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Abstract

Accurate prediction of the effects of mutations in cancer has the potential to improve1

existing treatments and identify novel therapeutic targets. We benchmarked state-2

of-the-art pretrained protein language models in two clinically relevant tasks,3

identifying disease-causing mutations and predicting patient survival. Our results4

show that models without multiple sequence alignment outperform the baseline.5

We also demonstrate that evolutionary index, a score based on protein language6

models’ training objective, can achieve statistically significant survival prediction7

in multiple cancer types, a key step toward the clinical utility of protein language8

models. 19

1 Introduction10

Whether a mutation causes disease, known as the pathogenicity of a mutation, is a fundamental11

question in modern genomics. Traditional methods of predicting pathogenicity rely on mutation12

frequency and clinical evidence in the literature [1]. However, only less than 2% of mutations13

currently have known functional interpretation [2, 3, 4], leaving most variants have yet to be identified14

with clinical consequences. Conventional supervised learning models have been tested for this task15

[5, 6, 7, 8, 9, 10, 11], but the accuracy of these methods remains limited [12].16

Recent advances in large language models such as GPT [13], BERT [14] have motivated powerful17

protein language models, leveraging the similarity between protein sequences and sentences. Among18

them, the BERT-based protein language model ESM-1b [15], trained over 250 million protein19

sequences in UniRef50 [16], capture the physical properties of amino acids. The newer version,20

ESM-2, can predict protein structures with comparable accuracy with AlphaFold [17]. A bidirectional21

LSTM model has been shown to predict if viruses can escape attacks from hosts’ immune systems22

[18]. Another similar model is the GPT2-based ProGen2 [19]. Those models can make predictions23

using a single protein sequence.24

Another type of models leverage sequence homology, borrowing information from similar sequences25

by aligning them. Examples include BERT-based ESM-MSA [20] and VAE-based EVE [21] model.26

While these models have been tested for predicting pathogenic mutations in various disease settings,27

focused assessments in cancer are still lacking. More importantly, whether these protein language28

models can predict clinically relevant properties of the patients carrying the mutations remains29

unknown.30

In this paper, we present a systematic benchmark study of state-of-the-art protein language models in31

predicting pathogenic mutations in cancer diver genes. The models include alignment-based methods32

such as EVE [21] and ESM-MSA [20], and alignment free approaches such as ESM-1, ESM-1b [15],33
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ESM-1v [22], and ProGen2 [19]. We examine whether these models can learn functional changes34

caused by mutations in amino acid sequences and identify high-risk mutant cancer proteins.35

We further test representations learned from protein language models in a cox-regression framework36

for progression-free survival prediction. Evaluated on 10,248 patients from The Cancer Genome37

Atlas (TCGA), the winning model, ESM-1b, can achieve statically significant separation of high and38

low risk patients in six cancer types, while traditional methods are known to struggle.39

2 Method and Analysis40

2.1 Zero-shot Prediction of Pathogenic Mutations using Pre-Trained Protein Language41

Models42

Here, we lay out a zero-shot pathogenic mutation prediction task for pre-trained protein language43

models. As illustrated in Figure 1, for each each mutation, the model will take the entire protein44

sequence as input. The output is the probability of sequence being pathogenic or benign. These45

probabilities are assignment probabilities obtained from fitting a two-component Gaussian mixture to46

a measurement called evolutionary index. Evolutionary index (EI) is the negative log ratio between47

the probability of observing the mutant sequence and the probability of observing the wild-type48

sequence (i.e. sequence without mutation). The EI has been shown to be an intuitive score to49

reflect a protein language model’s ability to capture information encoded in amino acid sequences50

[21, 18]. A higher value in EI indicates stronger deviation of the mutant sequence from the wild-type51

sequence. Therefore, the component with a higher mean value represents a higher chance of being52

pathogenic. A straightforward classification can be based on the probability of assigning a mutation53

to the pathogenic cluster as the pathogenicity score.54

The strategy allow us to test pre-trained protein language models solely using their representations,55

avoiding any confounding factors with further tuning a downstream classifier.56
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Figure 1: Zero-shot pathogenic mutation prediction framework, using ESM-1b as an example.

