided simulations using

different similarity scores colored by unaligned root mean square coordinate deviation (RMSD)

per residue from the manually built model (PDB id 6V20). b Fourier shell correlation of starting

structure (gray line), rigid-body fit of the starting model to the target density (blue) as well as

refinement results in the last simulation frame (solid lines). The reported cryo-EM map resolu-

tion and 0.143 FSC are indicated with grey lines. c Unweighted FSC average over the course of

refinement simulation.

G. Refinement against experimental cryo-EM data

Experimental cryo-EM densities of aldolase and a GroEl subunit were used to test the

performance of adaptive-force scaling in combination with different refinement potentials on

experimental data with increasing amounts of density that is not accounted for in our model
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description and noise that cannot be fully accounted for by the model assumptions.

By using adaptive-force scaling refinement of a previously published X-Ray structure of

rabbit-muscle-aldolase[25] against a recently published independently determined cryo-EM

structure[26], we consistently achieve accurate refinement throughout all potentials with

good stereochemistry (Tables 3 & 5 in Supporting Information S1 Appendix). Figure 5a

shows the final models of refinement with a global deviation of less than 1Å heavy-atom root

mean square deviation (RMSD) from the deposited model using inner-product and cross-

correlation measures and slightly above 1Å for the relative-entropy based density potential

(Table 3 in Supporting Information S1 Appendix).

The close agreement with the cryo-EM data is reflected in the FSC of the models refined

against the density (Fig. 5b) being nearly indistinguishable from the deposited model. The

relative-entropy-based potential emphasizes agreement with global features at the cost of

local resolution (Fig. 5 in Supporting Information S1 Appendix), while still providing good

agreement to the cryo-EM density.

The unweighted FSC average[27] serves as an established similarity score that is not re-

lated to the biasing potentials which were used to refine the system (Fig. 5b). All underlying

potentials appear to lead to refinement simulations that converge in less than 2 ns, as shown

in Fig. 5c. The less rugged and long-range potential properties of relative-entropy based

density forces are reflected in a rapid rigid-body like initial fit to global structural features,

while the other potentials show gradual improvements in fit.

The refinement of a GroEl subunit in two different conformations as determined by cryo-

EM[28] stretches the limits of the model assumptions of our refinement potential by refining

it against a more noisy model with imperfect map-to-model correspondence. Similar to

aldolase refinement, adaptive force-scaling allows for rapid and reliable refinement into the

model density, as shown in Fig. 6. However, the relative-entropy based potential propensity

to taking all density into account leads to deviations from the published model in regions with

density that has no correspondence in the all-atom model (Fig. 9 in Supporting Information

S1 Appendix).
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Figure 6. Refinement of an all-atom GroEL cryo-EM structure (PDB id 5W0S state 1) into

experimental cryo-EM density (EMD-8750, additional map 3). a Final structure models from

density-guided simulations using different similarity scores colored by unaligned root mean square

coordinate deviation (RMSD) per residue from the deposited model (PDB id 5W0S state 3). b

Fourier shell correlation of starting structure (gray line), rigid-body fit of the starting model to

the target density (blue) as well as refinement results in the last simulation frame (solid lines)

deviations of an equilibrium simulation (dotted lines). c Unweighted FSC average over the course

of refinement simulation.

H. Model rectification by combining force-field and cryo-EM data

To assess performance in larger structural transitions, we repeated the aldolase refinement

when starting from initial model structures that have been distorted by heating with partially

unfolded secondary structure elements (Fig. 7, as described in Methods). Figure 7b shows
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Figure 7. Cryo-EM data rectifies model distortions with density-guided simulations. a Distorted

starting model RMSD with respect to manually built model (PDB id 6V20). b Final model

structure after refinement into a cryo-EM density (EMD-21023) using adaptive force scaling and

relative-entropy similarity score. c Close-up of structural features of the final simulation model

(green lines) and cryo-EM density (gray mesh). d Fourier shell correlation of starting structure

(gray line) as well as refinement results in the last simulation frame (solid lines). The reported

cryo-EM map resolution and 0.143 FSC value are indicated with grey lines. e Un-weighted FSC

average over the course of a refinement simulation.

the final relative-entropy based model of the refinement procedure that achieved 1.13 Å

heavy-atom RMSD from the manually built model. Structural details at map resolution

match in secondary structure elements. In contrast to refinement of the undistorted X-ray

structure, the relative-entropy based potential gains less from the long-rangedness of the

potential and the rapid alignment of large-scale features, because structural rearrangements

were needed on all length scales. The adaptive force scaling protocol alleviates differences

between density-based potentials in refinement speed and allows for refinement with good

structural agreement in less than 3 ns.
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The adaptive force scaling protocol allows the modeling to be more steered by cryo-EM

data and reach model structures that would not have been accessible by modeling using

stereochemical information from the force-field alone.

