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ABSTRACT 1 

Viruses exert considerable influence on microbial population dynamics and community 2 

structure, with cascading effects on ecosystem-scale biogeochemical cycling and functional 3 

trajectories. Creating broadly generalizable theory on viral trophic ecology requires further 4 

inquiry into historically unexplored microbial systems that currently lack empirically 5 

demonstrated patterns in viral infectivity, such as structurally complex benthic communities. 6 

This becomes increasingly relevant considering recently proposed revisions to the fundamental 7 

mechanisms that modulate the strength and direction viral trophic linkages. Here, we employed 8 

deep longitudinal multiomic sequencing to characterize the viral assemblage (including ssDNA, 9 

dsDNA, and dsRNA viruses) and profile lineage-specific host-virus interactions within benthic 10 

cyanobacterial mats sampled from Bonaire, Caribbean Netherlands, over a complete diel time-11 

series, and reconstruct patterns in intra-mat trophic structure. We recovered 11,020 unique viral 12 

populations spanning at least 10 viral families across the orders Caudovirales, Petitvirales, and 13 

Mindivirales, with evidence for extensive genomic novelty from reference and environmental 14 

viral sequences. Analysis of coverage ratios of viral sequences and computationally predicted 15 

hosts spanning 15 phyla and 21 classes revealed virus:host abundance and activity ratios 16 

consistently exceeding 1:1, with overall power-law scaling indicating an increasingly top-heavy 17 

intra-mat trophic structure with significant top-down pressure. Diel activity of cyanophages 18 

showed clear temporal patterns that seem to follow host physiological condition. These data 19 

generate important hypotheses concerning taxon-dependent variation in the relative contribution 20 

of top-down vs. bottom-up forcing in driving mat community dynamics, and establish a useful 21 

database of viral sequences from this previously unexplored system toward the generation of 22 

generalizable trans-system theory on viral trophic ecology. 23 
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 24 

SIGNIFICANCE STATEMENT 25 

 Recent advances in viral ecological theory suggest a better understanding of system-26 

specific viral ecology is needed from diverse environments to create generalizable theory that 27 

accurately predicts patterns of trophic interaction strengths across systems, especially in the 28 

Anthropocene. This study characterized viral-host trophic structure within coral reef benthic 29 

cyanobacterial mats - a globally proliferating cause and consequence of coral reef degradation - 30 

using paired multiomic sequencing. Recovered viral sequences displayed remarkable genomic 31 

novelty from other well-characterized viruses and spanned diverse viral taxa. Unexpectedly, 32 

lineage-resolved trophic linkages displayed a strongly active top-heavy trophic structure, 33 

suggesting extensive top-down forcing. These results highlight the context-dependence of viral 34 

trophic interaction strengths and suggest that viruses strongly influence reef cyanobacterial mat 35 

and reef ecosystem functional trajectories. 36 

 37 

INTRODUCTION 38 

 Viruses ubiquitously exert considerable influence on cellular microorganisms across 39 

scales of biological and ecological organization. At the cellular level, both viral lytic and 40 

lysogenic interactions modify cellular physiologic potential (1–3) and transcriptional regulation 41 

pathways (4), alongside mediating cellular susceptibility to top-down control from both homo- 42 

and heterotypic viral infection (5–8) and bacterivorous zooplankton (9). Transfer of exogenous 43 

genes into hosts and antagonistic coevolutionary dynamics promote extensive genomic 44 

diversification and steer population evolutionary trajectories (negative frequency-dependent 45 

selection; 10–12), alongside significant top-down control on population abundance via the 46 
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outcome of viral lysis (13, 14). Top-down control on population size can promote coexistence 47 

among competing cellular microorganisms by preventing competitive exclusion by competitive 48 

dominants, contributing to patterns in microbial community structure and successional dynamics 49 

(5, 15, 16). These direct and indirect influence of viruses on microbial hosts in-turn scale to 50 

ecosystem biogeochemical cycling, environmental stoichiometry, and functional trajectory (17). 51 

For example, viral predation is thought to modulate planktonic marine carbon cycling, releasing 52 

approximately 10 billion tons of microbe-bound organic carbon into the Dissolved Organic 53 

Carbon (DOC) pool every day, and promoting retention of carbon within the basal trophic levels 54 

of the microbial loop (viral shunt) (18, 19). Understanding viral interactions with cellular 55 

microorganisms, then, fundamentally underlies an understanding of patterns in microbial 56 

diversity (both micro- and macro-), and is integral for scaling up microbial physiology, and 57 

population and community dynamics, to broader ecosystem processes (20). 58 

 Recent advances toward better in-silico methods of viral recovery from shotgun 59 

metagenomic and metatranscriptomic datasets have enabled the exploration of viral interaction 60 

dynamics across more diverse systems, and with greater resolution (21–23). Traditional 61 

paradigms in viral ecology are largely derived from few, structurally simple model systems (20, 62 

24). However, emerging evidence from diverse structurally-complex systems challenges the 63 

generality of paradigms in viral ecology, especially in the directionality and scales of dynamism 64 

in both the direction and strength of viral trophic interactions (9, 25–27). Overall, these revisions 65 

from contemporary viral ecological theory suggest that current models linking viral interactions 66 

to community- and ecosystem-scale processes are likely incomplete, motivating a reinvigoration 67 

of basic research into viral ecology. Inquiry into historically unexplored microbial systems that 68 

currently lack empirically demonstrated patterns in viral infectivity are especially critical toward 69 
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the creation of broadly generalizable theory and quantitative frameworks scaling viral trophic 70 

interactions to microbial community ecology and ecosystem chemistry (28–30). 71 

 Harmful algal blooms are an ideal system in which to investigate viral ecology, with 72 

motivation from both fundamental and applied perspectives. Planktonic cyanobacterial and 73 

eukaryotic algal blooms receive significant research and public attention. Yet, benthic blooms 74 

remain understudied, despite impacting coral reefs, which are some of the most threatened 75 

ecosystems globally (31). Benthic cyanobacterial mats are increasing in abundance on coral reefs 76 

worldwide (32) because of local and global stressors that are deleterious to the health of 77 

important reef building taxa (33–37). Cyanobacterial mats are taxonomically and functionally 78 

complex communities (38) that can dramatically alter reef nitrogen budgets via nitrogen fixation 79 

