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Abstract 
 
The Hi-C method has revolutionized the study of genome organization, yet interpretation of Hi-C 
interaction frequency maps remains a major challenge. Genomic compartments are a checkered 
Hi-C interaction pattern suggested to represent the partitioning of the genome into two self-
interacting states associated with active and inactive chromatin. Based on a few elementary 
mechanistic assumptions, we derive a generative probabilistic model of genomic compartments, 
called deGeco. Testing our model, we find it can explain observed Hi-C interaction maps in a 
highly robust manner, allowing accurate inference of interaction probability maps from 
extremely sparse data without any training of parameters. Taking advantage of the 
interpretability of the model parameters, we then test hypotheses regarding the nature of genomic 
compartments. We find clear evidence of multiple states, and that these states self-interact with 
different affinities. We also find that the interaction rules of chromatin states differ considerably 
within and between chromosomes. Inspecting the molecular underpinnings of a four-state model, 
we show that a simple classifier can use histone marks to predict the underlying states with 87% 
accuracy. Finally, we observe instances of mixed-state loci and analyze these loci in single-cell 
Hi-C maps, finding that mixing of states occurs mainly at the population level. 
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Introduction 
 
In the past decade, genomic methods (1–7) have highlighted that the spatial organization of the 
genome is closely intertwined with a wide variety of physiological processes, including 
transcription (8–11), replication (12–14), sex chromosome inactivation (15–18), development 
(19–22), mitosis (23–27)  and spermatogenesis (28–31) . One of the most popular of these 
methods is Hi-C (1, 32, 33), a genome-wide assay which uses proximity ligation to measure 
interaction frequencies between every pair of loci in the genome within a cross-linked population 
of cells. Since genome structure is highly stochastic, the resulting Hi-C interaction frequency 
matrix represents not a single structure but a distribution of structures. Structural features of the 
genome which are consistent in the cell population, constrain this distribution and manifest as 
patterns in the interaction map. The identification of such patterns, their interpretation, and their 
molecular specification remain outstanding challenges in the field of genome organization. 
 
Hi-C interaction patterns appear across many scales. At the whole-chromosome level, 
intrachromosomal (cis) interactions are much more frequent than interchromosomal (trans) 
interactions, due to a combination of the physical separation of chromosomes into territories and 
the stochastic positioning of territories within the nucleus (34, 35). Within chromosomes, 
interaction frequency between pairs of loci tends to decrease – on average – as a function of their 
genomic distance, often following a power-law decay (36–38). Although these large-scale 
structures are not locus-specific, they can provide useful information on general polymer 
properties and have also separately been found useful in genome assembly-related applications 
(39–44).  At the multi-Mb scale, genomic compartments are a checkered interaction pattern 
found both in and between chromosomes (1, 45, 46). Genomic compartments were initially 
suggested to represent a partitioning of loci into two states, where loci of similar states interact 
more frequently than loci of different states. At the sub-Mb scale, Topologically Associating 
Domains are patterns of genomic domains in which loci within a domain interact with each other 
more frequently than with loci outside the domain (46–48). Although both genomic 
compartments and TADs form secluded self-interaction domain-like structures in Hi-C maps, 
TADs are likely associated with a completely different mechanism, namely the action of 
cohesin-mediated loop extrusion which can be stopped at boundaries which often involve CTCF 
(49–53). 
 
In this work, we focus on genomic compartments while also accounting for larger structures. 
Relative to TADs, for which a plethora of approaches have been developed to detect and model, 
the method used for identifying genomic compartments in the original Hi-C paper (1) is still the 
standard for detecting genomic compartments. This typically involves normalizing the 
interaction matrix by average interaction frequency per genomic distance and then applying 
Principal Component Analysis. The first eigenvector is then taken to represent the genomic 
compartment signal, where positive values are assigned to one compartment and negative values 
to the second compartment. Although widely used, this heuristic is intrinsically limited as it is 
not a model. Therefore, it is not an explanation of the observations, it does not explicitly test 
hypotheses about the underlying mechanisms, its parameters are not directly interpretable, and it 
is not generative or predictive. Additionally, this method suffers from technical limitations 
including insensitivity to scaling, an arbitrary threshold for partitioning of states, occasionally 
poor performance on noisy and sparse data, and an underlying implicit two-state assumption. In 
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spite of these limitations, the PCA-based analysis has proved quite useful in providing a genomic 
track that heuristically quantifies genomic compartment signal. Most notably, comparing this 
track with other genomic features shows some correspondence between the interaction states 
(compartments) with known chromatin epigenetic states (1): Compartment A is usually 
euchromatic and tends to have higher GC content, higher gene density, and histone marks 
associated with active chromatin; Compartment B is usually heterochromatic and tends to have 
lower GC content and gene density, and is enriched in lamina-associated domains and repressive 
histone marks. 
 