III. DISCUSSION

While defining a purely empirical similarity measure can sometimes suffice to fit structures

to cryo-EM densities, connecting the similarity measure to the underlying measurement pro-

cess of the target density enables derivation of natural similarity measures. From very few

assumptions, this results in the density-based potential derived via Bayes’ approach that co-

incides with the relative-entropy between a model density generated from model/simulation

atom coordinates and the target cryo-EM density.

The newly defined potentials have favorable features, with the Poisson statistics-based

relative entropy potential most prominently exhibiting long range and low ruggedness. These

avoid local minima that do not correspond to desired configurations during refinement and

allow rapid alignment of large-scale features, and they perform superior to established re-

finement in the zero noise setting with synthetic density maps. The noise content in current

cryo-EM densities is likely still too high to be handled with the current minimalistic model

assumptions, but as the quality of cryo-EM and other low-to-medium resolution techniques

continues to rapidly improve, we believe there will be even more advantages to models that

do not depend on smoothing. In addition, the adaptive force-scaling provides a surprisingly

simple way to tackle the inaccessibility of the balance between force-field and density-based

forces within our model assumptions. It allows for parameter-free refinement that is one

to two orders of magnitude faster than currently established protocols. Conceptually it is

orthogonal to, and easily combined with, multi-resolution protocols[15].

Another illustration of the usefulness of the Bayesian framework for handling force-field

vs. fitting forces is how it enables us to deduce a close-to-optimal model density spread

for refinement, and even more so that this value is not identical to the common practice

of setting it equal to the experimental resolution. While many of these factors could still

be tuned manually, removing them as free parameters means fewer arbitrary settings that

avoid over- or underfitting, which will be even more important when trying to combine e.g.

multiple sources of experimental data. For trial structure refinement against recent cryo-EM
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data, we show that we achieve excellent fits independent of initial model quality.

One limitation of the current formulation is that it does not explicitly take more informa-

tion from the cryo-EM density reconstruction process into account. A first step to broaden

the approach presented here is to account for the local resolution information from the cryo-

EM map, which may be seen as a measure of the noisiness of the density data. In practice,

the local resolution will still influence the fit since low local resolution will correspond to

smoother regions of the map, and lower-magnitude gradients will lead to lower-magnitude

fitting forces in those regions. However, a formally more correct way to address the problem

is likely to treat the target cryo-EM density as a statistical distribution with a variance that

is spatially resolved - this is something we intend to pursue in the future to see whether it

can further improve the issue of the relative-entropy potential with more noisy data.

The algorithms proposed in this work are freely available, integrated, and maintained

as part of GROMACS[29]. Overall, three independent building blocks are provided to aid

the modeling of cryo-EM data that each may be individually implemented in current mod-

eling tools: A new refinement potential, a new criterion for how to calculate the model

density, both based on reasoning via Bayes’ approach, and adaptive force scaling to gently

and automatically bias stereochemistry and cryo-em data influence. The implementation

also provides tools to monitor the refinement process. Although it can still be difficult for

any automated method to compete with manual model building by an experienced struc-

tural biologist, we believe these methods provide new ways to extract as much structural

information as possible from cryo-EM densities at minimal human and computational cost,

which is particularly attractive e.g. for fully automated model building.

IV. METHODS

A. Calculating density-based forces

For ease of implementation and computational efficiency the derivative of Eq. (4) is

decomposed into a similarity measure derivative and a simulated density model derivative,

summed over all density voxels v

Fdensity = k
∑
v

∂ρs
v
S(ρ, ρs) · ∇rρ

s
v(r) . (11)
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Though the convolution in eq. (11) might be evaluated with possible performance benefits

in Fourier space, we have implemented the more straightforward real-space approach.

The forward model ρs is calculated using fast Gaussian spreading as used in [30]; the

integral over the three-dimensional Gaussian function over a voxel is approximated by its

function value at the voxel center v at little information loss (Fig. 2 in Supporting Informa-

tion S1 Appendix). Amplitudes of the Gaussian functions[31] have been approximated with

unity for all atoms except hydrogen. The explicit terms that follow for S(ρ, ρs) and ∇rρ
s
v(r)

are stated in the Supporting Information S1 Appendix.

B. Multiple time-stepping for density-based forces

For computational efficiency, density-based forces are applied only every Nfit steps. The

applied force is scaled by Nfit to approximate the same effective Hamiltonian as when apply-

ing the forces every step while maintaining time-reversibility and energy conservation[32, 33].

The maximal time step should not exceed the fastest oscillation period of any atom within

the map potential divided by π. This oscillation period depends on the choice of refer-

ence density, the similarity measure, and the force constant and has thus been estimated

heuristically.

C. Adaptive force scaling

Adaptive force constant scaling decreases the force-constant when similarity increases by

a factor 1 + α, with α > 0, and reversely increases it by a factor 1 + 2α when similarity

decreases. The larger increase than decrease factor enforces an increase in similarity over

time.