(39–41), and reef carbon budgets via fixation of inorganic carbon and subsequent release of 80 

dissolved organic carbon (42). These shifts in reef carbon chemistry can alter systemic microbial 81 

energetic budgets, and favor the proliferation and stability of pathogenic taxa (43), potentially 82 

including pathogenic taxa involved in coral disease (44). Horizontally-spreading reef 83 

cyanobacterial mat carpets are subject to dynamic predation pressure from generalist reef fishes 84 

and specialist invertebrate mesograzers (45, 46), with substantial geographic and morphotypic-85 

dependence in predation risk from macro- and mesopredators (32, 47, 48). Viral interactions with 86 

coral reef benthic cyanobacterial mats have only recently been explored (38, 49, 50), and viral 87 

ecology in cyanobacterial mats remains generally relatively unknown. 88 

 Viral impact on microbial mat systems, including coral reef cyanobacterial mats, is not 89 

yet readily predictable without system-specific characterization (51, 52). The directionality of 90 

trophic interactions among viruses and their hosts may experience fine-scale dynamism 91 

dependent on density, host physiological state, and host trophic membership (27, 53), and thus 92 
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may not be generalizable across time. Furthermore, living as a biofilm is generally known to 93 

confer some protection from viral predation (54), especially in spatially structured (generally 94 

biologically mediated) biofilm communities (25). This may presuppose the prediction of limited 95 

viral influence in coral reef cyanobacterial via similar mechanisms. However, viruses (evidence 96 

from bacteriophages) are also shown to subvert biofilm structural defense by exhibiting 97 

subdiffusive motion using mucin present in the extracellular polysaccharide matrix of biofilms to 98 

increase host encounter rates and overall infectivity in biofilms (55, 56). A more complete 99 

understanding of predation risk from viruses and the influence of viral trophic interactions on 100 

population mortality in cyanobacterial mats is critical toward both the generation of more 101 

generalizable theory, and for a better understanding of the processes governing cyanobacterial 102 

mat dynamics on reefs. 103 

 Here, we profiled lineage-specific host-virus interactions with ssDNA, dsDNA, and RNA 104 

viruses and reconstructed broad patterns in intra-mat tropic structure within cyanobacterial mats 105 

from Bonaire, Caribbean Netherlands, across a complete diel cycle using deep longitudinal 106 

multiomic sequencing (paired metagenomes and metatranscriptomes). Consistent with other 107 

high-density high growth-rate microbial systems (9, 26, 57), we hypothesized that viral predation 108 

(lytic interactions) would not be strongly evident in cyanobacterial mats. 109 

 110 

RESULTS 111 

 Four spatially distinct coral reef benthic cyanobacterial mats (Table S1) from Bonaire 112 

were longitudinally sampled at 5 evenly spaced time points across a complete diel cycle, and 113 

subject to paired shotgun metagenomic and metatranscriptomic sequencing, generating a total of 114 

4,607,785,034 high-quality filtered reads (Table S2 & S3). De-novo coassembly of these reads 115 
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was performed to reconstruct mat metagenomes and metatranscriptomes (Table S4 & S5), which 116 

were subsequently screened to isolate the cyanobacterial mat virome. 117 

 118 

Overview of viral community structure 119 

 We used combined profile Hidden Markov Models (HMM) and BLASTp with non-120 

reference based HMM searches to extract viral signatures from coassembled metagenomes and 121 

metatranscriptomes, identifying a total of 13,026 manually curated viral sequences dereplicated 122 

at 95% identity within mat samples (approximating viral populations; vOTUs; 11,020 non-123 

redundant vOTUs dereplicated across all samples; vMAT database). Recovered viral sequences 124 

included dsDNA, ssDNA, and dsRNA viruses, but primarily dsDNA viral sequences were 125 

recovered (Fig 1). A genomic protein-sharing network was constructed among viral sequences 126 

reconstructed in this study and viral sequences present in RefSeq88, and integrated with 127 

taxonomic predictions from trained convolutional-neural networks against the Caudovirales 128 

database to assign putative viral taxonomy, and explore viral diversity from reference viral 129 

sequences. Identified vOTUs could be assigned to 10 unique viral families, primarily belonging 130 

to the order Caudovirales (Fig. 1). Unsurprisingly, few viral sequences recovered in the vMAT 131 

database shared significant numbers of gene regions to viral sequences found in the RefSeq 132 

database, highlighting the highly novel diversity of viral sequences recovered from this system 133 

(Fig. 1b). Viral sequences assigned to the Podoviridae from convolutional-neural network 134 

analysis and those that shared edges (significant gene overlap) in the gene-sharing network with 135 

RefSeq Podovirdae sequence nodes displayed remarkably low edge betweenness centrality, 136 

suggesting that these sequences possess highly unique or divergent gene regions from other viral 137 

families (Fig. 1a). 138 
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 Viral abundance and absolute sequence counts in metagenomes and metatranscriptomes 139 

was dominated by viral sequences that could not be placed within a resolved taxonomic lineage, 140 

followed by members of the Myoviridae, Siphoviridae, and Podoviridae (Fig. 1c, d). Viral 141 

sequences assigned to the Cystoviridae were also abundant in mat metatranscriptomes, 142 

suggesting RNA viruses are important members of cyanobacterial mat communities. Overview 143 

of viral sequences, including taxonomic assignments, are provided in Dataset S1. 144 

 145 

Cyanobacterial mat virome harbors substantial diversity unique from other environments 146 

 An additional genomic-based protein-sharing network was constructed among the viruses 147 

reconstructed from this study (vMAT), the viruses reconstructed from the Global Ocean Virome 148 

