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Abstract
The first step in the analysis of protein tandem mass spectrometry data typically involves searching

the observed spectra against a protein database. During database search, the search engine must digest
the proteins in the database into peptides, subject to digestion rules that are under user control. The
choice of these digestion parameters, as well as selection of post-translational modifications (PTMs),
can dramatically affect the size of the search space and hence the statistical power of the search. The
Tide search engine separates the creation of the peptide index from the database search step, thereby
saving time by allowing a peptide index to be reused in multiple searches. Here we describe an improved
implementation of the indexing component of Tide that consumes around four times less resources (CPU
and RAM) than the previous version and can generate arbitrarily large peptide databases, limited by only
the amount of available disk space. We use this improved implementation to explore the relationship
between database size and the parameters controlling digestion and PTMs, as well as database size
and statistical power. Our results can help guide practitioners in proper selection of these important
parameters.

1 Introduction
Every mass spectrometry protein database search engine must solve two primary tasks: producing from a
given protein database a corresponding list of peptides, and scoring each observed fragmentation spectrum
relative to peptides in the list. In some search engines, these two functions are tightly coupled. In Comet,
for example, each protein is extracted sequentially from the database, digested to peptides, and then scored
against an observed spectrum [1]. In contrast, Tide separates the search into two phases: peptide indexing
and searching [2]. The peptide indexing step happens before any of the spectra are scored, and the index
of peptides is stored on disk. This approach saves computation when the same database will be searched
multiple times. Also, by storing unique peptides in the index, the scoring phase avoids re-scoring any peptide
that recurs in multiple proteins.

The initial description of the Tide search engine focused on optimizing the search component [2]. As a
result, until now the indexing step of Tide (implemented in the Crux toolkit [3] as the command tide-index)
has been relatively slow. Furthermore, because the naive implementation involves sorting all of the pep-
tides in memory, any user interested in a very large database—e.g., by considering large numbers of post-
translational modification (PTMs), relaxed enzymatic digestion rules, or searching large metaproteomic
databases—needed to have very large amounts of memory available for the indexing step.

Here we describe an optimized version of tide-index that dramatically reduces the time and memory
requirements of the tool. First, we restructured the core data structures and reorganized the code so that the
components work together efficiently. This was required because the tide-index code had become fragmented
during implementation of new features by different developers. As a result of these optimizations, tide-index
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Figure 1: Examples of digestion rules. (A) Effect of digesting a simple protein sequence with trypsin,
using full digestion or partial digestion. Peptides are limited to 7–50 amino acids in length. Non-enzymatic
digestion (not shown) yields 1485 peptides for this protein. (B) Effect of digesting the same protein sequence
with fully tryptic digestion but allowing one or two missed cleavages.

is now 3–5 times faster and consumes around 4 times less memory than its predecessor. Second, we modified
tide-index so that sorting and storing the unique peptides can be done using external disk operations,
subject to a user-specified parameter called memory-limit. In this way, tide-index can now generate very
large peptide database files. For instance, we used tide-index to generate an index containing 67.4 billion
unique peptides from the human proteome, using non-enzymatic digestion and allowing three commonly
used variable modifications per peptides. This operation required nearly five days, and the resulting index
occupies 4 TB of disk space. In principle, tide-index is able to generate arbitrarily large peptide index files,
limited only by the capacity of the disk storage.

• The digestion rule specifies where the protease cleaves. For example, trypsin canonically cleaves after
K or R residues, and chymotrypsin cleaves after F, W, Y, or L. In this work, we focus solely on tryptic
digestion, though tide-index allows for any type of digestion rule.

• The digestion parameter controls whether cleavage occurs only at the sites specified by the digestion rule
(full digestion), occasionally also at sites that are not specified by the rule (partial digestion), or anywhere
in the sequence (non-enzymatic digestion). This parameter can have a dramatic effect on the number of
peptides produced by a single protein (Figure 3A).

• The missed cleavages parameter puts a limit on the number of digestion sites that can be included within
a single peptide in the index (Figure 3B).