A range of computational techniques has been used to analyze and model genomic 
compartments. One set of approaches is the data-driven heuristic partitioning of loci to 
compartments (compartment “calling”), usually based on unsupervised learning, comparable to 
the common PCA method(1, 54): Rao et al. (45) used Gaussian HMM clustering 
interchromosomal interactions to define five subcompartments from human Hi-C maps, and 
observed characteristic histone marks;  Yaffe et al. (55) used k-means clustering on 
interchromosomal contacts to identify three compartments; Nichols et al. (56) used k-means 
clustering to partition human Hi-C maps to four compartments, also matching different histone 
marks; Zheng et al. (57) used a probabilistic approach to calculate the CScore reflecting the 
likelihood of being associated with A or B states; and Rowley et al. (9) proposed an improved 
heuristic called the A-B index based on associating the interactions of high-resolution bins with a 
low-resolution genomic compartments track. Another set up approaches predict genomic 
compartment interaction patterns from one-dimensional features, usually with machine learning 
approaches: MEGABASE (58) uses a neural network to predict subcompartments from histone 
mark ChIP-seq data, and can be used with the MiChroM (59) physical model to directly predict 
the Hi-C matrix from histone modifications tracks;  Rowley et al. (9) used a regression model to 
predict interactions from GRO-Seq and architectural protein binding site data in non-mammalian 
eukarya; Fortin et al. (60) use DNA methylation correlation matrices to predict A/B 
compartments; Nichols et al. (56) used a probabilistic model to predict human and drosophila Hi-
C interactions from histone marks; SNIPER (61) uses a neural network to impute missing data in 
low-coverage Hi-C maps and classify loci to subcompartments; Esposito et al. (62) combine 
machine learning and polymer modeling to predict mammalian interaction maps from histone 
marks; and Orca (63) uses a neural network to predict regions of the Hi-C map from DNA 
sequence, with a tradeoff between resolution and size of the predicted region. Finally, a set of 
hypothesis-driven approaches based on polymer modelling have shown that multistate 
chromosomes can form interactions resembling genomic compartments: Jost et al. (64–67) used 
lattice-based block copolymer models and molecular dynamics to reproduce Hi-C maps form 
epigenetic states in various species; Mirny et al. (68, 69) used block copolymer models and 
Langevin dynamics to reproduce compartment patterns observed in Hi-C; and Nicodemi et al. 
(62, 70–72) used strings and binders polymer models to reproduce Hi-C maps at different scales 
based on a set of chromatin states. 
 
Here we present deGeco, a generative probabilistic modelling approach to genomic 
compartments, which attempts to utilize some of the best properties of both hypothesis-driven 
and data-driven approaches. On one hand, we derive our model directly from a handful of 
explicit mechanistic assumptions. This makes the parameters of our model interpretable and 
makes the model suitable for testing biological hypotheses, in contrast to black-box machine 
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learning approaches. On the other hand, the model is does not require polymer modelling and is 
data-driven, leveraging the data to infer the values of genome-wide biological parameters. After 
evaluating the performance and technical capabilities, we proceed to test several biological 
hypotheses regarding state-state interaction rules, interaction differences within and between 
chromosomes, the number of states, molecular underpinnings of states, and state mixing. 
 

Results 
 

Probabilistic model of genomic compartments 
 
We propose a generative probabilistic model for genomic compartments based on the following 
four elementary assumptions on the mechanisms of the underlying system: 
 

1) Every genomic locus in every cell is in one of � states. At the population level, every 
genomic locus is associated with a probability to be in each state. 

2) Locus states are statistically independent. 
3) Pairwise interaction probability decreases with genomic distance. 
4) Pairwise interaction probability is specified by an affinity between the states of the 

respective loci. 
 
These assumptions are sufficient to formulate the following model for pairwise interaction 
probability: 

���, �� � 1

 ��|� 
 �|����� ������ � ��� ������ � � � ��� ������� 

 
Where ��� is the probability over the cell population that locus � is in the �-th state; ��� is a non-
negative affinity between states � and �; ��|� 
 �|� is a distance-dependent function (we use |� 
 �|�  based on common polymer physics models); and 
 is a normalization factor. Note that ��� � ��� since interaction is a symmetric property, and that from our first assumption we get ∑ ����
�	� � 1. Also note that the model can be given a statistical mechanics interpretation, by 

using the Boltzmann distribution to convert state probabilities or interaction probabilities into 
energies of whole-genome configurations, under the assumption of thermal equilibrium. 
 
We note that if we define a matrix Λ of locus state probabilities such that Λ�� � ���, this model 
can be rewritten in matrix form (Figure 1): 
 

���, �� � 1

 ��|� 
  �|� � �Λ�Λ
��� 

 
In this form, the model can be interpreted as performing a form of matrix factorization of the 
genomic compartments signal into the right-stochastic state locus probability matrix and the 
symmetric non-negative state-state affinity matrix. Accordingly, we call the model and its 
implementation deGeco (decomposition of genomic compartments). We note that if we set � � 2, � � �� and ��|� 
 �|� to be a non-parametric function, the model resembles the approach 
of Zheng et al(57). 
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Figure 1. Overview of probabilistic model of genomic compartments. We assume that the Hi-C
interaction frequency matrix is sampled from an underlying interaction probability matrix . Interaction
probabilities  result from two components: A distance-based interaction probability function 
and a state-based interaction probability component representing the genomic compartment signal. In the
state-based interaction probability of two loci depends on the probability of each locus to be in each of the
states (represented by matrix ) and the affinities of these states to each other (represented by matrix ).
We show that the state-based interaction probability component is equivalent to a multiplication of these
matrices. 
 
As we cannot directly measure the interaction probabilities, we assume that the Hi-C experiment
samples read-pairs independently from the underlying interaction probabilities. Thus, given a Hi-
C interaction matrix, we can estimate the maximum likelihood parameters ,  and . Since the
size of Hi-C matrices can be prohibitive, we developed a multiresolution fitting scheme using
sparse data structures, which reduces the memory and CPU time requirements to get a good fit
(see Methods). Alternatively, given parameter values, we can generate an interaction probability
matrix or an Hi-C-like interaction frequency matrix sampled from these probabilities. Since the
model parameters are interpretable and biologically meaningful, we can also simulate genomic
perturbations and predict their effects on the Hi-C matrix. 
 