2.0 (GOV2), and the viruses reconstructed from permafrost soil (vFROST) to contextualize the 149 

diversity uncovered in this dataset with other relevant publicly available environmental viral 150 

databases (Fig. 2a). Viruses recovered from the cyanobacterial mats sampled here displayed 151 

remarkable diversity from the sequences in these previously characterized environmental viral 152 

databases. Out of a total of 14,158 unique clusters (approximating genus-level relatedness), only 153 

11 were shared among all datasets (Fig. 2b). As expected, viruses recovered from marine 154 

cyanobacterial mats (vMAT) shared fewer proteins and formed fewer unique clusters with 155 

permafrost viruses than with pelagic marine viruses (Fig. 2), likely owing to strong differences in 156 

abiotic filters between permafrost and benthic marine environments. The broad coverage of edge 157 

space across the diversity of the GOV2.0 dataset nodes suggests a broad commonality of gene 158 

regions across viruses in this dataset, with restricted distribution among viral sequences isolated 159 

from cyanobacterial mats, further highlighting the immense genetic diversity found in this 160 

system. More viral sequences were classified as singletons (n = 6,401) than those that clustered 161 
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(n = 4,177), and the majority of those that clustered formed clusters exclusively with other 162 

cyanobacterial mat viral sequences (Fig. 2b). Taken together, these data reveal a high degree of 163 

endemism in mat community viruses, distinct even from viruses in surrounding seawater. 164 

However, there was an effect of viral sequence length on clustering status for vMAT viruses 165 

(PWRST, all p < 0.05; Fig. S1), which suggests genome incompleteness may, in-part, underly 166 

some patterns of purported extreme novelty within singletons. However, numerous long 167 

sequences were also classified as singletons, indicating genome incompleteness does not fully 168 

explain patterns in viral genomic novelty in the vMAT database. 169 

 170 

Viruses infect a broad host range in cyanobacterial mats 171 

 Multiple computational prognostic strategies for predicting host-virus infection 172 

relationships were integrated and hierarchically coalesced to reconstruct lineage-resolved 173 

host:virus infection pairs among viral sequences reconstructed in this study, and MAGs 174 

assembled in (Cissell and McCoy in review). Virus-host pairings were successfully assigned for 175 

5,539 vOTUs (42.5% of all identified contigs) spanning 9 viral families, 14 bacterial phyla, 1 176 

phylum of Archaea, and 21 classes (Fig. S2) of bacteria and Archaea (excluding 1 unresolved 177 

[class level] Proteobacteria linkage). These majority of these pairings were from vOTUs that 178 

could not be assigned to family level taxonomy (n = 4,734 linkages). To explore infection 179 

pairings among those viral sequences for which taxonomy could be predicted, infection data 180 

were subset to exclude those pairings without viral taxonomic assignment (Fig. 3). Of those 181 

pairings for which viral taxonomy was predicted, the bacterial phylum Proteobacteria 182 

numerically had the most predicted host viral linkages, with 315 pairings spanning 7 viral 183 

families (Fig. 3). Both Cyanobacteria and Bacteroidota were computationally predicted to be 184 
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infected by members of 8 viral families, with infections dominated by the Myoviridae in both 185 

phyla (94 and 100 for Cyanobacteria and Bacteroidota, respectively; Fig. 3).  186 

 187 

Cyanobacterial mats are characterized by an increasingly top-heavy trophic structure 188 

 To better understand patterns in the dynamics of predicted lineage-resolved host:viral 189 

pairings, patterns in the abundances of predicted hosts and their viruses in metagenomes were 190 

explored. Patterns were explored at the level of host phylum and host class. Phyla-resolved 191 

results are presented in main text figures (Figs. 4 & 5) – class-resolved results are presented in 192 

the appendix (Figs. S2 & S3). Ratios among viral and host coverages (VMR) in metagenomic 193 

read space consistently exceeded a 1:1 ratio and differed significantly by host phyla (Type II χ2; 194 

chisq = 241.83, df = 14, p < 2e-16; Fig. 4a). This suggests many viruses recovered may be 195 

actively lysing their predicted hosts with differential top-down interaction strengths across mat 196 

building populations by broad host taxonomic affiliation. Among mat variation in VMR was 197 

minimal (random effect variance 0.006 ± 0.07SD), suggesting strong spatial (among mat 198 

community) conservation of these patterns in viral trophic linkage strengths. To explore host 199 

virus relationships in cyanobacterial mats further, the shape in the abundance pyramid across 200 

host abundances was resolved from power law scaling among log-log abundances of viruses and 201 

their hosts. The power law scaling coefficient indicates the shape of the curve on ordinary axes, 202 

describing how predator abundance changes with prey abundance (58). Log-log regression of 203 

linked virus-host abundances revealed an increasingly top-heavy trophic structure within benthic 204 

cyanobacterial mats as host abundance increases (WLS; k = 1.25, SE = 0.047, t = 26.5, p < 2e-205 

16), with strong concordance in the abundance relationships among viruses and computationally 206 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.01.510451doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.01.510451
http://creativecommons.org/licenses/by/4.0/


inferred hosts (adjusted r2 = 0.865). This further suggests bacteria and archaea experience 207 

significant top-down control from viral predation in cyanobacterial mats. 208 

 These patterns were well recapitulated when interrogating host class-level lineage-209 

resolved linkages (Fig. S2). Among host class differences in VMR were detected (Type II χ2; 210 

chisq = 305.35, df = 21, p < 2e-16; Fig. S2a) similar to among phyla differences discussed 211 

above. Log-log power law scaling similarly predicted an overall increasingly top heavy trophic 212 

structure with respect to virus:host trophic linkages (WLS; k = 1.18, SE = 0.045, t = 26.4, p < 2e-213 

16; Fig. S2b), with an adjusted r2 of 0.82. 214 

 215 

Metatranscriptomic recruitment suggests active predation across diverse hosts 216 

 To complement patterns observed among abundances of linked viral:host pairs in 217 

metagenomic read space, we developed and explored a similar metric in metatranscriptomic read 218 

space to traditional VMR which we term VMAR. VMAR leverages the changes in host 219 

transcriptional regulation associated with active viral infection and replication (4, 59), while 220 

directly assessing expressed viral activity (i.e. inherently subsets data and ecological 221 

interpretation to active infections). To contextualize patterns in VMAR with patterns from 222 

traditional VMR, we fit a WLS regression to logVMAR against logVMR. Patterns in VMAR and 223 