We extracted 20 common cancer proteins from ClinVar [4], which documents and provides supporting57

evidence for the relationship between variation and phenotype in humans. ClinVar provided the58

assessment criteria for the clinical significance of variation. ClinVar’s annotations are widely accepted59

as ground truth. We screened for human cancer proteins, aiming to select as many representative60

cancer proteins as possible with clinical data. It is important to note that the importation of the protein61

into the ESM-1b network, the evolutionary index, and the final pathogenicity score were unsupervised62

and unadulterated with homologous sequence information.63
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(a) AUC (b) ACC

Figure 2: (a) shows the AUC (area under curve) of the pathogenicity scores of 20 common cancer
proteins under the Clinvar clinical label, and (b) shows the accuracy of the pathogenicity labels of 20
cancer proteins.

(a) PTEN Distributions (b) TP53 Distributions (c) LDLR Distributions

(d) PTEN Clustering (e) TP53 Clustering (f) LDLR Clustering

Figure 3: (a), (b), and (c) show the fitting of two-component Gaussian mixture models on evolutionary
index scores in PTEN, TP53 and LDLR. There is a clear distinction between benign (blue dashed
line) and pathogenic (red dashed line) components. (d), (e), and (f) show the relationship between the
pathogenicity score (i.e., the probability of being in the pathogenic component) colour-coded using
Clinvar annotations where red denotes pathogenic and blue denotes benign.

Testing on the ClinVar labels, ESM-1b obtained an AUC of 0.874 and an average ACC of 0.82664

(shown in Figure 2), while ESM-1v achieved better results with an AUC of 0.909 (shown in Table 1),65

outperforming the current leading performance reported [21]. The pathogenic score makes the66

performance highly explainable. The degree of separation between two Gaussian components directly67

assesses the strength of the predictive signal captured by ESM-1b. By aligning the score with the68

genomic position of corresponding mutations, one can further examine the biological implication of69

the predictions.70
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Table 1: Benchmark protein language models with zero-shot pathogenicity prediction.

Model MSA Params AUC

Mask Predict Without Mask

EVE 1 - - 0.887

ESM-1 0
43M 0.722 0.725

85M 0.780 0.769

670M 0.866 0.856

ESM-1b 0 650M 0.706 0.874

ESM-1v 0 650M 0.758 0.909

ESM-MSA 1 100M - 0,598

ProGen2 0

151M 0.794 -

764M 0.825 -

764M 0.698 -

2.7B 0.850 -

6.4B 0.862 -

2.2 Benchmark Protein Language Models with Zero-Shot Pathogenicity Prediction71

Here, we examine whether pre-trained protein language models can learn functional changes caused72

by mutations in amino acid sequences and identify high-risk mutant cancer proteins, using the73

zero-shot prediction task described in the previous subsection. We base our evaluation on six recently74

proposed large-scale pretrained protein models. The models include alignment-based methods such75

as EVE [21] and ESM-MSA [20], and alignment free approaches such as ESM-1, ESM-1b [15],76

ESM-1v [22], and ProGen2 [19].77

To test whether wild-type context information aid the prediction of mutation pathogenicity, we78

introduce an additional consideration when testing the model. The input protein sequences follow79

two settings: one is making the input protein sequence completely visible to the model; the other is80

we mask amino acid sites of the input protein sequence. When we do not mask, the model learns the81

probability of this amino acid mutating into other amino acids based on the context information of82

the mutation site and the wild-type. When masking, the model learns what the masked amino acid83

should be based on the context information of the mutation site. In our experiment results, we found84

that masking amino acid sites on the input protein sequences has worse performance on the model’s85

prediction ability (without masked ESM-1b: AUC=0.874; masked ESM-1b: AUC=0.706, as shown86

in Table 1).87

At the same time, we found that models trained without MSA, such as ESM-1b and ESM-1v, were88

no worse or even better than models trained with MSA, such as EVE (ESM-1v: AUC=0.909; EVE:89

AUC=0.887). This result suggests that biological information learned from large-scale protein90

databases was richer than that from specialized homologous sequences, with the advantage of much91

less computational time. At the same time, we found that the larger the training dataset, the better the92

model’s prediction ability.93

We also evaluated the performance among models of different scales. We found that the size of94

a pre-trained protein model is not proportional to its ability to learn the pathogenicity of protein95

mutations (With the increase in model scale, the AUC of ESM-1 was 0.725, 0.769, 0.874, and 0.856,96

respectively, shown in Figure 4). The Zero-shot pathogenicity prediction performance of ESM-1 and97

ProGen2 does not improve with the increase in model scale; it reaches a peak (at 764M parameters)98

and then gradually decreases.99
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(a) ESM-1 43M (b) ESM-1 85M (c) ESM-1 650M (d) ESM-1 670M

(e) ProGen2 151M (f) ProGen2 764M (g) ProGen2 2.7B (h) ProGen2 6.4B

Figure 4: Variation in pathogenicity score of mutations in LDLR with different number of parameters
in ESM-1 and ProGen2.