Explaining intrachromosomal genomic compartments with a two-state model 
 
We first asked how well a two-state model can explain intrachromosomal (cis) interaction maps.
We selected the deeply sequenced GM12878 interaction map of Rao et al.(45) at 50kb
resolution, and fit the model separately to each chromosome (see Methods). Given the estimated
parameters, we could calculate a predicted interaction probability matrix, and compare it to the
Hi-C matrix. Since most of the variation in interaction maps can be explained by distance-
dependent interaction, we calculated the Spearman correlation coefficient between the Hi-C and
predicted matrices after first normalizing each of them by distance-dependent interaction.
Importantly, the Hi-C matrix reflects a very sparse random sample from the true interaction
probabilities, which sets an upper bound on the optimal possible correlation. Thus, we estimated
for each chromosome the optimal possible correlation (see Methods) and compared this to the
correlation achieved by the two-state model (Figure 2A). We find that the two-state model
achieves a mean correlation of 0.54 (0.10 s.d.), and that this is on average 0.11 (0.04 s.d.) less
than the optimal possible correlation. This correspondence is also apparent when visually
comparing the data and the model (Figure 2B, 2C). Interestingly, we noticed that the model does
not explain well TAD patterns (Figure 2D), supporting the notion that TADs are not simply
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small compartment domains but are rather due to a distinct mechanism (68, 73). Thus, a simple
two-state model is sufficient to capture most of the explainable variation in the data. 
 
As the two-state model explains most the genomic compartments pattern, we next decided to
take advantage of the interpretability of our model and turned to investigate the inferred
parameters. Specifically, we wanted to verify that the inferred affinities are consistent across
chromosomes, to check that the affinity between states is lower than the self-affinities of both
states and to examine the hypothesis that the state self-affinities are equal. Examining the
inferred affinity matrix across all chromosomes, we find the average affinity between states to be
0.0007 (0.002 s.d.), while the self-affinities of both states were approximately 0.5, with an
average difference of 0.05.  
 

Figure 2. Two-state intrachromosomal (cis) model performance. The model was fitted to GM12878
Hi-C by Rao et al. (45) at 50kb resolution. (A) Distance-normalized Spearman correlation between the
Hi-C interaction frequency matrix and the model’s inferred interaction probability matrix. The optimal
possible correlation for the model at matching resolution and sequencing depth is shown as reference (see
Methods for details). (B) Chromosome 19 Hi-C interaction frequencies (distance-normalized, upper
triangle) versus the model-inferred interaction probabilities (distance-normalized, lower triangle). (C)
Chromosome 19 Hi-C correlation matrix (distance-normalized, upper triangle) versus the model-inferred
genomic compartments component (distance-normalized, lower triangle). (D) Closeup of a chromosome
19 3.5Mb region, showing Hi-C interaction frequencies (distance-normalized, upper triangle) versus the
model-inferred interaction probabilities (distance-normalized, lower triangle). Genomic compartments
appear in both the data and model, but TADs are apparent only in the data. 
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Recovering genomic compartments from sparse data 
 
In Hi-C, read-pairs populate an interaction matrix whose size is the square of the number of bins. 
As a result, interaction maps are essentially always inadequately sampled and cost-restrictive 
sequencing depth directly affects the map resolution. To address this challenge, recent efforts 
have attempted to use black-box machine learning, trained on highly sampled Hi-C interaction 
maps, to enhance sparsely sampled interaction maps(74–77). We thus decided to evaluate the 
ability of our model to maintain its predictive performance using extremely shallow sequencing. 
To test the ability of our model to infer parameters and interaction probabilities on sparse data, 
we randomly down-sampled the GM12878 chromosome 19 interaction map at different sampling 
rates. We then applied the model to each random sample and compared the model’s predicted 
interaction probability with the original unsampled interaction frequency matrix across 
resolutions ranging from 500kb to 10kb-size bins, indicating how much performance decreases 
due to sequencing depth. We also compared the state probabilities inferred from each sample to 
the state probabilities that were inferred from the original data, to test the stability of the inferred 
parameters. Remarkably, we find only negligible deterioration in performance upon down-
sampling (Figure 3A, 3B). Even when taking only 0.5% of the reads (equivalent to ~20M reads 
genome-wide) at 10kb resolution, correlation decreases by only 0.02 and the average error in 
state probabilities is 0.07 (0.05 s.d.). Thus, our model can reconstruct high-quality interaction 
maps from extremely sparse interaction maps, simply based on mechanistic assumptions without 
any need for training. 
 
Given the ability of the model to perform well on very poorly sampled interaction maps, we 
asked how well the model would work on single-cell Hi-C maps. To evaluate this, we took the 
interaction probability matrix predicted from GM12878 chromosome 19, and treated this map as 
the “true” interaction probabilities. We then randomly sampled interactions from these 
probabilities, at coverage levels similar to that of single-cell maps (100K-1M interactions 
genome-wide). Finally, we applied our model to these sampled matrices, allowing us to evaluate 
the model's ability to recover the “true” interaction probabilities and state probabilities. Applying 
our model, we find that the model recovers the “true” parameters (correlation>0.9, mean state 
probability error<0.1) with as few as 100K reads at 0.5Mb resolution, 250K reads at 0.25Mb 
resolution, and 750K reads at 0.1Mb resolution (Figure 3C). We conclude that our model is 
applicable to single-cell Hi-C data, provided they are sufficiently sampled. 
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Figure 3. Model robustness at low sequencing depth. (A) Comparison of chromosome 19 interaction
frequencies and model inferred interaction probabilities at 20kb resolution when using 100%, 10% and
0.5% of the data. Matrices were distance-normalized. (B) Model performance and stability when fitted to
down-sampled chromosome 19 data at various resolutions. Left: Distance-normalized Spearman
correlation between the sampled Hi-C interaction frequencies and the model-inferred interaction
probabilities. Right: mean absolute difference in state probabilities between a model fitted on the entire
data and a model fitted on down-sampled data. (C) Model performance and stability at single-cell Hi-C
sequencing depths. We inferred interaction probabilities on chromosome 19 at 20kb resolution, treating
these as “true” interaction probabilities, and sampled interactions from these probabilities. Left: Distance-
normalized Spearman correlation between the “true” interaction probabilities and the interaction
probabilities inferred from the sampled interactions. Right: mean absolute difference between the “true”
state probabilities and the state probabilities inferred from the sampled interactions. 
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Differences in cis and trans interactions of genomic compartments  
 