VMR were strongly concordant, suggesting that VMAR well captures dynamics inferred from 224 

more traditional measures alongside increased resolution of discerning active vs. inactive 225 

infections (adjusted r2 = 0.48; k = 0.84, SE = 0.08, t = 10.1, p < 2e-16; Fig. 5b). Viruses infecting 226 

all host phyla recruited reads from metatranscriptomes, indicating that hosts from the full 227 

diversity of mat-building phyla experience active viral infection. Mean VMAR differed 228 

significantly across host phyla (Type II χ2; chisq = 992.5, df = 14, p < 2e-16; Fig. 5a), suggesting 229 
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differences in the interaction strength of actively infecting viruses by host taxonomy. VMAR 230 

estimates were unsurprisingly (because this represents the transcriptionally active subset) 231 

consistently higher than VMR estimates (Fig. 4 & 5), reinforcing that the cyanobacterial mat 232 

virome actively infects predicted bacterial and archaeal hosts. Power law scaling among log-log 233 

viral and host expression were explored as in metagenomic abundance described above, and 234 

revealed an even faster accelerating top-heavy relationship among expressed viral and host 235 

activity at increasing levels of host expression (OLS; k = 1.51, SE = 0.05, t = 30.6, p < 2e-16; 236 

Fig. 5c). This model similarly predicted strong concordance in patterns among viral and host 237 

expression (adjusted r2 = 0.8352; Fig. 5c). 238 

 Patterns in viral activity were further explored at the level of host class, with significant 239 

differences in VMAR among host classes (Type II χ2; chisq = 890.9, df = 21, p < 2e-16; Fig. 240 

S3a). Power law scaling among log-log viral and host (class level) expression were explored as 241 

described above, and offer further evidence of an increasingly top-heavy trophic structure within 242 

the active viral subset of the cyanobacterial mat virome (OLS; k = 1.42, SE = 0.05, t = 30.0, p < 243 

2e-16; adj. r2 = 0.7762; Fig. S3b). 244 

 Interestingly, global VMAR was temporally consistent across the sampled diel cycle 245 

(Type II χ2; chisq = 4.79, df = 4, p = 0.31), suggesting a general temporal consistency in active 246 

top-down interactions between viruses and microbial predators. Because there was not enough 247 

statistical power to test for the full interaction among host taxonomic affiliation and sampling 248 

time, data were subset to only include Cyanobacteria and putative infecting cyanophages. 249 

VMAR among subset cyanophages and host Cyanobacteria significantly differed across the 250 

sampled diel cycle (Type II χ2; chisq = 18.896, df = 4, p = 0.0008; Fig. S4).  251 

 252 
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DISCUSSION 253 

 Here, we deeply sequenced longitudinally-collected paired metagenomes and 254 

metatranscriptomes from across a complete diel time-series to explore the diversity and structure 255 

of the coral reef benthic cyanobacterial mat virome. Using these sequencing data and leveraging 256 

previously curated MAGs assembled from this dataset, we further sought to interrogate the 257 

ecology of lineage-resolved host:virus interactions, with a specific focus on better understanding 258 

predation pressure from viruses in cyanobacterial mats. This sequencing effort represents one of 259 

the first in-depth explorations of viral ecology in a coral reef benthic cyanobacterial mat (38, 50), 260 

substantially expanding our knowledge on the genetic diversity and ecology of benthic marine 261 

environment viromes while contributing a refined public database of curated vOTUs consisting 262 

of recovered dsDNA, ssDNA, and dsRNA viruses (the vMAT database) from a critically 263 

unexplored benthic habitat for further exploration and comparison with other environmental 264 

datasets obtained in future sequencing endeavors from other diverse environments. Overall, our 265 

data suggest that viruses are highly active members of the cyanobacterial mat community, and 266 

likely exert strong top-down control on bacterial and archaeal population abundances. 267 

 Our finding of such strong evidence for relatively systemic top-down control across host 268 

taxa in cyanobacterial mats is surprising (Fig. 4, 5). Previous assessments of fast-growing, high-269 

density microbial systems have suggested an overwhelming predominance of lysogenic 270 

interactions over lytic interactions (9, 26, 60), with few exceptions (61–63), which support our 271 

initial hypothesis of a weak top-down signal in similarly fast-growing high-density 272 

cyanobacterial mat communities. Indeed, aquatic benthic systems in general have long been 273 

thought to have generally low rates of bacterial mortality from infecting viruses, despite high 274 

mortality in surrounding water column communities (64, 65). While we did not explicitly 275 
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interrogate ratios of lysogeny vs. lysis in this system, the VMRs and VMARs documented herein 276 

would be highly unlikely in a system dominated by lysogeny, as we would expect VMR and (to a 277 

lesser extent) VMAR to be closer to 1:1 (60). Additionally, the shape of the relationships 278 

between log-log viral host abundance/expression were both upward curved on traditional axes, 279 

pointing to increasing viral control as host abundance and activity increase (Fig. 4, 5). Many 280 

phyla-specific and class-specific prey abundance gradients span ~1 or less order of magnitude, 281 

which unfortunately precluded us from meaningfully resolving phyla-specific host-viral power 282 

law behavior, or from effectively interrogating the relationship between host abundance and 283 

