
Machine learning for discovery:1

deciphering RNA splicing logic2

Susan E. Liao
1,2, Mukund Sudarshan

1,2 & Oded Regev
1*

3

Summary4

Machine learning methods, particularly neural networks trained on large datasets, are transforming5

how scientists approach scientific discovery and experimental design. However, current state-of-6

the-art neural networks are limited by their uninterpretability: despite their excellent accuracy,7

they cannot describe how they arrived at their predictions. Here, using an “interpretable-by-8

design” approach, we present a neural network model that provides insights into RNA splicing, a9

fundamental process in the transfer of genomic information into functional biochemical products.10

Although we designed our model to emphasize interpretability, its predictive accuracy is on par with11

state-of-the-art models. To demonstrate the model’s interpretability, we introduce a visualization that,12

for any given exon, allows us to trace and quantify the entire decision process from input sequence13

to output splicing prediction. Importantly, the model revealed novel components of the splicing14

logic, which we experimentally validated. This study highlights how interpretable machine learning15

can advance scientific discovery.16

Introduction17

Machine learning algorithms, in particular neural networks, capture complex quantitative relation-18

ships between input and output. However, as neural networks are typically black box, it is difficult19

to extract post-hoc insights on how they achieve their predictive success. Furthermore, they easily20

capture artifacts or biases in the training data, often fail to generalize beyond the datasets used for21

training and testing, and do not lead to new insights on the underlying processes1.22

In recent years, neural networks have been used to tackle challenging biological questions. One23

outstanding question in genomics is understanding the regulatory logic of RNA splicing, which plays24

a critical role in the fundamental transfer of information from DNA to functional RNA and protein25

products. Splicing removes introns and ligates exons together to form mature RNA transcripts. While26

some canonical sequence features are necessary for exon definition (splice sites delimiting exons and27

branch points used during intron removal), exon definition is also facilitated by exon sequence2,3.28

Despite recent success using neural networks to predict splicing outcomes4,5, understanding how29

exon sequence dictates inclusion or skipping remains an open challenge. The challenge is further30

underscored by the sensitivity of splicing logic, where almost all single nucleotide changes along an31

exon can lead to dramatic changes in splicing outcomes6,7.32

To enable scientific progress, machine learning models should not only accurately predict33

outcomes, but also describe how they arrive at their predictions. Here we demonstrate that an34

“interpretable-by-design” model achieves predictive accuracy without sacrificing interpretability,35

captures a unifying decision-making logic, and reveals novel splicing features.36

Generating a synthetic dataset for interpretable machine learning37

As neural network performance and interpretability is inextricable from the data it is trained on, we38

began by generating a large, high-quality synthetic splicing dataset. The use of synthetic datasets39
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offers several advantages over genomic data used in previous work. First, genomic datasets are40

limited by the number of exons in the genome. In contrast, synthetic assays can dramatically41

increase the number of data points by orders of magnitude8,9. Second, genomic exons are flanked42

by varying sequences (splice sites, introns, promoters) that also participate in splicing decisions10,43

greatly complicating attempts at interpretability. In contrast, synthetic datasets fix all but one variable44

region, allowing to focus on the region of interest. Third, genomic exons contain overlapping RNA45

codes (e.g., protein coding sequences). In contrast, sequences in synthetic datasets are devoid of46

overlapping codes by design. In summary, from both a quantity and quality perspective, synthetic47

datasets provide crucial advantages for machine learning over genomic datasets.48

Figure 1 | Data generation and interpretable-by-design machine learning model. a, All reporters in the assay share
the same three-exon design, and differ only in their middle exon, which contains a random 70 nucleotide-long sequence.
Depending on its sequence, an exon might be included, skipped, or a probabilistic mix of the two. Each reporter includes
a unique barcode at the end of the third exon so that exon identity can be inferred in exon skipping products. b, The
assay includes over 3 × 105 different reporters. The reporters were transfected into HeLa cells in a pooled fashion in three
biological replicates. High-throughput sequencing then provides a “percent spliced in” (PSI) value to each reporter. c, The
machine learning model consists of both short convolution filters (applied to exon sequence only) and long convolution
filters (applied to both exon sequence and predicted structure). The output of these filters (strength) can depend on
the position along the exon. Half of the filters are designated as inclusion filters, and the rest are skipping filters. The
difference between the total strength of the inclusion filters and the total strength of the skipping filters is used to compute
the output predicted PSI.