• A static modification is a PTM that is applied to every instance of a given amino acid in the database. The
canonical static modification is carbamidomethylation of cysteine, which induces a mass shift of 57.021 Da.
Because this type of modification occurs on every cysteine, the parameter has no effect on database size.

• A variable modification is a PTM that may or may not occur on each peptide. For example, phosphory-
lation induces a shift of 79.966 Da on serine, threonine, and tyrosine residues. A peptide that contains an
amino acid subject to variable modification must be included twice in the peptide index, with and without
the PTM applied. Consequently, a peptide with n modifiable amino acids gives rise to 2n modified forms.
For example, oxidation of methionine yields four variants of the peptide on the peptide MPEPMPEPK:
MPEPMPEPK, M*PEPMPEPK, MPEPM*PEPK and M*PEPM*PEPEK (where * indicates oxidation).

• The maximum number of modifications (max-mods) parameter specifies the number of distinct amino
acids that can harbor a PTM within a single peptide sequence.

Box 1: Parameters controlling enzymatic digestion and PTMs.

We then used the optimized version of tide-index to systematically explore the relationship between
various search parameters, database size, and statistical power. In particular, we aimed to provide practical
insight into the impacts of parameters that control enzymatic digestion and PTMs (summarized in Box 1
and Figure 1). Using data from four different species, we quantify the impact of three parameters—the type
of digestion, the number of missed cleavages, and the number of PTMs—on database size and the number
of detected peptides, with and without inclusion of the Percolator machine learning post-processor [4]. The
new version of Tide is now available in the Crux toolkit [3], which is available as Apache licensed open source
code and as pre-compiled binaries for Linux, MaxOS and Windows at http://crux.ms.
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PRIDE ID Species Instrument Precursor Fragment PTMs Spectra
File name
PXD001928 [5] S. cerevisiae LTQ Orbitrap Velos 20 1.0005079 O(M) 26,060
Yeast_XP_Tricine_trypsin_147.mgf
PXD020052 [6] P. falciparum Orbitrap Fusion 5 1.0005079 O(M), A(nT) 68,790
PhDE170503_3D7icam_SCX3_F20584.mzML
PXD028806 [7] H. sapiens Q-Exactive Plus 10 0.02 O(M), TMT 61,594
20180913_Cell_Line_TMT_Test_F24_1.mzML
PXD028808 [8] A. thaliana Impact II Q-TOF (Bruker) 10 0.02 O(M), A(nT) 51,771
210312_A_MM_Aachen_14_TI0018_DIS_02_GH5_1_1958.mzML
PXD017407 [9] H. sapiens Q Exactive HF-X 10 0.02 O(M), P(STY) 44,119
20190304_231_all.mzML

Table 1: Data sets. The table lists the five PRIDE datasets used in this study. “Precursor” indicates the
precursor window size (in ppm), and “Fragment” is the fragment bin width (in Da). PTMs correspond to
oxidation of methionine (O(M)), phosphorylation of serine, threonine and tyrosine (P(STY)), N-terminal
acetylation (A(nT))), and TMT-6plex tags. For each PRIDE ID, one raw file was selected at random, listed
on the second row of each table entry.

2 Methods
2.1 Optimizations for memory usage and performance
Memory We began by modifying tide-index so that the user could control how much memory the program
requires. Conceptually, tide-index’s operation is relatively straightforward. The program digests the given
proteins to peptides, sorts them and discards redundant peptides, and then augments the resulting list
of unique peptides with modified forms based on the user-specified list of PTMs. The original tide-index
implementation stored and sorted all of the peptides in memory simultaneously. This step required a large
amount of RAM for even relatively small sets of peptides. We therefore re-implemented the sorting-and-
filtering routine to optionally make use of external disk operations. The new memory-limit parameter
allows the user to specify the maximum amount of memory to be used for peptide filtering. Once the
peptide container exceeds the memory limit during the peptide generation step, tide-index sorts and then
dumps the peptides from the container to disk in a temporary file. After all peptides are generated, the
temporary files are merged to create a final peptide index. We note that the memory-limit parameter
introduces a trade-off between speed and memory usage: a low value of memory-limit leads to many small
temporary files, which in turn requires more time for the merging step.