VM{A}R (i.e. [x/y]/y), which would be useful for further analyzing the relationship between 284 

viral ecology and host abundance in this system. Taken together, these results highlight 1) the 285 

dire need to incorporate patterns from diverse contemporaneously unexplored microbial systems 286 

into theory and quantitative frameworks linking describing viral influence on microbial 287 

communities, and 2) the need to understand how biotic and abiotic context can drive fine-scale 288 

nuance in virus-microbe trophic interactions and contribute to patterns that depart from, and 289 

overwhelmingly subvert, general predictions from theory (53). 290 

 Viral sequences recovered in this study were highly divergent from reference viruses, and 291 

previously curated viruses from seawater and permafrost (Fig. 1, 2). Strong endemism of benthic 292 

viruses has previously been demonstrated in deep sea sediment viral communities (63), and 293 

suggest that marine benthic viromes may generally harbor strongly unique viral communities 294 

from previously explored environments. Many of the viral sequences reconstructed herein likely 295 

belong to novel taxonomic groups with no current representatives in viral databases, as a 296 

significant proportion of vOTUs could not be assigned to a taxonomic family (Fig. 1). Large 297 
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gaps in unexplored diversity present in this benthic viral dark matter remain and warrant detailed 298 

exploration. 299 

 Strong lineage-specific patterns in intra-mat trophic structure (Figs. 4, 5, S2, & S3; 300 

potentially coupled to host trophic affiliation [53]) may in-part contribute to patterns of spatial 301 

genomic diversification among mat-building populations (Cissell & McCoy in review), and 302 

likely impact intra-mat chemistry and nutrient recycling (66). Bacteria-phage coevolution is 303 

known to increase both phage and bacterial divergence rates mediated via reciprocal adaptation 304 

(evolutionary conflict), and promote diversity across multiple levels of ecological organization, 305 

affecting overall community structure (12). In this way, strong viral activity likely directly (via 306 

biomass turnover and cell lysis) and indirectly (via metabolic augmentation and expansion of 307 

physiological potential [virocells]) helps drive cyanobacterial mat nutrient cycling. Temporal 308 

niche partitioning and metabolic specialization among host taxa (Cissell & Mccoy in review) 309 

could interact with observed viral activity via physiology and growth-phase mediated effects 310 

(67), which may cause differential shifts in stoichiometry across a diel cycle given the 311 

dramatically different active metabolic processes at day vs. night (Cissell & McCoy in review). 312 

While there was limited evidence for a diel signal in overall viral activity across sampling time 313 

points (Fig. S4), it may be that diel variability in infectivity was obfuscated by this sweeping 314 

aggregation across temporally specialized communities. Characterizing 315 

cyanophage:Cyanobacteria VMAR specifically revealed reduced VMAR when cyanobacterial 316 

growth likely peaked (Fig. S4; Cissell & McCoy in review). However, graphical exploration of 317 

temporal patterns across host phyla suggests that the strongest temporal signal in VMAR is 318 

within the phyla Cyanobacteria, with relative temporal consistency across other phyla (Fig S5). 319 

This is supported by the lack of a significant trend in virome Bray-Curtis dissimilarity along a 320 
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gradient of increasing temporal distance (GAM, edf = 1.3, F = 0.15, p = 0.8, Deviance = 2.05%; 321 

Fig. S6), and no clear trend in evenness of viral assemblage activity toward dominance across 322 

time (Fig. S7). Cyanobacteria are well known for exhibiting strong biological rhythmicity across 323 

light-dark cycles (response at the diel scale; 68), with similar dynamism in cyanophage infection 324 

dynamics mediated primarily via light-dependent adsorption rates, burst sizes, and host 325 

expression patterns (reviewed in 69). Better understanding fine-scale temporal variation in viral 326 

activity in response to temporal variability in host physiological state will be critical to scale 327 

emergent cyanobacterial mat community physiology to ecosystem scale chemistry, but will 328 

require datasets of substantial size to well-resolve an interaction term between host taxonomic 329 

identity and time. 330 

 These data highlight the ability of using host and viral sequences from the same dataset to 331 

recreate meaningful patterns in predator-prey ecology with viruses (17). This is especially useful 332 

in unexplored environments with few cultured representatives, such as those taxa in coral reef 333 

benthic cyanobacterial mats (38). Future laboratory experiments should leverage the 334 

computationally-predicted virus-host associations presented herein toward isolating and testing 335 

specific patterns in predator-prey or mutualistic interactions with the cyanobacterial mat virome 336 

in order to gain further functional insights into this diverse viral dark matter (70). Our data 337 

overall suggest that viruses exert considerable influence over the dynamics of mat building 338 

populations and likely are major players in modulating the functional ecology of cyanobacterial 339 

mats on reefs. Viruses should be increasingly considered when exploring patterns in the 340 

demography and ecophysiology of cyanobacterial mats toward holistically understanding the 341 

causes and consequences of mat proliferation on coral reefs (53). 342 

 343 
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MATERIALS & METHODS 344 

Overview of sampling, sequencing, quality control, and metagenome assembly 345 

 Sampling strategy, library preparation, sequencing, data quality control, metagenome 346 

assembly, metagenome binning, and MAG taxonomic placement are described in detail 347 

elsewhere (Cissell & McCoy in review). For concise contextualization, relevant methods will be 348 

very briefly summarized here. Sampling was conducted in Bonaire, Caribbean Netherlands, at 349 

Angel City reef (12°06’12.2” N, 68°17’14.0” W) on SCUBA. Sampling was permitted under 350 

research permit RWS-2019/9554 issued by Rijkswaterstaat Ministerie van Infrastructuur en 351 

Waterstaat, and with special permissions from Stichting Nationale Parken (STINAPA) Bonaire. 352 

Four spatially distinct cyanobacterial mats at mean 16.6m depth were sampled (Table S1; 1.5mL 353 

volume each) at 5 evenly spaced time points (09:00, 15:00, 21:00. 03:00. 09:00) across a 354 

complete diel cycle beginning at 09:00 Atlantic Standard Time on 29/06/2019 and ending at 355 

09:00 on 30/06/2019. A total of n=80 samples were collected – 4 samples per mat individual per 356 

sampling time – and stored in 2x their volume of DNA/RNA Shield (Zymo), frozen at -20°C 357 

while in the field (18 days), and at -80°C upon returning to Florida State University. Replicate 358 

samples from within a mat individual within a sampling time were pooled, had metagenomic 359 

(total DNA) and metatranscriptomic (cDNA from rRNA-depleted total RNA) libraries prepared, 360 

and were sequenced using paired-end 150bp chemistry (300 cycles) on an Illumina NovaSeq 361 