Trans interactions are less frequent than cis interactions, and in the context of genomic 
compartments trans interactions are often considered a mere extension of the genomic 
compartments observed in cis. Indeed, it is common to ignore either trans interactions or cis 
interactions when analyzing genomic compartments, under the implicit assumption that they 
follow similar principles. We decided to use our model to revisit analyses performed by Imakaev 
et al.(54) and test this hypothesis directly. First, we modified our model to cope with whole-
genome modelling. Briefly, this involved optimization of the inference method (the whole-
genome interaction frequency matrix is more than 150 times larger than the interaction frequency 
map of the largest chromosome), as well as modifying the distant-dependent interaction term so 
it still uses a power-law decay in cis but uses a constant background interaction level � in trans. 
After fitting the two-state model to the genome-wide GM12878 interaction map at 100Kb 
resolution, we find self-affinities of 0.51 for state 1, 0.48 for state 2, and 0.01 affinity between 
the states (Figure 4A). Next, we created a saddle plot of the GM12878 interaction map on 
chromosomes 1 and 2 by sorting both the rows and columns according to their inferred 
probability of being in state 1 (Figure 4B). We expected the quadrants of the saddle plot to 
roughly reflect the state affinity matrix, and this is indeed what we observed. Next, we created 
separate saddle plots for chromosome 1, chromosome 2, and their trans interactions (Figure 4C). 
We observe that the two cis saddle plots are similar to each other with approximately equal self-
affinities for state 1 and state 2, while the trans saddle plot is different with state 1 showing 
notably higher self-affinity than state 2, suggesting that state interaction affinities may differ 
between cis and trans. To allow our model to account for these differences, we extended our 
model to use two separate state affinity matrices for cis and trans. Refitting this extended model, 
we infer cis and trans affinity matrices and find that they match the observed cis and trans saddle 
plots (Figure 4D, 4E), so that state 1 self-affinity in cis is similar to that of state 2 (0.49 state 1 
vs. 0.51 state 2) but is much higher in trans (0.66 state 1 vs. 0.27 state 2). Comparing the inferred 
state probabilities to histone modification data, we find that state 1 is correlated with active 
chromatin marks (“compartment A”) while state 2 is anti-correlated (“compartment B”). We find 
qualitatively similar cis and trans affinity matrices when repeating the analysis in additional cell 
lines (H1-ESC, HFF and mouse ESC). Thus, in line with the observations of Imakaev et al.(54), 
our results suggest that a whole-genome model of genomic compartments must incorporate 
different interaction rules in cis and trans, with active chromatin self-associating more frequently 
in trans than inactive chromatin. The difference between the two states may also allow to 
distinguish the two states without referring to external datasets as is done in PCA-based 
compartment analysis. 
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Figure 4. States interact differently within and between chromosomes. (A) State-state affinity matrix
from whole genome fit of two-state model at 100Kb resolution. (B) Joint saddle plot of chromosomes 1
and 2. The rows and columns of the Hi-C interaction frequency matrix were sorted by , the
probability to be in state 1. Cis and trans data were normalized to have the same mean interaction
frequency. (C) Separate saddle plots of chromosomes 1 and 2 in cis and trans. Cis and trans data were
normalized to have the same mean interaction frequency. (D) State-state cis and trans affinity matrices
from whole genome fit of two-state model with separate affinity matrices (E) Separate saddle plots of
chromosomes 1 and 2 in cis and trans using the inferred interaction probabilities rather than the Hi-C
interaction frequencies. 
 

Extending the number of states 
 

We next used the model to investigate the number of states in a principled manner. While a two-
state model explained much of the relevant variation in the data, previous work has suggested the
possibility of additional compartments or subcompartments(45). We first used our model to
identify regions in which a two-state model is clearly insufficient. For example, the
chromosomal region shown in Figure 5A clearly deviates from a checkered pattern and thus a
simple two-state model would not be sufficient, as verified by fitting our two-state model. In
order to select a reasonable number of states, we first fitted the entire genome using 2-8 states at
50kb resolution. Next, we calculated for each model the mean reconstruction error for the
interaction profile of every genomic bin (a row/column in the interaction map). We reasoned that
if the number of states is too low, there would be some subset of rows that would show a high
reconstruction error. We thus examined the standard deviation of the mean row reconstruction
error as a function of the number of states in the model, expecting the standard deviation to
decrease as the number of states increases. The resulting plot exhibited knee points at four and
seven states (Figure 5B). Preferring a simpler model, we chose to proceed with a four-state
model. Revisiting the example region in Figure 5A, we find that the four-state model is far
superior in capturing the observed pattern. Finally, comparing the two-state and four-state
genome-wide models (Figure 5C), we find that the four-state model achieves a higher Spearman
correlation (two-state: 0.64, 0.1 s.d.; four-state: 0.64, 0.1 s.d.) and is closer to the optimal
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possible correlation (two-state: 0.15, 0.08 s.d.; four-state: 0.11, 0.04 s.d.). Our results suggest 
that at least four states may be needed in order to adequately describe genomic compartments. 
 