The synthetic dataset we generated includes hundreds of thousands of input-output data points.49

Each data point is a different random 70-nucleotide exon sequence, paired with a measured percent50

spliced in (PSI) output, which is a number between 0 (always skipped) and 1 (always included)51

(Fig. 1a). The dataset is generated by a massively parallel reporter assay that allows for PSI quantifi-52

cation for hundreds of thousands of unique sequences in a single biological experiment (Fig. 1b).53

Splicing outcomes for the parallel reporter assay were measured after transfection into human HeLa54

cells using high-throughput sequencing. We verified that reporters are evenly represented in the55

reporter assay (Extended Data Fig. 1a). The vast majority of splicing products corresponded to56

exon inclusion or exon skipping products (Extended Data Fig. 1b), and we filtered our data to57

exclude spurious splicing products. PSI values are calculated as the number of inclusion reads58

divided by the total number of inclusion and skipping reads. Three biological replicates of the assay59

showed excellent agreement (Extended Data Fig. 1c) and their sequencing results were combined60

for all downstream analysis. High-throughput sequencing measurements were consistent with61

semi-quantitative measurements of individual reporters (Extended Data Fig. 1d).62
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An interpretable-by-design model accurately predicts splicing outcomes63

State-of-the-art neural networks (based on gated recurrent units11 and transformers12) trained on this64

dataset provided excellent prediction accuracy on a held-out test set (RMSE=0.165 and RMSE=0.183,65

respectively). However, these models are not interpretable, and do not provide any biological insights.66

We therefore designed a novel model with the explicit goal of being interpretable.67

The predictive accuracy of our interpretable-by-design model is comparable to that of state-of-the-68

art models trained on the same synthetic dataset (RMSE=0.180; Extended Data Fig. 2a). This suggests69

that interpretability need not come at the expense of accuracy. In addition to our own dataset, the70

model accurately predicts splicing outcomes from other splicing datasets7,8,13–16 (Extended Data71

Fig. 2b). Importantly, unlike our random exons, these datasets were modeled on specific genomic72

exons, with each dataset differing in splice sites, introns, and flanking exons. Furthermore, these73

datasets were generated in different immortalized cell lines. Encouragingly, despite these dramatic74

differences in RNA architecture and cell types, our model tested well on these datasets, suggesting75

that our model generalizes and captures critical aspects of splicing regulatory logic.76

Model architecture reveals unifying decision-making process77

Our interpretable-by-design model incorporates domain knowledge throughout its architecture78

(Fig. 1c). Specifically, we reasoned that short six nucleotide sequence filters would capture motifs79

previously demonstrated to play an important role in splicing decisions17,18. We therefore introduced80

one-dimensional convolutional filters applied to the input RNA sequence. Next, since RNA secondary81

structure was previously implicated in splicing outcomes15,19, we also provided the network with82

predicted structure20. We then introduced longer (30 nucleotide) one-dimensional convolutional83

filters to the structure-augmented sequence. Crucially, while we fixed filter lengths using minimal84

domain knowledge, we did not explicitly specify sequences and structures, allowing the network85

flexibility to learn filters in an unbiased manner. Furthermore, our model explicitly quantifies the86

strength (in network-defined arbitrary units) of each activated filter to the inclusion or skipping87

decision. Importantly, we allowed the strength of any filter to vary along the length of an exon,88

providing the network the flexibility to capture position-dependent effects of RNA features on89

splicing outcomes.90

To arrive at its output, the network computes the difference in the sum total of exon inclusion91

strengths and exon skipping strengths (∆ strength), which is then converted to predicted PSI.92

The greater the magnitude of this difference, the closer the PSI is to 0 (difference ≪ 0) or 193

(difference ≫ 0). This additive combinatorial behavior is consistent with previous literature8,21.94

Model extends understanding of splicing regulatory logic95

Even though our model was trained on a synthetic dataset, it recapitulates and extends domain96

knowledge from previous genomic and biochemical studies.97

Many filters in the model match binding motifs of RNA binding proteins implicated in splicing98

regulation (splicing factors)24,25 (Fig. 2a). Consistent with previous studies, network inclusion filters99

match binding sites for SR proteins known to promote exon inclusion23,26, whereas network skipping100

filters match binding sites for hnRNP proteins known to promote exon skipping27.101

However, while the directionality of these RNA features towards splicing was established, their102

magnitude was not clear. Importantly, the model addresses this issue by assigning a quantitative103

strength to each filter. Moreover, some filters exhibit striking position dependent strengths, suggesting104

that the position of an RNA feature along an exon affects its strength.105

Surprisingly, our network accurately predicted splicing outcomes using a concise list of filters106