6000 at Novogene, generating a total of ~7.5 billion reads across all samples (Table S2, S3). 362 

These sequencing reads are available in the NCBI sra database, accessible under BioProject 363 

accession number PRJNA632569. 364 

 Quality controlled metagenomic reads were coassembled within mat individual (n=3 read 365 

sets each) de-novo with MEGAHIT (Table S4; 68); binned unsupervised using Vamb ver. 3.0.2 366 
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(72), Metabat2 ver. 2.15 (73), and Maxbin2 ver. 2.2.7 (74); coalesced using DasTool ver. 1.1.2 367 

(75); manually refined (supervised bin curation) using Anvi’o (76); and dereplicated at 99% 368 

identity using dRep ver. 3.2.0 (77), producing 261 medium-to-high quality MAGs. Taxonomy 369 

was assigned to MAGs using GTDB-Tk ver. 1.5.0 (78) against GTDB release 06-RS202, with 370 

select BLASTn phylogenetic taxonomic refinement. 371 

 372 

Metatranscriptome quality control and assembly 373 

 Raw cDNA reads were quality trimmed to a Phred quality score threshold of 20, 374 

minimum length threshold of 50bp, and had adapters removed using TrimGalore as previously 375 

described (Cissell & McCoy in review). SortMeRNA ver. 4.2.0 (79) was used to remove rRNA 376 

reads that were not removed during library preparation. Metatranscriptomes were subsequently 377 

coassembled de-novo from quality controlled paired-end metatranscriptomic read sets from the 378 

same mat individual (n=5 read sets coassembled per mat) using rnaSPAdes ver. 3.13.0 (80) using 379 

k-mer sizes of 49 and 73, retaining contigs of length ≥ 2.5kbp. Though quantitative assessment of 380 

‘good quality’ is inherently difficult to define in complex mixed-assemblage reference-free de-381 

novo metatranscriptomic assemblies, overall quality of metatranscriptome coassemblies was 382 

assessed using multiple quantitative assembly summary statistics generated using METAQUAST 383 

(Table S5; 78). 384 

 385 

Viral contig identification 386 

 Viruses (including phages integrated as prophages), were initially computationally 387 

defined in metagenomic (dsDNA and ssDNA viruses) and metatranscriptomic (RNA viruses) 388 

coassembly contigs based on recognized homologs to viral hallmark genes and enrichment of 389 
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viral signature proteins (referenced-based definition) using VirSorter2 ver. 2.2.3 (82), retaining 390 

predicted contigs ≥2.5kbp in length with a minimal score cutoff of 0.5. This more relaxed length 391 

threshold was imposed to increase classifier sensitivity within this highly novel virome 392 

environment. Prophage boundaries were defined and cleaned (host contamination removed, viral 393 

sequence length filter removed), and the quality (including completeness) of retained viral 394 

contigs was conservatively assessed using CheckV ver. 0.8.1 (83). A total of 20,351 contigs 395 

across all coassemblies were flagged as putative viral contigs. Open reading frames and 396 

Auxiliary Metabolic Genes (AMGs) were predicted and annotated on putative viral contigs using 397 

homology searches against PFAM, dbCAN, RefSeq viral, VOGDB and MEROPS implemented 398 

in DRAMv ver. 1.2.2 (84) using default parameters. Viral contigs were subsequently 399 

conservatively manually curated using custom scripts and supervised screening based on 400 

combinations of viral and host gene counts from CheckV, hallmark gene counts from VirSorter2, 401 

contig score, and gene-level annotations from DRAMv following previously benchmarked 402 

protocols (85) to remove potential false positive predictions (broadly screening for enrichment in 403 

viral-like or viral hallmark genes; depletion in host genes), retaining 12,843 total contigs from 404 

metagenomes, and 214 total contigs from metatranscriptomes. Manually curated dsDNA, 405 

ssDNA, and RNA viral sequences were clustered at 95% minimum sequence identity within 406 

coassembly using CD-HIT-EST ver. 4.7 (86), creating non-redundant95% databases with vOTUs 407 

that represent a combination of free viruses, integrated prophages, and actively infecting viruses 408 

(vMAT database).  Clustered vOTUs were further validated using non-reference-based HMM 409 

similarity searches implemented in VIBRANT ver. 1.2.0 (87) using the -virome flag, with a mean 410 

74% ± 1.6% SD and 21% ± 9.0% SD of all DNA and RNA curated viral contigs validated, 411 

respectively (Dataset S1). It should be noted that VIBRANT performs relatively poorly 412 
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(sensitivity) on RNA phages in comparison to VirSorter2, and so this low validation on predicted 413 

RNA viral sequences is not surprising.  414 

 415 

Integrative viral taxonomic assessment and environmental similarity network reconstruction 416 

 Broad assemblage-scale taxonomic context (family) was assigned to viral contigs by 417 

integrating two independent machine learning-based methods. First, family-level taxonomy was 418 

assigned with translated sequence similarity searches utilizing reciprocal DIAMOND BLASTp 419 

mapping and protein Markov clustering against the Caudovirales Proteins database, followed by 420 

subsequent training of convolutional neural networks implemented in PhaGCN ver. (88). 421 