It has been shown that on the whole chromosome level, while the relative nuclear positions of 
chromosomal territories are highly stochastic, certain pairs of chromosomes tend to interact more 
frequently with others (1, 78). Polymer simulations have suggested that chromatin activity-based 
segregation may be sufficient to explain chromosome nuclear positioning (79). We asked 
whether chromosome-level interactions can be explained by our model or whether other 
mechanisms are involved. We thus calculated a chromosome-level interaction map for 
GM12878, reobserving the known tendency of small gene-rich chromosome to interact. We then 
used our 4-state model to predict a chromosome-level interaction probability map. We find that 
the predicted and observed matrices correspond well (Spearman correlation 0.93) (Figure 5D, 
5E), suggesting that chromosome-level interaction can be largely explained by local state-based 
interaction. 
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Figure 5. Extending the model beyond two states. (A) Modelling a complex region in chromosome 22
(50Kb resolution). Top: Hi-C interaction frequencies. Middle: interaction probabilities inferred by a two-
state model, accompanied by locus state probabilities  (blue state 1, orange state 2). Bottom: Middle:
interaction probabilities inferred by a two-state model, accompanied by locus state probabilities 
(blue state 1, orange state 2, green state 3, red state 4) (B) Standard deviation of the mean row
reconstruction error as a function of the number of states in the model. Arrows indicate knee points at
four and seven states. (C) Distance-normalized Spearman correlation between the Hi-C interaction
frequency matrix and the model’s inferred interaction probability matrix, for whole-genome two-state and
four-state models. The optimal possible correlation for each model at matching resolution and sequencing
depth is shown as reference (see Methods for details). (D) GM12878 chromosome-level interaction
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frequency matrix. (E) chromosome-level interaction probability matrix inferred by whole-genome four-
state model. 

Interpreting model parameters 
 

Following the selection of the four-state model, we turned to inspect the properties of the 
inferred parameters including the state affinity matrices and the locus state probabilities. 
Interestingly, we find that the cis state affinity matrix is diagonal, suggesting little interaction 
between any of the states (Figure 6A). In contrast to the two-state model, we observe differences 
in state self-affinities (0.16, 0.17, 0.32, 0.35 for states 1, 2, 3, 4 respectively). However, we find 
that the trans state affinity matrix is notably different from that of cis (Figure 6B): The matrix is 
no longer diagonal, albeit off-diagonal values are low and could be attributed to noise (<=0.06), 
and the state self-affinities also differ considerably, e.g. state 1 has the lowest self-affinity in cis 
(0.16) but the highest self-affinity in trans (0.32). Examining locus state probabilities, we find 
that each state displays a distinct multimodal distribution of probabilities, suggesting that the 
states are not redundant (Figure 6D). This is further supported by calculating the correlations 
between all pairs of states, demonstrating no pair of states is highly correlated (Figure 6E). 
Taken together, these results support the notion of four individual states, each with distinctive cis 
and trans affinities governing interactions. 
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Figure 6. Analysis of four-state model parameters. All results shown were taken from fitting the 
whole-genome four-state model at 50Kb resolution. (A) State affinity cis matrix. (B) State affinity trans 
matrix.  affinities matrices for the 4-state fit at 50Kb resolution showing different cis and trans affinities 
for all states. (C) Heatmaps representing the distribution of histone modification frequency for ten 
different ENCODE (80) ChIP-Seq histone modification tracks, separated by state. (D) Histograms of 
locus state probabilities genome-wide. (E) Pearson correlation matrix of locus state probabilities. (F) 
Confusion matrix depicting locus state prediction by an elastic net multinomial logistic regression 
classifier from locus histone modifications. 
 
 

Histone modifications underlie interaction states  
 
We next asked what molecular markers may underlie the four states inferred by our model. We 
assembled ten ENCODE (80) GM12878 histone modification ChIP-Seq tracks. As our model 
assigns a state probability to each genomic locus (50kb bin), we first assembled for each state the 
set of bins in which that state has a probability of at least 0.6 This yielded 4667, 13136, 694 and 
327 bins for states 1, 2, 3 and 4 respectively. We first examined visually the distributions of each 
of the histone modifications for each of the four states (Figure 6C). For each of the histone 
modifications, we see potentially informative differences between the states, with the most 
prominent differences in the distributions of H4K20me1. In spite of these aggregate differences, 
it is unclear to what extent these could be used to predict locus state based on locus histone 
modifications. We thus addressed this question directly by training an elastic net multinomial 
logistic regression classifier to predict locus state from histone modifications. Training the 
classifier on odd-numbered chromosomes and testing on even-numbered, we obtain an overall 
test accuracy of 0.87, with classification errors tending to occasionally misclassify state 3 as 2 
and state 4 as 1 (Figure 6F). We thus conclude that the four inferred states are indeed distinct 
and are marked with characteristic combinations of histone modifications. 
 

Single-cell analysis of state mixing  
 

Lastly, we asked whether the mixing of states at a given locus, which is an inherent feature of 
our model, occurs at the population or cell level. For example, consider a locus which is inferred 
to be 50% state 1 and 50% state 2. In population-level mixing, the apparent mixing of states 
results from the equal mixing of two populations, one in which the locus is completely in state 1 
and the other in which the locus is completely in state 2. An alternative scenario is cell-level 
mixing, consisting of one homogenous population in which the locus itself is in a mixed 
intermediate state at the single-cell level. While we derived the model with population-level 
mixing in mind, the formulation of our model cannot distinguish between these two scenarios. 
To address this question, we identified within the GM12878 interaction map an area in 
chromosome 19 which shows evidence of state mixing (Figure 7A). Within this area, we 
observed a genomic region whose interaction pattern appears to be a mixing of the interaction 
patterns of two nearby regions. We first checked that our model identifies this pattern as mixed, 
and found that the seven-state model indeed identifies one region as higher state 3, another as 
higher state 7, and the mixed region as a mix of 3+7 (Figure 7A). Next, we elected to use 1129 
single-cell Hi-C maps measured by Kim et al. (81) to distinguish between population-level and 
cell-level mixing. We reasoned that if the mixing of the 3+7 region is cell-level, a single-cell 
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interaction profile of the 3+7 region would be more likely to resemble the bulk interaction profile 
of the mixed 3+7 region than the bulk interaction profile of state 3 or state 7 regions (Figure 7B, 
7C). If the mixing of the 3+7 region is population level, the opposite would be more likely. We 
verified the plausibility of this approach by simulating population and cell-level mixing scenarios 
(see Methods). Single-cell interaction profiles were sampled either from the bulk mixed 3+7 
region interaction profile (cell-level mixing), or from the two bulk 3/7 state region interaction 
profiles (population-level mixing, 50% each state). We then calculated for each simulated single-
cell interaction profile the log ratio between its likelihood of coming from the mixed state and its 
likelihood of coming from one of the pure states. This log ratio was further normalized to 
account for expected differences in distance-dependent interaction between the genomic regions 
(see Methods), and is hereon referred to as Mixing Log Ratio (MLR). Examining the resulting 
MLR distributions in the two simulated mixing scenario (Figure 7D), we find that the MLRs in 
the cell-level mixing simulation tend to be positive (median 0.76) while the MLRs in the 
population-level mixing simulation tend to be negative (median -0.96), suggesting the two 
scenarios can be distinguished with this approach (one-sided Kolmogorov-Smirnov p-value<10-