(Fig. 2a). This contrasts with previous studies suggesting that splicing outcomes result from the107
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Figure 2 | Model expands on known splicing logic and its predictions can be interpreted using balance plots. a,
Splicing features detected by the model’s filters, represented by their sequence logo22. Filters either contribute to inclusion
(blue) or skipping (red). Plots show the average strength in our dataset of each filter as a function of position along
the exon. RNA binding proteins (RBP) with a similar binding motif, as reported in previous work23–25. The model also
identified short stem loops and long G-poor stretches as contributing to exon skipping. b, Balance plots used to visualize
the logic leading to PSI prediction for five randomly picked exons (V1-V5). Bar plot showing the total strength contributed
by each filter (top). Bars are labeled by filter numbers from panel a. Bar labeled B represents a constant initial inclusion
strength. Labels are not shown for smaller bars. The difference between total inclusion and total skipping strengths (∆
strength) leads to predicted PSI (center). PSI as measured by semi-quantitative RT-PCR matches the machine learning
predictions (bottom).

combinatorics of hundreds of unique RNA features8,28,29.108

Using the local interpretability of our model, we introduce a visualization (balance plot) that109

enables explicit examination and quantification of how multiple RNA features lead to splicing110

outcomes for any given exon from our dataset (Fig. 2b, Extended Data Fig. 3). For a given exon, the111

total strengths of activated filters are represented as bars of the appropriate height. Total inclusion112

strength (blue) and skipping strength (red) are then visible as the height of the stacked bars. The113

∆ strength is represented by the difference in heights between the stacked inclusion and skipping114

filters. These visualizations provide an intuitive tool to understand the contributions of individual115

sequence and structure features leading to each exon’s predicted PSI. They emphasize that splicing116

logic results from contributions of many RNA features along the exon, and that a single nucleotide117

can be part of multiple overlapping filters6,8.118

Discovery and validation of novel splicing features119

Next, we asked whether our interpretable-by-design model could advance scientific discovery by120

identifying novel splicing features. While most network filters were consistent with previously-121

described splicing features, two uncharacterized long skipping filters with strong influence on122

splicing predictions stood out (Fig. 2a). We confirmed that these filters were robustly identified123

across multiple initialization seeds and training/testing splits, suggesting that they are not training124

artifacts. We then turned our attention to characterizing and experimentally validating these features.125

Examining the first uncharacterized filter revealed that it identifies stem loop structures with short,126

GC-rich, 5-7 nucleotide double-stranded regions (Fig. 3). Next, we experimentally validated that these127

stem loops contribute to exon skipping and are not artifacts. We introduced mutations that disrupt128

double-stranded base pairing in an exon with such a stem loop. First, we introduced single nucleotide129

mutations predicted to abolish the stem by disrupting base pairing. Notably, these mutations were130

designed to minimize disruptions of other filters, ensuring that prediction differences are mainly131
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Figure 3 | Validation of novel stem loop feature. a, The machine learning model identifies a stem loop in an exon
(S1) as having a strong skipping strength (dark red bar; top), leading to near complete skipping prediction (middle).
Single nucleotide mutations disrupting a downstream or upstream stem base pair are predicted to significantly reduce the
skipping strength and restore exon inclusion. Finally, including both single nucleotide mutations is predicted to restore the
stem loop skipping strength and lead to skipping. RT-PCR validation (bottom) confirms the machine learning predictions.
b, The stem loop identified in S1, with the individual contributions to its strength by each nucleotide.

due to altered secondary structure, and not due to the introduction or disruption of other sequence132

features. In addition to two such mutations, we also introduced both compensatory mutations133

together, restoring the original stem loop structure30. We measured splicing outcomes for all four134

individual reporters (original, upstream mutation, downstream mutation, and double mutations) and135

observed that splicing outcomes matched our predictions (Fig. 3). Namely, PSI increased dramatically136

in both single nucleotide mutants, in agreement with the predicted decrease in filter strength.137

Furthermore, when both compensatory mutations are present and structure is restored, measured138

PSI was comparable to that of the original exon. We applied the same experimental validation139

scheme to two other stem loop-containing exons. In both cases, stem-disrupting single mutations140

increased exon inclusion and structure-restoring double compensatory mutations had minimal effects141