Genomic protein-sharing networks were also created among all nonredundant viral contigs 422 

reconstructed in this study and all sequences in RefSeq88 by first creating amino acid translations 423 

of ORFs on phage nucleotide sequences using Prodigal ver. 2.6.3 (89) followed by inferring 424 

viral cluster network structure using vConTACT2 ver. 0.9.19 (90) with DIAMOND BLASTp and 425 

default parameters for further resolving family-level taxonomy and for visualizing viral cluster 426 

network topography. Betweenness centrality topology of resulting network edges was calculated 427 

as sum(g_iej/g_ij, i != j). For resolving taxonomy of those vOTUs sharing significant protein 428 

homologs with clusters that are composed of multiple representative families in RefSeq (n = 2 429 

screened clusters), edge weight was used to manually resolve best supported taxonomy. Among 430 

viral clusters, vConTACT2 and PhaGCN had concordant taxonomic predictions on n = 24 431 

vOTUs, and discordant taxonomic predictions for n = 3 vOTUs. In the latter cases, PhaGCN 432 

taxonomy was retained. To leverage the independent strengths of each prognostic method against 433 

the shared diversity among mat samples, vOTUs that did not cluster with known RefSeq viral 434 

genomes and that could not be assigned taxonomy in PhaGCN, but formed clusters with at least 435 
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one other cyanobacterial mat vOTU that had been assigned taxonomy by PhaGCN with a 436 

confidence of  ≥ 0.75 (mean confidence score 0.97 ± 0.06SD) were assigned the corresponding 437 

representative family-level taxonomy (n = 339). Many of these clusters possessed numerous 438 

independently concordant PhaGCN taxonomic predictions, increasing our confidence in 439 

assigning all vOTUs within these clusters to a conservative shared family-level taxonomy (viral 440 

clusters can be thought of as approximating genus-level relatedness (90)).  441 

 To contextualize and better understand how the benthic viral contigs generated in this 442 

study compare to other relevant environmental meta’omics-derived viral contigs, an additional 443 

genomic protein-sharing network among the viral contigs from this study (vMAT), viral contigs 444 

reconstructed from permafrost (n=1,907 populations; GenBank accession: GCA_003191745.1; 445 

(17)), and all of the GOV 2.0 (23, 28, 91) epipelagic and mesopelagic seawater viral populations 446 

(retrieved from iVirus; n=195,728 contigs) was created using vConTACT2 with default 447 

parameters. Translated ORFs were obtained with Prodigal as described above. Betweenness 448 

centrality topology of resulting network nodes was calculated as above for edges. 449 

 450 

Integrative host prediction 451 

 Putative virus-host interactions were predicted by integrating predictions from multiple 452 

computational host prediction strategies using the refined viral contig database, including the 453 

following approaches: CRISPR-spacer::protospacer matching, host-viral homology matching, 454 

and oligonucleotide frequency screening. Because the custom host query database used consists 455 

only of prokaryotic MAGs (Bacteria and Archaea), downstream infection dynamic analyses 456 

necessarily focus exclusively on the phages and Archaeal viruses found in the viral contig 457 

database and exclude any viruses infecting the limited (from relative abundance) Eukaryotic 458 
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members of the mat community (38; Cissell & McCoy in review). CRISPR spacers were 459 

predicted using MinCED ver. 0.4.2 (92) on a custom database of nonredundant (99%) manually 460 

refined MAGs reconstructed from benthic cyanobacterial mats (Cissell & McCoy in review). 461 

Identified CRISPR spacers were packaged into a custom nucleotide database against which viral 462 

contig protospacers were subsequently queried using BLASTn using previously benchmarked 463 

optimum search standards for virus-host prediction across the length of the spacer (BLASTn -464 

short; maximum E-value 1; gap opening penalty 10; gap extension penalty 2; mismatch penalty 465 

1; word size 7; Ref 79), conservatively retaining best hit pairs with a stringent allowance of only 466 

≤1 mismatch (94). Additionally, viral contigs were compared to refined MAGs using BLASTn 467 

with the following criteria: ≥70% minimum nucleotide identity, ≥75% coverage over length of 468 

viral contig, ≥50 bit score, and ≤0.001 e-value (63). Finally, shared k-mer frequencies (25-mers) 469 

among viral contigs and refined MAGs were compared using PHIST ver. 1.0.0 (95), retaining 470 

predicted pairs with adjusted p-values <0.001 and a greater number of k-mer matches than the 471 

study-wide median (36 matches). The single best hit was retained from each method; to resolve 472 

multiple host predictions, virus-host linkages supported by multiple approaches were retained. If 473 

no consensus among all approaches was identified, the following ranked criteria were used (63): 474 

(i) best CRISPR spacer match; (ii) nucleotide sequence homology; (iii) oligonucleotide 475 

frequency comparison. The quality of virus-host pairings were subsequently further screened via 476 

manually comparing viral gene annotations with predicted hosts (ex: phages with PSII protein 477 

D1 [psbA] and/or protein D2 [psbD] or enrichment in characterized cyanophage protein hits 478 

predicted to have cyanobacterial host).  479 

 480 

Viral abundance and activity quantification 481 
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 Copies Per Million (CPM) values (96) were calculated using custom scripts pulling raw 482 

counts and lengths using CoverM from recruitment profiles generated with Bowtie2 ver. 2.3.5.1 483 

(97),  and were used as proxies for relative abundances of viruses and their hosts for calculating 484 

Virus-Microbe Ratios (VMRs; Total Phage + Host add to 1e6). Viral abundance profiles were 485 

only calculated on DNA viruses. Similarly, RNA reads were globally queried against host 486 

genomes and vOTUs to generate activity profiles using BWA-MEM ver. 0.7.17 (98). Virus-487 

Microbe Activity Ratios (VMARs; Total Phage + Host add to 1e6) were subsequently generated 488 

from Transcripts Per Million (TPM) normalized counts pulling high-quality RNA alignments to 489 

annotated gene-level features. VMAR leverages the cytopathogenesis of viral infection, namely 490 

global inhibition of host expression (4, 59), for ecological interpretability. TPM was calculated 491 

from summed raw feature counts per genome using the summed length of predicted ORFs 492 

(Prodigal) for length normalization rather than total genomic length. Activity profiles were not 493 

generated for RNA viruses. 494 

 495 

Statistical procedures 496 

 All statistical analyses were conducted using R ver. 3.6.2 within RStudio ver. 1.2.5033. 497 

Data visualizations were created using either R::ggplot2(ver. 3.3.3), R::ggraph(ver. 2.0.5), or 498 

R::circlize(ver. 0.4.13). Model assumptions for all models, unless otherwise specified, were 499 

assessed from model residuals graphically using R::DHARMa. To quantify a community-wide 500 

power law scaling parameter between viral and host relative abundances, we fit Weighted Least 501 