193). Finally, to examine which of the two scenarios better fits the data, we calculated the MLRs 
for the measured single cell Hi-C data. We find that the resulting MLRs tend to be negative 
(median -1.1) and the distribution overall is more consistent with the population-level mixing 
scenario (two-sided Kolmogorov-Smirnov p-value<10-160). While not excluding the possibility 
of cell-level mixing occurring elsewhere, our results suggest that the observed mixed pattern is 
mostly due to population-level mixing. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.01.510432doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.01.510432
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.01.510432doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.01.510432
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

Figure 7. Analysis of state mixing. (A) Evidence of state mixing in chromosome 19. The interaction 
pattern marked in the green-blue rectangle appears to be a mix of the interaction pattern marked in the 
blue rectangle and the in the green rectangle. Locus state probabilities ���� are shown for states 3 and 7 
taken from the seven-state model. (B) Averaged interaction profiles for the green-blue, blue, and green 
regions. (C) Schematic of simulated single-cell Hi-C profiles generated by the two simulated mixing 
scenarios. Top: In population-level mixing, sparse single-cell interaction profiles are sampled from the 
previously shown green-blue interaction profile. Bottom: In cell-level mixing, sparse single-cell 
interaction profiles are sampled 50% from the previously shown green interaction profile and 50% from 
the blue interaction profile. (D)  Violin plots of the distributions of the Mixing Log Ratio for cell-level 
mixing simulation, population-level mixing simulation, and real single-cell Hi-C data from Kim et al. 
(81). Mixing Log Ratio represents the logarithm of the ratio between the likelihood of a single-cell profile 
given cell-level mixing and the likelihood of the single-cell profile given population-level mixing, after 
accounting for expected distance-dependent differences (see Methods). Kolmogorov-Smirnov p-values 
are shown. 
 
 

Discussion 

 
In this work, we present deGeco, a probabilistic modelling approach rooted both in data-driven 
and hypothesis-driven approaches. On one hand, this provides us with an explicit model that has 
biologically interpretable parameters and can be used to test biological hypotheses by simple 
modifications. On the other hand, this enables us to utilize the power of the large amounts of 
available data to solve inverse-type problems, such as estimating the locus states across the 
genome or the affinities between different states within and between chromosomes.  
 
We evaluate the robustness of our model with respect to the amount of sequencing reads, as 
sequencing depth of Hi-C libraries is still cost-prohibitive due to the huge space of possible 
pairwise interactions. We show that approximately 20M read pairs are sufficient to accurately 
infer model parameter values which are very close to those inferred from a 4000M read pair 
map, even at 10Kb bin resolution. It is interesting to consider this in the context of several recent 
methods for reconstructing interaction maps from very sparse data by first training deep-learning 
models on well-sampled high-resolution maps (74–77). Although our method is currently limited 
to genomic compartments and larger interaction patterns, it is notable that simply by the virtue of 
its few mechanistic assumptions, it is able to perform this type of reconstruction from very little 
data without training first on any data. We also try to push the limits of the method by attempting 
to apply it to single-cell Hi-C maps, and find it can correctly infer genomic compartments at 
lower resolutions (250-500kb) for reasonably well-sampled single-cell maps. 
 
Due to the size of mammalian Hi-C interaction matrices, which poses a significant computational 
hurdle, computational methods often resort to operating on smaller scales, such as single 
chromosome interactions or small genomic windows. This often carries the implicit assumption 
that the rules for interaction are consistent across the genome. We enabled whole-genome 
inference with our model by developing an optimized sparse representation coupled with a 
sampling-based estimation of the partition function (see Methods). We then used this to 
interrogate the entire genome simultaneously, and surprisingly found that state-state affinities 
between chromosomes differ considerably from those within chromosomes. In addition to the 
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implications of these findings for future genome-wide models, it would be interesting to further 
explore the physical basis of these differences by using complementary modelling techniques, 
especially those based on polymer models. 
 
Since “all models are wrong, but some are useful”, it is often useful to inspect where a model 
was wrong. Although a two-state model explained most of the explainable variance in the 
GM12878 interaction map, we used the model to identify regions which were clearly not 
explained well by two states. This led us to evaluate the number of states, finding that four and 
seven states might be reasonable choices. Naturally, other choices are possible, and these could 
change between cell types and species. Although several others have proposed that more than 
two states should be considered (9, 45, 55, 56, 62, 66, 69), without an explicit model it is 
difficult to distinguish an interaction state from an interaction pattern. For example, a mixing of 
states could create an interaction pattern that would seem different from those of the individual 
states, and would be falsely identified as a separate state by approaches such as clustering. 
Pursuing the molecular basis of the four-state model, we find characteristic state probabilities 
and histone marks for each of these, ultimately constructing a simple classifier that predicts locus 
state from histone marks with 87% accuracy. Although it has been shown that chromatin features 
can be separated into states(82, 83), and that these can be used to predict spatial interactions(9, 
67), it remains to be seen whether there is a simple mapping between chromatin states and 
interaction states. 
 