(Extended Data Fig. 4). Together, these experiments demonstrate that model-identified stem loops,142

rather than sequence, contribute to exon skipping.143

In contrast, examining the second uncharacterized filter did not reveal any secondary structure144

preference. Instead, the filter exhibited a preference for long guanine depleted (G-poor) sequences145

(Fig. 4a). To validate that guanine depletion underlies filter behavior, we selected an exon with a146

G-poor sequence and introduced a single C>G mutation. As before, we ensured that the predicted147

strengths of other filters are only minimally disrupted (Fig. 4b). Strikingly, this single mutation led148

to marked increase in PSI. We applied the same validation scheme to three other exons with G-poor149

sequences; in every instance, a single C>G mutation increased exon inclusion (Extended Data Fig. 5).150
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Figure 4 | Validation of the G-poor feature. a, The G-poor filter, represented by its enrichment-depletion logo31. b, The
machine learning model identifies a G-poor stretch in an exon (D1) as having a strong skipping strength (dark red bar,
top), leading to skipping prediction (middle). A single nucleotide C>G mutation is predicted to disrupt the G-poor stretch
and restore exon inclusion (right bars). RT-PCR validation (bottom) confirms the machine learning predictions. c, The
G-poor stretch identified in D1, with the individual contributions to its strength by each nucleotide.

To the best of our knowledge, a long G-poor sequence has not been described in the literature.151

Collectively, these experiments confirm that stem loops and G-poor sequences identified by the152

model reflect bona fide splicing features.153

Discussion154

In this study, we demonstrate that an interpretable-by-design model advanced scientific discovery.155

Our model accurately predicts splicing outcomes on both our assay and on previously published156

assays, demonstrating that interpretability need not come at the expense of accuracy or generalizabil-157

ity. Model interpretability enabled a systematic understanding of RNA splicing logic, including the158

identification of two candidate novel exon skipping features which were subsequently experimentally159

validated. The model’s ability to quantify contributions of specific features to splicing outcomes for160

individual exons has considerable potential for a range of medical and biotechnology applications,161

including genome- or RNA-editing of target exons to correct splicing behavior or guiding rational162

design of RNA-based therapeutics like antisense oligonucleotides32.163

In addition, model-identified features hint at novel biochemical mechanisms that warrant further164

study. For example, the fact that splicing decisions are modeled well by an additive quantity (∆165

strength) supports a biochemical mechanism involving the nuclear spatial organization of SR and166

hnRNP proteins33. Furthermore, the novel skipping-promoting G-poor feature may point to an167
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uncharacterized RNA binding protein or complex. These open questions further underscore how168

interpretable-by-design models can advance scientific discovery by aiding hypothesis generation.169

Our model performs well on synthetic datasets from immortalized cell lines, yet further work170

is needed to capture the dynamics of developmentally regulated splicing logic34–36. Importantly,171

splicing outcomes change depending on the expression level of cell type-specific RNA binding172

proteins37. These questions can be addressed by generation of additional synthetic splicing datasets173

in developmentally relevant cell types paired with interpretable-by-design models that capture cell174

type-specific regulatory features.175

Beyond the context of splicing, the interpretable-by-design framework can be used to decipher the176

multiple, complex, and overlapping codes that dictate biomolecular processing. Importantly, many177

rich synthetic datasets that address RNA untranslated 5’38 and 3’39 region regulation, methylation40,178

and small RNA biogenesis41, have already been generated. We expect that additional data generation179

efforts paired with the interpretable-by-design framework will stimulate advances in understanding180

biological codes more broadly.181

Data availability Sequence data that support the findings of this study have been deposited in the182

NCBI’s Gene Expression Omnibus under accession number GSE200096.183
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I. Methods310

I.1 Reporter assay design and cloning311

The splicing reporter is based on a three-exon beta globin minigene42 under the control of a truncated312

mammalian CAG promoter. The massively parallel splicing assay allows for high-throughput313

characterization of exon variants on splicing outcomes43 using Gibson assembly and ligation cloning.314

The assay replaces the middle beta globin exon with 70nt random sequences flanked by weak splice315

sites (MaxEnt scores44: 3’ss 9.41, 5’ss 5.06). Each 70nt exon is coupled with a 20nt barcode downstream316

of the third exon, allowing for identification of middle exon identity in exon skipping products.317

Briefly, two pools of oligonucleotides (random exons and barcodes with complementary linker318

regions and flanking overlap sequences for Gibson assembly) were synthesized as single-stranded319

oligonucleotides (IDT DNA Technologies) and joined using an anneal-extend procedure. 200nM of320

each oligonucleotide were joined in a 100µL reaction (Phusion® Hot Start Flex 2X Master Mix, NEB).321