Squares (WLS) linear regressions to log10 transformed viral and host relative abundances 502 

normalized to CPM, where the most appropriate weighting structure (W) was derived from 503 

graphical exploration of residual patterns and given as the inverse of W=|ε|~y2 using residual 504 
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structures extracted from simple Ordinary Least Squares (OLS) regressions fit with the same 505 

predictor and response variables. The assumption of homoskedasticity was still violated 506 

following weighted regression, however WLS coefficient estimates remain robust against 507 

heteroskedasticity (unbiased estimators). Error structures presented herein are from the fit WLS 508 

models and should be interpreted carefully. To better understand how VMR varies by host 509 

taxonomic affiliation, we fit random-intercept linear mixed effects models (lme4::lmer) using 510 

Restricted Maximum Likelihood (REML) to log10 transformed VMR (log10[P/H]) against a fixed 511 

effect of either phyla or class (below class taxonomy was generally not informative in these 512 

MAGs with few exceptions) where the intercept varies by spatially distinct mat. Log10 513 

transformed relative abundances (CPM) were preferred in these analyses to centered log ratio or 514 

isometric log ratio transformed counts to facilitate easier data integration and comparison with 515 

preexisting literature values (9, 60, 99).  516 

 To complement patterns characterized using DNA-based evidence, expressed viral 517 

activity was assessed from RNA recruitment against gene-level features. To explore the 518 

relationship between VMAR and VMR, a WLS model was fit to log10 transformed VMAR (from 519 

TPM normalized viral / host expression relationships) against log10 transformed VMR 520 

(calculated as above) with weighting structure defined as above to extract goodness of fit (r2) and 521 

significance of relationship (from p). Spatial variability was packaged into the random effects 522 

structure of an additional random-slopes linear mixed effects model fit using REML with an 523 

identical fixed effects structure to the OLS model while allowing for the intercept and slope to 524 

vary across spatially distinct mats with respect to logVMR. There was strong concordance in 525 

fixed effect coefficient estimations between the OLS and mixed effects model. An OLS 526 

regression was fit to log10 transformed viral and host RNA abundances normalized to TPM to 527 
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explore power-law scaling among viral and host activity. To better understand temporal and host 528 

phyla-specific patterns in VMAR, a linear mixed effects model was fit to log10 transformed 529 

VMAR with both sampling time point and host phyla fit as fixed predictors where both the slope 530 

and intercept were allowed to vary by sampled mat with respect to host phylum. Further, activity 531 

data were subset to only include putative Cyanophage-Cyanobacteria interactions, and temporal 532 

patterns from this subset were interrogated in a linear mixed effects model fit to log10 533 

transformed VMAR with sampling time point as the fixed predictor and random intercepts fit to 534 

sampled mat. Model assumptions were assessed graphically as above. 535 

 536 
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FIGURE LEGENDS 780 

Figure 1 | Cyanobacterial mat virome diversity and overview of abundances. Hive plot 781 

visualizations of gene-sharing network created among viral sequences recovered in this study 782 

and reference viral sequences (RefSeq88). Edges connect nodes that share a significant number of 783 

genes. Nodes are grouped on axes by dataset (Mat – top axis; RefSeq – bottom axis). Nodes are 784 

ordered along axes either by a, viral taxonomic (family) affiliation, or b, node betweenness 785 

centrality (high-low:outside-inside). In panel a, edges are colored by edge betweenness relative 786 

to median (above or below median edge betweenness). c, Boxplots of log transformed 787 

abundances (either CPM or TPM for metagenomic or metatranscriptomic read sets, respectively) 788 

across viral families. Box color denotes read-set source (D=DNA, R=RNA). d, Stacked barplots 789 

of proportional abundances of total number of viral sequences recovered from each viral family 790 

(colors from [c]) either including (left) or removing (right) viruses with unknown taxonomy. 791 

 792 

Figure 2 | The cyanobacterial mat virome is unique from other relevant environmental viromes. 793 

a, Hive plot of gene-sharing network constructed among viruses reconstructed from 794 

cyanobacterial mats in this study (vMAT), viruses reconstructed from the Global Ocean Virome 795 

(GOV2.0) and viruses reconstructed from across a permafrost thaw gradient (vFROST). Edges 796 

connect nodes that share a significant number of genes, but do not necessarily encode clusters. 797 

Nodes are ordered along axes in order of decreasing node degree centrality (from exterior to 798 

interior). Nodes are grouped on distinct axes by dataset. b, Summary bar plots of clustering 799 

information from above (a) visualized gene-sharing network showing percent inclusion of nodes 800 

in each category of clustering status. Also given is raw node count above each bar, as well as 801 

total number of unique clusters among all nodes, and unique clusters including vMAT viruses. 802 
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 803 

Figure 3 | Diverse mat-associated viruses interact with diverse mat-building phyla. Interactions 804 

are illustrated using a directionally bipartite chord diagram of host-virus linkages with viral 805 

family (left) and host phyla (right). Bar size for each family or phylum encodes the total number 806 

of individual linkages (count) predicted from each viral family or for each host phylum. 807 

 808 

Figure 4 | Cyanobacterial mats are characterized by a top-heavy trophic structure. a, Boxplot of 809 

VMR (log10 transformed) grouped at the level of host phylum showing ratios in metagenomic 810 

coverage consistently exceeding 1:1 (0 on log scale; vertical dashed line) b, Log-Log regression 811 

of viral and host abundances demonstrating an increasingly top heavy trophic structure as host 812 

abundance increases. 813 

 814 

Figure 5 | Cyanobacterial mats are characterized by a top-heavy trophic structure in 815 

transcriptionally active viruses. a, Boxplot of VMAR (log10 transformed) grouped at the level of 816 

host phylum showing ratios in metagenomic coverage consistently exceeding 1:1 (0 on log scale; 817 

vertical dashed line) b, Regression of VMAR against VMR showing strong concordance in ratios 818 

of virus:host activity and abundance. c, Log-Log regression of viral and host activity 819 

demonstrating an increasingly top heavy trophic structure as host abundance increases. 820 

 821 
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