Speed Since Tide’s initial publication in 2011, the tide-index code has been extended with various new
features, which were implemented by different developers. In the process, the tide-index code became
fragmented, the code complexity increased, and the code maintenance became cumbersome. At the same
time, the code modifications led to an overall decrease in Tide’s efficiency. To address this problem, we
restructured the tide-index code and optimized the underlying data structures so that all components in
tide-index work smoothly together. For instance, we removed a container variable that unnecessarily stored
an extra copy of each peptide. We also introduced new variables to link target and decoy peptides directly,
thereby removing a subsequent step in which targets and decoys were paired together. This change eliminated
an O(n log n) sort operation for n peptides.

2.2 Data
To test the new tide-index and to investigate the relationship between database size and statistical power,
we downloaded one randomly selected raw spectrum files from each of five PRIDE data sets, representing a
variety of organisms and instrument types (Table 1). For each data set, the precursor window size and PTM
settings were taken from the associated papers. Carbamidomethylation of cysteine was specified as a fixed
modification for all searches.

Reference proteomes of four different species, with and without isoforms, were downloaded from Uniprot
on March 22, 2022. For reference, we include statistics about both versions of each reference proteome
(Table 2), but all experiments in this paper were carried out using the canonical versions.
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Species Proteome ID Canonical Canonical + isoforms
Proteins Peptides Proteins Peptides

S. cerevisiae UP000002311 6062 158608 6091 158621
P. falciparum UP000001450 5376 232557 5380 232560
H. sapiens UP000005640 79052 675027 101038 698559
A. thaliana UP000516314 23548 528964 23548 528964

Table 2: Reference proteome databases. The “peptides” column lists the number of peptides using
full tryptic digestion with no missed cleavages allowed and without variable modifications. For reference,
we include statistics about both versions (with and without isoforms) of each reference proteome, but all
experiments in this paper were carried out using the canonical versions.

ID Digestion Missed PTMs Mods-spec Peptides Time (s)
1 full-digest 0 0 - 1,349,379 4
2 full-digest 0 1 1M+15.9949 1,784,632 6
3 full-digest 1 1 1M+15.9949 4,797,281 16
4 full-digest 2 1 1M+15.9949 8,169,434 26
5 full-digest 3 1 1M+15.9949 11,396,220 38
6 full-digest 4 1 1M+15.9949 14,198,510 46
7 full-digest 0 1 3M+15.9949, 3STY+79.966331 5,174,005 17
8 full-digest 0 2 3M+15.9949, 3STY+79.966331 13,030,652 54
9 full-digest 0 3 3M+15.9949, 3STY+79.966331 28,304,095 154
10 full-digest 3 3 3M+15.9949, 3STY+79.966331 300,423,422 3,380
11 partial-digest 0 1 1M+15.9949 34,021,904 103
12 partial-digest 3 3 3M+15.9949, 3STY+79.966331 6,115,350,940 34,800
13 non-specific-digest 0 1 1M+15.9949 1,590,016,966 5,940
14 non-specific-digest 0 3 3M+15.9949, 3STY+79.966331 67,339,185,808 416,000
15 non-specific-digest 0 2 2M+15.9949, 2STY+79.966331 995,109,593 4,270

Table 3: Parameter settings. All peptide data sets included decoy peptides generated by peptide reversal.
The “Missed” column indicates the maximum number of missed cleavages, and “PTMs” indicates the maxi-
mum number of PTMs per peptide. The “Peptides” column indicates the number of peptides generated from
the human proteome, and the “Time” column shows the execution time the new tide-index took. Note that
Parameter setting #14 was only used for the immunopeptidomics experiment (Section 3.4), and additionally
the minimum and maximum peptide lengths were set to 8 and 15, and TMT 6-plex labeling was added to
the peptide n-terminal and lysine resides as static modifications.