Oligonucleotides were denatured at 98°C for 10min, cooled slowly to 60°C (0.1°C/sec), annealed at322

60°C for 5min, and extended at 72°C for 60min. Single-stranded products were removed from pooled323

double-stranded exon-barcode using silica column purification according to the manufacturer’s324

specifications (ZymoPURE Plasmid Miniprep Kit). Pooled exon-barcode products were cloned into325

a backbone digested with BsmBI and XbaI and expanded using electrocompetent bacterial cells326

(ElectroMAX™ DH10B Cells, ThermoFisher) on large solid agar Bioassay plates (Nunc™ Square327

BioAssay Dishes, ThermoFisher). After resuspending pooled bacteria in 1X PBS, DNA was recovered328

using silica column purification (ZymoPURE II Plasmid Maxiprep Kit, Zymo Research) following329

manufacturer’s specifications. The resulting pooled library (Lib1) includes the truncated CAG330

promoter, followed by the first minigene exon and intron, and the exon-barcode insertion. High-331

throughput amplicon sequencing of Lib1 was used to match exon-barcodes pairs. To generate332

the final splicing reporter assay (Lib2), a fixed sequence, containing the second intron and third333

exon, was introduced to separate exons from their barcodes. Lib1 was digested with Esp3I (NEB)334

to introduce overhangs between the exons and barcodes; the digested product was gel-purified335

to facilitate downstream cloning (Zymoclean Gel DNA Recovery Kits). A segment containing the336

second intron and third exon was ligated into the digested Lib1 product (NEB Quick Ligation). Lib2337

library was expanded using electrocompetent bacteria cells resulting in about 10 times as many338

colonies as Lib1 to ensure even representation across reporters and recovered using silica column339

purification as described for Lib1. DNA was quantified using a spectrophotometer (NanoDrop™340

OneC, Fisher Scientific).341

I.2 Individual reporter cloning342

To validate consequences of point mutations on splicing outcomes, individual exons were synthesized343

as two single-stranded oligonucleotides (IDT DNA Technologies) and joined using an anneal-extend344

procedure. Briefly, 200nM of each oligonucleotide were joined in a 100µL reaction with 5U DNA345

polymerase (NEB Klenow). Oligonucleotides were denatured at 98°C for 10min, annealed after346

cooling slowly to 37°C (1°C/sec), and extended at 37°C for at least 2 hours. Reactions were heat347

inactivated at 75°C for 20min and used directly for Gibson assembly into a digested receiving plasmid348

with a fixed barcode.349

I.3 Cell culture350

HeLa cells (ATCC) were grown in high-glucose DMEM medium supplemented with 10% fetal bovine351

serum and penicillin and streptomycin (ThermoFisher). All cells were grown at 37°C, 5% CO2, and352

95% relative humidity.353
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I.4 Transfection, RNA extraction, and reverse transcription354

Cells were transfected at 60-80% confluence with FuGENE HD® according to the manufacturer’s355

protocol at a 3:1 FuGENE HD® to DNA ratio. For high-throughput measurements of splicing356

outcomes, 10 µg pooled reporter assay DNA was transfected in three 100 mm plates. For biochemical357

analysis of individual reporters, 1 µg or 2.5 µg individual reporter DNA was transfected into each358

well of a 12- or 6-well plate (respectively). 24 hours after transfection, total RNA was isolated from359

detached cells (Accutase®, ThermoFisher). For amplicon sequencing, total RNA was isolated using360

phenol-chloroform (Ambion) extraction (5PRIME Phase Lock Gel, Quantabio) followed by DNase361

treatment (TURBO DNase). For biochemical analysis, RNA was isolated using a silica column362

(illustra™ RNAspin Mini RNA Isolation Kit, GE Healthcare) with on-column DNase digestion363

following manufacturer’s automated protocol. DNase-treated RNA was reverse transcribed using a364

reporter-specific primer following manufacturer’s specifications (SuperScript IV Reverse Transcrip-365

tase, Thermo Fisher) with RNase H treatment. Reverse transcription primers included degenerate366

nucleotides to serve as unique molecular identifiers (UMIs) during amplicon sequencing45,46. cDNA367

products were used for amplicon sequencing or biochemical analysis.368

I.5 Amplicon sequencing369

Amplicon sequencing was used to identify exon-barcode pairings in Lib1 and to quantify splicing370

products from reverse-transcribed cDNA. Second-strand synthesis added additional UMIs in a single371

anneal-extend cycle of 98°C for 10min, cooled slowly to 60°C (0.1°C/sec), annealed at 60°C for372