Finally, we decided to investigate one of the assumptions of the model, namely that within single 
cell every locus is in exactly one state so that any mixing of states at a locus is due to population-
level mixing (averaging over a heterogenous cell population). However, if we would have 
changed the assumption so that even within a single cell a locus can be in multiple states, e.g. 
interacting simultaneously like two other states, the model formulation would be the same. We 
thus decided to use single-cell Hi-C data to find whether there is evidence for cell-level mixing, 
and coupled with probabilistic simulations conclude that we do not find evidence of cell-level 
mixing. In this respect, it is important to note that cell-level mixing can appear artificially due to 
genomic bin size: if loci of different states occupy the same genomic bin, the bin might seem to 
interact simultaneously with multiple states. 
 
In conclusion, we envision this approach as a probabilistic modelling framework for further 
hypothesis-driven investigation and interpretation of genomic compartments as well as other 
interaction patterns such as TADs and point interactions.  
 
 

Materials and methods 
 

Full model description 
 
Based on the assumptions described in the Results section, we propose the following 
probabilistic model for pairwise interaction probability between loci: 
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������, �� � 1

 |� 
 �|����� ������ � ��� ������ � � � ��� ������� 

 
Where ��� is the probability over the cell population that locus � is in the �-th state (we assume ∑ ����
�	� � 1); ��� is a non-negative affinity between states � and � (we assume ��� � ���  

and ∑ ����,� � 1); |� 
 �|�  is a distance-dependent interaction function (we assume � � 0); 
and 
 is a normalization factor which ensures  

∑ ������, ���,� � 1, also known as the partition 
function. Locus interactions are symmetric, so ������, �� � ������, ��. We note that if we define a 
matrix Λ of locus state probabilities such that Λ�� � ��� , the genomic compartments component 
can be rewritten as matrix factorization: 
 

������, �� � 1

 |� 
 �|��Λ�Λ
��� 

 
For the genome-wide model (see Results), we modify the distance-dependent function 
interactions such that if �, � are in cis � � |� 
 �|�  and if they are in trans � � � (� is a parameter 
representing the general strength of trans interactions). As described in the Results section, we 
later used separate � matrices for cis and trans. 
 
Since we do not have access to the true interaction probabilities, we use Hi-C interaction 
frequencies to estimate them. We assume that   Hi-C read pairs are multinomially sampled from 
the interaction probability distribution ����, yielding the interaction frequency matrix ! (so ∑ !����� �  ). Thus, the probability of obtaining Hi-C interaction frequency matrix ! is: 
 

��!� � "  
!��, !��, … , !��

$ % ������, �����

�,�

 

 
Where & is the number of bins in the matrix and ������, �� is specified by the model. The log-
likelihood of the full model is then given by: 
 

'�(|!� � log "  
!��, !��, … , !��

$ � , !�� log�1

 |� 
 �|��Λ�Λ
����

�.�

 

 
Where ( are the model parameters �, Λ and �. In order to estimate the values of the parameters 
given a Hi-C interaction matrix !, we maximize this log-likelihood objective function. Note that 
given ! the multinomial coefficient is constant and can be ignored during maximization. 
 
Optimizing the objective function 
 

Unfortunately, the objective function is not concave, requiring multiple initializations. To direct 
the search towards good solutions, we developed a multi-resolution fitting strategy consisting of 
running the model at a low resolution (large bin size) multiple times, and proceeding with the 
best solutions as initialization points for refinement at higher resolutions (small bin sizes). The 
underlying logic is that a good solution at high resolution must be a good solution in low 
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resolution. Note that when moving to a higher resolution, the locus state probabilities are 
duplicated according to the ratio of resolutions, for example the state probability inferred for a 
500Kb bin is duplicated into five 100Kb bins.  Unless stated otherwise, the model was run 20 
times at 500Kb with random seeds 1-20, the 5 best solutions (by likelihood) were refined at 
100Kb and then at 50Kb. We use the best solution (by likelihood) out of the 5 refined solutions. 
 
Since the Hi-C matrix is very large in high resolutions, especially when considering a whole 
genome, the memory and CPU requirements quickly become prohibitive. To address this, we 
developed a strategy for leveraging sparse data structures and partition function estimation. Our 
strategy is based on two observations. First, Hi-C interaction frequency matrices, especially in 
high resolution, are sparse as they are mostly populated with zeros. Second, when looking at the 
sum ∑ !�� log ������, ���,�  in the objective function, zero entries in ! cancel out most of the sum 
terms and obviates computation of the corresponding entries in ����. However, ������, �� contains 
the normalization term (partition function) 
 � ∑������, ��, which requires information from all 
entries, even those with corresponding zero values in !. To work around this, we note that 
 can 
be viewed as a sum of two groups of entries, those with corresponding non-zero values in ! and 
those with corresponding zero values: 
 � ∑ ������, ���������� � ∑ ������, ������� . We calculate ∑ ������, ����������  exactly, and estimate ∑ ������, �������  by taking a random sample of entries 
with corresponding zero values in ! (without replacement). Thus, our implementation 
dramatically reduces memory and CPU requirements by using the Hi-C matrix in sparse form 
where only non-zero entries are held in memory, and calculating ������, �� only for entries 
corresponding with non-zero ! entries or corresponding with a random subset zero of ! zero 
entries. We chose to use a number of sampled non-zero entries equivalent to the number of zero 
entries. 
 