To examine the impacts of peptide generation parameters and thus database size on the statistical power,
we created a series of parameter settings (Table 3). The parameters vary enzymatic digestion, number of
PTMs per peptide, and the maximum number of missed cleavages. The resulting series of peptide datasets
is roughly increasing in the corresponding numbers of peptides.

2.3 Database search
All database searches were conducted using the tide-search command. We used XCorr scoring with
Tailor calibration (--tailor-calibration T) [10] using 8 CPU threads (--num-threads 8). The
precursor-window-size and mz-bin-with parameters were set as specified in Table 1.

2.4 False discovery rate control
False discovery rate (FDR) estimates were calculated using the assign-confidence command in Crux.
This tool implements a variant of the target-decoy competition (TDC) procedure [11], using decoy sequences
generated automatically by tide-index. In this work, we use reversed peptides, with N-terminal and C-
terminal amino acids left in place. Occasionally, the target contains two peptides that are reversed versions
of one another; in such a setting, the corresponding decoys are created by shuffling rather than reversal.
We have recently demonstrated that PSM-level FDR control is problematic due to dependencies between
observed spectra [12]; therefore, in this work we focus on controlling FDR at the peptide level. The TDC
procedure proceeds in three steps. First, the target and decoy PSMs produced by the tide-index command are
sorted by score, from best match to worst match. Second, we eliminate from this sorted list any PSM whose

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2022. ; https://doi.org/10.1101/2022.09.30.510396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.510396
http://creativecommons.org/licenses/by/4.0/


corresponding peptide appears in a higher-ranked PSM, thereby producing a list of unique peptides. Third,
for each target peptide in the list with score τ , we estimate the corresponding FDR as min (1, (Dτ + 1)/Tτ ),
where Dτ is the number of decoy PSMs with scores greater than or equal to τ , and Tτ is similar, but for
targets. The +1 correction is necessary to ensure valid FDR control [13], and the min() operator ensures
that the FDR estimate does not exceed 1.

3 Results
3.1 Tide-index is fast and memory efficient
In our first experiment, we demonstrate the improvement of the new tide-index in terms of execution time and
memory consumption compared to the previous version. The analysis was carried out on a server equipped
with an Intel Xeon CPU E5-2640 v4 2.40GHz processor with 20 cores, 128 Gb DDR RAM, and storage
capacity of 10 TB operated by Ubuntu v18.04 OS. We selected a variety of tide-index parameter settings
(numbers 1–5 and 11–14 from Table 3), which provided a series of indices of increasing size. Memory
consumption was monitored with Ubuntu’s time command, setting the verbose parameter as well as the
output file parameter, i.e. /usr/bin/time -v -o time.txt. The data recorded from the output file was
the “Maximum resident set size.” We note that the previous version of tide index did not run to completion
with parameter settings 12–14 because 128 Gb RAM was insufficient.

The results suggest that the new version of tide-index is approximately four times faster than the previous
version (Figure 2A) and uses 2–3 times less memory (Figure 2B). The improved memory usage can be
attributed to the reorganized data structures. We also tested the new memory-limit option by setting it to
32 GB. We note that most of the memory is used to ensure that only unique decoy peptides are generated and
to ensure that the target and decoy peptides are distinct. Tide-index offers an option, called --allow-dups
T, which allows the creation of duplicate peptides during decoy generation. Enabling this option additionally
reduces the resource consumption by a large amount.

The new version of tide-index allows us to create indices that would have been impossible to generate
previously. For example, in our experiment, the largest peptide index was produced by the parameter setting
#14, which created 67.3 billion unique peptides in nearly 5 days and which required 4.1 TB of disk space.
Assuming that the resource consumption of the old tide-index is linear with respect to the number of peptides
generated, as is suggested by Figure 2, then tide-index would have required around 10 TB of RAM to run
to completion in around 20 days.

3.2 Parameter impact on database size
In our second analysis, we investigate how the parameter settings affect the number of the peptides generated.
We generated a series of peptide index databases by varying three parameters.