5min, and extended at 72°C for 5min (Phusion® Hot Start Flex 2X Master Mix, NEB). Resulting373

double-stranded amplicons were amplified using a two-stage procedure. In the first stage, targets374

were amplified by PCR primers. PCR was performed using the following protocol: 98°C for 30sec375

initial denaturation, then 16 cycles of 98°C denaturation for 10sec, 60°C annealing for 15sec, 72°C376

extension for 1min 45sec, and a final extension step at 72°C for 5min (Phusion® Hot Start Flex377

2X Master Mix, NEB). Longer extension times and minimal number of PCR cycles were used to378

avoid recombination across exons and barcodes. The number of cycles was determined for each379

sample by first running 10µL qPCR reactions (LightCycler® 480 SYBR Green I Master, Roche). In380

the second stage, index primers were added using 5 PCR cycles. PCR was performed using the381

following protocol: 98°C for 30 s initial denaturation, then 5 cycles of 98°C denaturation for 10sec,382

71°C annealing for 15sec, 72°C extension for 1min 45sec, and a final extension step at 72°C for 5min383

(Phusion® Hot Start Flex 2X Master Mix, NEB). Final DNA concentrations were measured using384

fluorometric measurements (Qubit 1X dsDNA HS Assay, Thermo Fisher) on a Qubit 3 fluoremeter.385

Paired-end sequencing was carried out on an Illumina NextSeq 550 with 10% PhiX spiked in, with 54386

cycles in read 1 (reverse) and 106 in read 2 (forward). About 4M paired-end reads (> 10X coverage)387

were acquired for Lib1 exon-barcode sequencing and an average of 22M paired-end reads (> 50X388

coverage) for each PSI quantification replicate.389

I.6 Biochemical analysis390

PCR amplification reactions to determine splicing products were carried out in 20µL reactions391

containing 10µL OneTaq® 2X Master Mix with Standard Buffer (NEB), 200 nM each forward and392

reverse primers (IDT), and 1µL cDNA. PCR was performed using the following protocol: 94°C for393

30 s initial denaturation, then 25 cycles of 94°C denaturation for 10 s, 62°C annealing for 15 s, 68°C394

extension for 20 s, and a final extension step at 68°C for 1 min. 5µL final PCR product was run395

out on 2.0% agarose (Denville Scientific) Tris-acetate-EDTA (TAE) gel with ethidium bromide and396

visualized on a Bio-Rad imager. Densitometry measurements to calculate PSI were measured using397

Bio-Rad Image Lab (Windows v6.1).398
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I.7 Reporter assay preprocessing399

The list of all exons in the reporter assay with their corresponding barcodes was extracted from DNA400

sequencing of Lib1. To ensure unique coupling of barcodes to exons, barcodes appearing with more401

than one exon sequence were filtered out. This step ignored exon sequences appearing only once, as402

those are likely due to sequencing errors. Barcodes with fewer than two DNA reads in total were403

also filtered out.404

Next, splicing outcomes were extracted from RNA sequencing of each of the three replicate405

transfections of Lib2. For each replicate, each read was identified by barcode and was assigned a406

splicing outcome (exon skipping, exon inclusion, intron retention, splicing inside exon, or unknown407

splicing). Carryover from Lib1 was filtered out, as were reads for which exon 1 could not be identified.408

Using unique molecular identifiers (UMIs), the fraction of duplicate reads in each replicate was409

estimated to be below 23%. The counts from all three replicates were merged for downstream410

analysis. Barcodes with fewer than 60 total reads, barcodes that contained an Esp3I restriction site in411

either strand of the exon or its barcode, and barcodes where inclusion and skipping made up less412

than 80% of all reads were filtered out.413

Finally, the dataset was generated by computing PSI for each barcode as

PSI =
ninclusion

nskipping + ninclusion
,

where ninclusion is the total number of exon inclusion reads, and nskipping is the total number of414

exon skipping reads. In addition to the measured PSI, the dataset includes for each barcode: (1)415

a 90 nucleotide sequence, containing the 70 nucleotide variable exon sequence plus the 10 fixed416

flanking nucleotides on each side; (2) structure in dot-bracket notation predicted by RNAFold (Vienna417