To avoid spurious fast changes in force-constant, similarity decrease and increase are

determined by comparing similarity scores of an exponential moving average. The simulation

time scale is coupled to the adaptive force scaling protocol by setting α = Nfit∆t
τ

, where ∆t

is the smallest time increment step of the simulation and τ determines the time-scale of the

coupling.

This adaptive force scaling protocol ensures a growing influence of the density data in the

course of the simulation, eventually dominating the force-field. Simulations with adaptive
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force scaling are terminated when overall forces on the system are too large to be compatible

with the integration time step.

D. Comparing refined structures to manually built models

Root mean square deviations (RMSD) of all heavy atom coordinates (excluding hydrogen

atoms) used absolute positions without super-position as structures because the cryo-EM

density provides the absolute frame of reference. This is an upper bound to RMSD values

between refined and manually built models calculated with rotational and translational

alignment.

E. Comparing refined structures to cryo-EM densities

Fourier shell correlation curves and un-weighted Fourier shell correlation averages[27] were

calculated at 4 ps intervals from structures during the trajectories by generating densities

from the model structures using a Gaussian σ of 0.45 Å, corresponding to a resolution as

defined in EMAN2[24] to 2Å.

F. Map and model preparation before refinement

1. Helix

Noise-free helix density maps at 2Å simulated resolution on a 1 Å voxel grid were gen-

erated from an atomic model using ”molmap” as provided by chimera[34]. Two frames

taken from an equilibration simulation of the helix model were used as starting models for

subsequent density-guided refinement.

2. Aldolase

A simulation box of the exact dimensions as aldolase density map EMD-21023 was used.

The corresponding aldolase model (PDB id 6V20) was treated as a ground truth for RMSD

calculations. A previously determined X-ray model (PDB id 6ALD) was used as starting
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structure. The system was subjected to energy minimization before fitting. No symmetry

constraints were used in simulations.

3. GroEL

The density-guided simulations of GroEL were performed between conformational states

within an individual oligomer [28]. State 1 (PDB id 5W0S(1)) was used as starting model

and fit toward conformational state 3 (EMD-8750, additional map 3). A section of the

density map corresponding to a single oligomer was used as the target. The target map

was created using ChimeraX [35] and by including any volume data within a 5 Å range of

the previously determined model corresponding to state 3 (PDB id 5W0S(3)). The target

density was centered in a map and the map size was set to 100³ using relion image handler

[36].

G. Generation of a distorted model

To generate a distorted starting model, the aldolase protein X-ray was heated to 4331
3

K

over a period of 5 ns. During heating, the pressure was controlled with the Berendsen

barostat, favoring simulation stability over thermodynamic considerations. To disentangle

effects from decreasing the temperature and fitting, the distorted structure was subjected to

5 ns of equilibration at 300 K before starting the density-guided simulations with the same

protocol as described above.

H. Molecular dynamics simulation

All simulations were carried out with GROMACS version 2021.3[29] and the CHARMM27

force-field[37, 38] in an NPT and NVT ensembles with neutralized all-atom systems in

150 mM NaCl solution. The temperature was regulated with the velocity-rescaling ther-

mostat at a coupling frequency of 0.2 ps to ensure rapid dissipation of excess energy from

density-based potential, when structures are very dissimilar from the cryo-EM density, i.e.,

far from equilibrium. The pressure was controlled with the Parinello-Rahman barostat

for aldolase simulations, helix simulations were carried out at constant volume. Aldolase
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and GroEL were aligned roughly to the density by placing their center of geometry in the

center of the cryo-EM density box. Forces from density-guided simulations were applied

every Nfit = 10 steps according to the protocol described above[33]. All simulations to

refine a structure against a density were carried out with adaptive force-scaling. We used a

coupling constant of τ = 4 ps, balancing time to result with time for structures to relax. For

aldolase simulations, the Gaussian spread width was determined by using a lower bound on

the highest estimated local resolution of 1.83 Å. Spread width for GroEl simulations was

set to 1.0455Å, based on the 1.23Å voxel size in the map used for refinement. Periodic

boundary conditions are treated as described in the Supporting Information S1 Appendix.

All simulation setup parameters and workflows have been made available.

V. DATA AVAILABILITY

Simulation starting structures, generated densities, setup parameters, and complete work-

flow setups via Makefiles and Python scripts to generate Fig. 2 as well as data for Fig. 3

and per-residue RMSD are available via Zenodo (https://doi.org/10.5281/zenodo.4556616).

The code to perform density-guided molecular dynamics simulations is maintained within

GROMACS and publicly available in release 2021 and later, as well as in the repository

at https://http://gitlab.com/gromacs/gromacs. Fourier shell correlation analysis of tra-

jectories has been implemented on top of the GROMACS codebase following conventions

in EMAN2[24] and is available at https://gitlab.com/gromacs/gromacs/-/commits/fscavg.

Python scripts to generate Fig. 2, as well as data for Fig. 3 and per-residue RMSD are

available via Zenodo (https://doi.org/10.5281/zenodo.4556616).
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