First, we varied the digestion parameter and generated, for each proteome in our benchmark, three
indexed databases using full tryptic digestion, partial digestion, and non-enzymatic digestion (parameter
settings 10, 12, and 14 from Table 3), respectively. Changing this parameter increases the size of the peptide
index by approximately a factor of ten, both when changing from full to partial digestion and when changing
from partial to non-enzymatic digestion (Figure 3A). The fully digested indices contain between 82,719,463
peptides (yeast) and 300,423,422 peptides (human), whereas the non-enzymatic databases contain between
19,202,033,620 peptides (yeast) and 67,339,185,808 peptides (human).

Second, we varied the missed cleavages parameter from 0 to 4 (parameter settings 2–6) and observed a
linear growth in the number of unique peptides (Figure 3B), though the gradient of the increase depends on
the initial size of the database. On average, accepting an additional missed cleavage increases the size of the
database by a factor of 2.9 for human but only 2.7 for yeast.

Third, we varied the number of variable modifications in the database. This was done by considering
two different types of modifications—oxidation of methonine and phosphorylation of serine, threonine, or
tyrosine—and then varying the total number of modifications allowed per peptide (from zero to three,
corresponding to parameter settings 1, 7, 8, and 9). As expected, increasing the number of modifications
results in exponential growth (Figure 3C).
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Figure 2: Speed and memory usage of tide-index The figure plots (A) the wall clock time and (B) the
maximum memory consumption required to produce an index of the human proteome as a function of the
number of peptides in the index. The two series correspond to the old and new versions of tide-index. Points
along each series correspond to the parameter settings 1-5 and 11-14 from Table 3.

3.3 Investigating the trade-off between database size and statistical power
Perhaps the most interesting analysis is to investigate the database size effect on the number of discoveries.
In choosing parameters that affect the size of the peptide database, one faces a trade-off. On the one hand,
limiting oneself to a small database increases the proportion of “foreign” spectra, that is, spectra whose
generating peptides are not in the database and hence can never be identified. Essentially, the database is
like a streetlight, and you will never find peptides that fall outside of the light. On the other hand, as the
database gets larger the time to run the search increases proportionally and, more importantly, the statistical
power to detect peptides decreases. The loss of statistical power arises because the high scores assigned to
generating peptides begin to be overwhelmed by PSMs that score highly by chance, simply because such a
large database was searched.

We thus investigated how the number of accepted peptides changes as we vary each of the three parame-
ters: type of digestion, number of missed cleavages, and number of modifications (Figure 3D–F). Each search
was carried out using Tide with Tailor calibration enabled, and decoy-based peptide-level FDR estimates
were computed using the assign-confidence command in Crux. We observe that, for all four species, full tryp-
tic digestion performs better than semi-tryptic, which in turn outperforms non-enzymatic digestion. On the
other hand, for the other two parameters, allowing at least one missed cleavage or at least one modification
seems to be beneficial in most cases (with the exception of Plasmodium, where even a single modification led
to decreased performance). Furthermore, because these two parameters have a less pronounced effect on the
size of the database, setting them to larger values (e.g., 3 or 4 missed cleavages) did not have a significant
detrimental effect. And in one case (Plasmodium), 4 missed cleavages gave the best performance.

One caveat to the above analysis is that statistical power can depend strongly upon how the search results
are post-processed. Accordingly, we further processed the Tide search results using Percolator, which uses a
semi-supervised machine learning strategy to re-rank PSMs, and then uses decoy-based FDR estimation. The
results (Figure 3G–I) suggest that using Percolator facilitates searching of larger databases. Most notably, in
contrast to the results without a post-processor, in every case, switching from tryptic to semitryptic digestion
yielded an increase in the number of detected peptides, with the most marked increase in the yeast dataset
(an increase of 17%, from 8,812 to 10,312 peptides). Results for the other two parameters (Figure 3H–I)
are qualitatively consistent with the previous results (Figure 3E–F), except that Percolator also removes the
detrminental impact, for the Plasmodium dataset, of allowing too many modifications.
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Figure 3: Parameter effect on database size and statistical power. (A–C) The figure plots database
size as a function of (A) the type of digestion, (B) the maximum number of missed cleavages, and (C) the
number of post-translational modifications. Each series corresponds to a different species. Panel (A) uses
settings 10, 12, and 14 from Table 3; Panel (B) uses settings 2–6; panel (C) uses settings 1, 7, 8, and 9.
(D–F) Similar to panels (A–C), except the y-axis plots the number of the peptides accepted at 1% FDR
threshold, as computed using the Crux assign-confidence command. (G–I) Similar to panels (D–F), except
that the FDR estimates are produced by Percolator rather than by assign-confidence.
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Figure 4: Crux analysis of MHC data. The figure plots the number of peptides accepted as a function
of FDR threshold. The spectra are from a randomly selected file from PXD017407 [9].