RNA20, version 2.4.17), using default parameters; (3) an indicator vector indicating which nucleotide418

participates in a predicted G-U wobble base pair. The dataset was split randomly into a training set419

and a test set in an 80/20 split, using a fixed seed for reproducibility.420

I.8 Model design421

The model’s input is a triple of vectors (xseq, xstruct, xwobble),

xseq ∈ {A, C, G, U}d (sequence input)

xstruct ∈ {(, ., )}d (structure input)

xwobble ∈ {0, 1}d , (wobble pair input)

where d = 90. The neural network contains four “strength-computation modules” (SCM) defined as

f b
a : x 7→ Sum(Softplus(Position-Bias(Convolution(x; αb

a); βb
a))) (SCM)

αb
a ∈ Rwb

a×cb
a×kb

a , βb
a ∈ R(d−wb

a+1)×kb
a

where a ∈ {incl, skip}, and b ∈ {seq, struct}. The input is either x = [xseq] (sequence SCM) or422

x = [xseq, xstruct, xwobble] (structure SCM). The 1D convolutional layer contains kb
a = 20 convolutional423

filters of width wb
a = 6 for each sequence SCM (b = seq), and kb

a = 8 convolutional filters of424

width wb
a = 30 for each structure SCM (b = struct). The number of input channels is cb

a = 4 for425

sequence SCM (corresponding to the one-hot encoded four nucleotides) and cb
a = 8 for structure426

SCM (corresponding to sequence, structure, and wobble indicator). The output of the convolution427

layer is a (d − wb
a + 1)× kb

a matrix z of “raw” strengths. The position bias layer maps inputs z to428

z + βb
a, adjusting the raw strengths based on position along the exon. Finally, each position-adjusted429
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raw strength is passed through a softplus activation, and the resulting strengths are all summed up430

to form the output of the SCM f b
a .431

The splicing prediction model m(xseq, xstruct, xwobble; θ) is then defined as

m(xseq, xstruct, xwobble; θ) = Tuner
(

f seq
incl([xseq]) + f struct

incl ([xseq, xstruct, xwobble])

− f seq
skip([xseq])− f struct

skip ([xseq, xstruct, xwobble]); γ
)
. (1)

This model computes the total strength for inclusion and for skipping and uses their difference to432

predict splicing outcomes. The function Tuner(·; γ) : R → [0, 1] is a learned nonlinear activation433

function that maps this difference to a PSI prediction. It consists of a 3-layer fully connected network434

with a residual connection from the input to the output layer, followed by a sigmoid activation. The435

parameter set θ contains the parameters of all SCMs and the parameter γ.436

I.9 Model training437

The model was implemented in Python 3.847 using Tensorflow 2.648 and Numpy 1.2049. Batched438

gradient descent was used to optimize the model’s parameters using the Adam optimizer, with KL439

divergence as the loss function. Hyperparameters such as regularization parameters were tuned440

with grid search. Training the model took about 2 hours on a mid-range 4-core with 16GB of RAM.441

To improve interpretability, the model was trained in steps (custom training schedule), progres-
sively adding learnable parameters in each step. First, a simplified model given by

Tuner’( f seq
incl([xseq])− f seq

skip([xseq]); ν, η)

was trained. Here, Tuner’(·; ν, η) : R → [0, 1] is a learned nonlinear activation function defined by442

x 7→ σ(νx + η) where σ is the sigmoid function, and ν and η are two real parameters. This step443

ensures that short sequence motifs are captured by the sequence SCMs and not the more complex444

structure SCMs. In the second step, the structure SCMs were added, leading to a model identical445

to the final one (1), except for the use of Tuner’ instead of Tuner. The sequence SCM weights446

were initialized to those of the previous model. In the third and last step, the Tuner function was447

introduced, leading to the final model (1). SCM weights were initialized to those of the previous448

model.449

To further improve the model’s interpretability, regularization terms were added. First, to obtain450

a concise list of filters, an activity regularization loss term was used. The term consists of the ℓ1451

norm of all the strengths. Second, a smoothness regularization loss term was applied to position452

bias layer weights. This term consists of the ℓ2 norm of the discrete derivative of the weight vectors453

(defined as the difference between the vector and itself shifted by one along the sequence dimension).454