2.3 Predict the Clinical Prognosis of Cancer Patients100

To investigate the clinical utility of pre-trained protein language models, we examined the prognostic101

value of the evolutionary index computed using ESM-1b on real-world cancer patients’ data. TCGA102

is one of the largest datasets from which matched tumour genomic sequencing and clinical outcome103

data are publicly available [23]. We selected 412 cancer driver genes with suitable protein canonical104

sequences out of the 579 Tier-1 genes in the COSMIC (Catalogues of somatic mutation in cancer)105

[24] cancer gene census. EI was estimated by the ESM-1b model for each protein sequence in our106

driver gene list for each patient.107

We performed multivariate Cox proportional-hazards regression (stratified by gender and age) on108

proteins’ EIs for 10,248 patients across different TCGA cohorts with progression-free interval (PFI)109

as the adverse outcome. For the 13 cancer types for which our framework was effective, we found110

that high EI values of specific proteins significantly contribute to better/worse survival (Figure 5a).111

For example, the high EI value of SMAD4 and FLNA proteins in colorectal cancer (COAD) showed112

significant evidence of increased patient hazard risk (p<0.01, log-rank test). In contrast, the high113

EI value of JAK3 protein contributed to a lower hazard risk (p<0.01, log-rank test) in lung cancer114

(LUAD).115

Furthermore, we stratified patients into the hazard-increase and hazard-reduction groups based116

on whether EI>0 for specific proteins suggested by Cox regression for each cancer type. We117

drew Kaplan-Meier(KM) curves and tested the survival difference between the two groups with es-118

timated hazard ratios(HR) and p values of the log-rank test. Predictive accuracy was assessed119

using the concordance index (c-index). The c-index compares the ranks of subjects as pre-120

dicted by the PFI using the stratified Cox model based on the actual disease outcome. We ob-121

served significant difference between hazard-increase and hazard-reduction/other group across122

6 cancer types (COAD: p=0.012,HR=1.8,CI=1.1-2.7; CESC: p=0.009,HR=2.2,CI=1.2-4; HNSC:123

p=0.002,HR=2.2,CI=1.3-3.7; LUAD: p=0.011,HR=3.3,CI=1.3-8.3; LGG: p<0.001,HR=4.1,CI=2.6-124

6.2; OV: p=0.009,HR=1.6,CI=1.1-2.2; Figure 5b).125

These results demonstrate that the evolutionary index can achieve statistically significant survival126

prediction in multiple cancer types.127

3 Conclusions128

In this paper, we verified that the large-scale pre-trained protein language models can efficiently and129

accurately predict the effect of mutations in cancer driver genes. Comparable results were obtained130

with models learned from homologous sequences and those learned from single sequences.131
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(a) (b)

Figure 5: a) Genes with the significant prognostic power across tumours, suggested by multivariate
Cox proportional-hazards regression; values in each cell denote the p-value of the log-rank test for
corresponding driver genes. b) Kaplan–Meier curves for patient subgroups.

We propose a systematic benchmark based on a zero-short pathogenic mutation prediction task. The132

experimental results show that BERT-like models such as ESM-1b are better suited to the task than133

those that rely on generative models. We also found that the size of a pre-trained protein model is134

not proportional to its performance in predicting pathogenic mutations. This observation aligns with135

DeepMind’s finding that model performance might drop as the number of model parameters increases,136

because a large model might be under-trained with limited data [25]. In our case, the complexity and137

diversity of protein sequences might have been a limiting factor for sufficiently training large models.138

It is widely hypothesised that existing protein databases only capture a fraction of proteins that exist139

in living organisms. Finally, we demonstrated the prognostic value of protein language model in140

TCGA cohorts. The pathogenicity information captured by pre-trained protein model can separate141

high and low risk patients in six cancer types, while traditional methods have yet been demonstrated142

success.143

We plan to open source our code and benchmarks to facilitate future evaluations and model develop-144

ment.145
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