3.4 Tide can handle immunopeptidomics experiments
Finally, we demonstrate that Tide now is able to perform database searching for immunopeptidomics ex-
periments. Previously, this type of analysis was impossible because this task involves the generation of
non-specifically digested peptide databases which the old version of tide-index could not handle. In order
to demonstrate that the new Tide can handle such tasks, we downloaded a randomly selected file from a
recent analysis of peptides bound to class I major histocompatibility complexes (MHC) [9] (PXD017407 from
Table 1). The peptide database was generated with non-specific digestion of the human proteome including
oxidation of methonine and phosphorylation of S/T/Y as variable modifications and TMT-6plex labeling,
and peptides were limited to 8–15 amino acid in length (see parameter settings 15 from Table 3). The
resulting index contained nearly one billion peptides and required ∼1.5 hours to generate. The database
searching was performed with tide-search using standard parameters and with Tailor calibration [10], and the
search results were evaluated with Percolator. This analysis detected 2,673 peptides at a 1% FDR threshold
(Figure 4). These peptides overlap substantially (1624, or 93%) with the list of 1,753 peptides identified by
Stopfer et al..

4 Discussion
We have introduced an updated version of the Tide peptide database indexing step, which is able to efficiently
handle very large peptide datasets, for application to metaproteomics or studies that aim to consider large
numbers of post-translational modifications. We demonstrated that the new tide-index requires around three
to five times less CPU time and memory than the previous version, and it can now generate as large peptide
databases as the free disk space.

Our systematic analysis of the relationship between database size (i.e., total number of peptides) and
several key parameters suggests several take-home messages. Notably, the type of digestion—full digestion,
partial digestion, and non-enzymatic digestion—has the most profound impact on the size of the database,
leading to approximately a 10-fold increase in database size for each transition. The effect of the other two
parameters—number of missed cleavages and number of post-translational modifications—is smaller, though
we did not extensively explore the latter parameter space. In particular, it seems clear that as the number
of different types of modifications increases, the database size will likely increase dramatically. On the other
hand, we also found that increases in database size were not always coupled with a loss in statistical power.
In particular, we observe that including a few modifications (notably, oxidation of methionine, which is
commonly induced during the mass spectrometry experiment) and allowing a few missed cleavages seems to
generally be beneficial. Furthermore, setting these parameter values to be slightly too large does not appear
to be problematic, as the number of detected peptides is fairly stable for larger values. Finally, it is notable
that inclusion of a machine learning post-processor such as Percolator is helpful in combating the loss of
statistical power induced by a large database. In particular, using partial digestion can be problematic for
some studies if FDR control is carried out directly after the database search, but this is not the case in
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conjunction with Percolator. Many of the above observations are likely familiar to experts who regularly
perform database search procedures, but we hope that the results presented here will be useful to those who
want to better understand the potential impact of these parameters on their results.

On the other hand, as an empirical study of necessarily limited scope, this analysis leaves many questions
unaddressed. In addition to more thoroughly exploring the space of possible post-translational modification
parameters, one could imagine expanding this analysis to include a broader diversity of experimental studies,
including more diverse proteomes. We hope that, if others aim to pursue such investigations, the updated
version of Tide will provide a useful and efficient way to do that.
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