Each of the two loss terms was multiplied by a hyperparameter.455

Hyperparameters were optimized based on two criteria: held-out KL divergence and sparsity456

of activations. Sparsity was measured as the minimum number of activations needed per exon to457

achieve KL below a threshold. Among all hyperparameters leading to sufficiently high accuracy and458

sparsity, the one with the highest smoothness regularization was chosen.459

I.10 Prediction accuracy on other assays460

Exon sequences and PSI measurements were obtained from previous publications. Exons including461

indel mutations or differing from WT sequence in the first or last three nucleotides were filtered out.462

Sequences were padded to 70 nucleotides, and predicted PSI was then computed using our model.463

To account for differences in splice sites, flanking sequences, and cell types, one correction term was464

introduced per assay, as described previously16.465
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I.11 Filter visualization466

To avoid reporting redundant sequence filters, hierarchical clustering using Scipy50 was applied.467

Each sequence filter was represented by a vector containing its total strength for each of the exons in468

the dataset. The strongest filter in each cluster was then used to generate a sequence logo22. The469

logo represents the set of 6-mers that lead to positive filter activation.470

The structure filters included one G-poor filter and three stem loop filters. Since enumerating all471

30-mers is not tractable, the G-poor sequence logo was computed by evaluating the filter on a subset472

of sequences from our dataset. As the three stem loop filters differed in the length of the loop (short,473

medium, long) but were otherwise very similar, they were considered as one cluster. Layer-wise474

relevance propagation was used to visualize individual nucleotide contributions to filter strength51.475

I.12 Ruling out sequencing artifacts476

The reduction in measured PSI associated with the presence of the stem loop and G-poor stretch477

features could potentially be a technical artifact due to decreased amplification or sequencing478

efficiency of exon inclusion products. To rule this out, we verified that the presence of these features479

was not accompanied by a decrease in the total number of sequencing reads, and was instead480

accompanied by an increase in the number of exon skipping reads (Extended Data Fig. 6).481

I.13 Design of mutant constructs482

To validate the stem loop feature, candidate exons with high medium-length stem loop filter strength483

(top percentile) but with no other stem loop activations elsewhere in the exon were selected. Three484

mutants of each such exon were then generated. To ensure these mutants do not introduce or disrupt485

other features, exons where this mutation significantly changed strengths of other filters were filtered486

out.487

To validate the G-poor stretch feature, candidate exons that strongly activate the G-poor filter488

exactly once along the exon were selected. For each candidate exon, a C-to-G mutation in the middle489

of the activated filter’s window was introduced. As before, to ensure this does not introduce or490

disrupt other features, exons where this mutation significantly changed strengths of other filters491

were filtered out.492

II. Extended Data Figures493
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Extended Data Figure 1 | Assay quality checks. a, Lorenz plot showing the distribution of reads across the reporters in a
high-throughput sequencing of the library DNA (gold). A perfectly even library would be on the diagonal (gray). b, Over
90% of splicing products corresponded to exon inclusion or exon skipping products, as measured by high-throughput RNA
sequencing. c, Comparison of PSI measurements across the three biological replicates. d, Comparison of PSI measurements
from high-throughput sequencing and semi-quantitative measurements for five individual reporters (V1-V5). AUC: area
under curve; RMSE: root-mean-square error.

Extended Data Figure 2 | Model predictive accuracy. a, Predictions on the held-out experimental data. b, Predictions on
previously-published assays: SMN2 exon 7 (C33a cells)8,13–15, FAS exon 6 (HEK293 cells)16, and WT1 exon 5 (HEK293
cells)7.
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Extended Data Figure 3 | Tracing the neural network computation from exon sequence to predicted PSI. Our neural
network (bottom left) arrives at its predictions in four steps. First, using exon sequence and predicted structure, it computes
filter strengths for each position along the exon (1). Next, it adds all inclusion strengths together and all skipping strengths
together (2). Then, the difference between these two strengths (∆ strength) is computed (3). Finally, it maps that difference
to a predicted output PSI (4).

Extended Data Figure 4 | Additional validation of novel stem loop feature. Two more exons (S2, S3) were chosen and
validated as in Figure 3.
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Extended Data Figure 5 | Additional validations of the G-poor feature. Three more exons (D2, D3, D4) were chosen and
validated as in Figure 4.

Extended Data Figure 6 | Effect of novel features on absolute read counts. a, Box plot showing the distribution of the
total number of sequencing reads, the number of exon inclusion reads, and the number of exon skipping reads, for exons
with stem loop strength at most 20 and greater than 20. b, As in panel a for G-poor strengths. Center line: median; box
limits: upper and lower quartiles; whiskers: 1.5x interquartile range. p values: Student’s t-test.
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