Datasets 
 

Human genome hg38 version was used. GM12878 Hi-C matrix by Rao et al.(45) was obtained 
from the 4D Nucleome data portal (84) and used in all analyses unless specified otherwise. The 
matrix was balanced and binned by cooler (85). Analyses were not performed on chromosomes 
X and Y. GM12878 single-cell Hi-C data by Kim et al. (81) was obtained from 
https://noble.gs.washington.edu/proj/schic-topic-model/ . Histone modification GM12878 ChIP-
Seq data tracks (fold-change over input) were obtained from ENCODE (80) for H3K27ac, 
H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3 
and H4K20me1. Histone tracks were binned to 50Kb bins by taking the average fold-change 
over input across the entire bin, considering missing values as zero. To reduce effects of outliers, 
every histone track had its highest 1% of values trimmed to the 99th percentile level. 
 
Model robustness analysis 
 

For the analysis in Figure 3B: Interactions were sampled from the unbalanced GM12878 Hi-C 
matrix of Chromosome 19 without replacement, followed by balancing and binning (where 
relevant) by cooler (85). To fit the model at various resolutions, the model was run with 10 
random initializations at 500Kb resolution, and these were further refined to 100Kb, 20Kb and 
10Kb resolutions. To evaluate performance, the best solution (by likelihood) was chosen for each 
resolution. 
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For the analysis in Figure 3C: Interaction probabilities and locus state probabilities were inferred  
by a two-state model fitted to GM12878 Hi-C matrix of chromosome 19. These were treated as 
the “true” probabilities, and we tested the ability of the model to recover these from extremely 
sparse data. Sparse interaction maps were generated by multinomially sampling from the “true” 
interaction probabilities. Sampling level matched 0.1-1Mb genome-wide interactions, similar to 
the sequencing depth achieved in recent single-cell Hi-C maps. To fit the model at various 
resolutions, the model was run with 10 random initializations at 1Mb resolution, and these were 
further refined to consecutively higher resolutions. To evaluate performance, the best solution 
(by likelihood) was chosen for each resolution. 
 
Analysis of histone modifications 
 

Analysis of histone modifications was performed at 50Kb resolution. To avoid complications 
due to state mixing, analyses were performed only on bins in which one state is dominant (state 
probability>0.6). This resulted in 4667, 13136, 694 and 327 bins for states 1, 2, 3 and 4. To 
classify the locus state for each of these bins from the locus histone modifications data, 
chromosomes were split into test and train sets, which contained the odd and even chromosomes, 
respectively. The training set was scaled to zero mean and unit standard deviation, and the test 
set was scaled according to the mean and standard deviation learned from the training set. To 
avoid effects due to classes 3 and 4 being much smaller, their samples in the training set were 
each duplicated 15 times. No duplication was done on the test set. A multiclass logistic 
regression classifier was trained using the multinomial loss and elastic net regularization (scikit-
learn(86) implementation). The C (inverse of regularization strength) and L1/L2 ratio 
hyperparameters were optimized using 10-fold cross validation on the training set and searching 
over a 10x10 grid in the ranges (0,1) for C and (1e-4,1e4) for L1/L2 ratio. The overall accuracy 
was calculated as the fraction of correct classifications in the test set. To offset differences in the 
sizes of the classes in the test set, the confusion matrix was row-normalized. 
 
State mixing analysis 
 

To simulate state-mixing scenarios in single cells, we first created average interaction probability 
profiles for three groups shown in Figure 7A: a region with higher state 3 (blue), a region with 
higher state 7 (green) and a mixed 3+7 region (green-blue). To this end, we collected rows in the 
Hi-C matrix with a similar interaction profile to each of the three regions from the entire 
chromosome. To reduce the effects of genomic distance, we considered only interactions at 
>2Mb distance in all mixing analyses. Finally, the rows of each of the three groups were 
averaged and converted to probabilities by normalizing to one, adding 1e-10 as pseudocounts, 
and renormalizing, producing probability vectors -�, -�and -���. In addition, we created 
probability vectors for each of the three groups based only on distance-dependent interaction 
signal (sometimes referred to as “expected” signal), by replacing every entry in the Hi-C matrix 
with the average interaction frequency of its diagonal. We refer to these as -����, -����and -������. 
 
To simulate single-cell interaction profiles from each of the scenarios, we used the scHi-C 
experiment GM12878 cells by Kim et al. (81). Single-cell maps were used at 500kb resolution 
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due to their sparsity. Out of 4545 cells, maps of 1129 cells were chosen which had at least five 
reads in the mixed region in chromosome 19. We started by calculating the average interaction 
frequency profiles within the mixed region for each of the single-cell maps, yielding 1129 
interaction frequency vectors !����. We first simulated cell-level mixing, by sampling 1129 
interaction frequency vectors !���� multinomially from -���, matching the number of sampled 
reads in each vector to the number of reads in the respective vector in !����. To simulate 
population-level mixing, we sampled 1129 interaction frequency vectors !���, where half are 
sampled multinomially from -� and the other half are sampled from -�, again matching the 
number of reads to !����. 
 
To quantify whether a single-cell interaction frequency vector /  is more likely to come from 
cell-level or population-level mixing, we first note that the probability of observing an 
interaction frequency vector / given a probability vector - is: 
 

��/|-� � 0 ∑ /�/�, /�, … , /�1 % -
�

��

�

 

 
Next, we define the Mixing Log Ratio (MLR) for an interaction frequency vector / to be: 
 

2' �/� � log 0 /|-���

max�/|-�, /|-��1 
 log 0 /|-������

max�/|-����, /|-�����1 

 
Finally, we calculated MLR value for !����, !��� and !����. 
 

Data availability 
 
Code was written in Python and Cython (87) mainly using the SciPy and NumPy (88) libraries. 
Code is available at https://github.com/KaplanLab/deGeco. 
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