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Abstract 

While advances in single cell genomics have helped to chart the cellular components of tumor 

ecosystems, it has been more challenging to characterize their specific spatial organization and 

functional interactions. Here, we combine single cell RNA-seq and spatial transcriptomics by 

Slide-seq, to create a detailed spatial map of healthy and dysplastic colon cellular ecosystems and 

their association with disease progression. We profiled an inducible genetic CRC mouse model 

that recapitulates key features of human CRC, assigned cell types and epithelial expression 

programs to spatial tissue locations in tumors, and computationally used them to identify the 

regional features spanning different cells in the same spatial niche. We find that tumors were 

organized in cellular neighborhoods, each with a distinct composition of cell subtypes, expression 

programs, and local cellular interactions. Three cellular neighborhood archetypes were associated 

with tumor progression, were active at the same time in different spatial parts of the same tumor, 

involved dysplasia-specific cellular layouts, and relied on distinct mechanisms: (1) inflammatory 

epithelial regions with endothelial cells and monocytes expressing angiogenesis, inflammation and 

invasion programs; (2) epithelial stem-like regions, associated with plasma and B cell activity; and 

(3) epithelial-to-mesenchymal transition (EMT) regions with dysplastic cells expressing a Wnt 

signaling program. Comparing to scRNA-seq and Slide-seq data from human CRC, we find that 

both cell composition and layout features were conserved in both species, with mouse archetypal 

neighborhoods correlated with malignancy and clinical outcome in human patient tumors, 

highlighting the relevance of our findings to human disease.   
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INTRODUCTION 

The spatial organization of diverse cells in the tumor ecosystem impacts and drives interactions 

between malignant cells and neighboring immune and stromal cells, either promoting or 

suppressing tumor growth (McAllister and Weinberg, 2014). Recent studies have shown that 

systematic understanding of spatial organization in tumors can shed light on disease progression 

and response to therapy with specific features correlated with tumor subtypes (Hunter et al., 2021; 

Pelka et al., 2021; Wagner et al., 2019), cancer prognosis (Jackson et al., 2020; Keren et al., 2018; 

Schürch et al., 2020), or response to treatment (Grünwald et al., 2021; Jerby-Arnon et al., 2018). 

 

Despite the need to study tumors in their spatial context, genome-scale, high-resolution dissection 

of the spatial organization of tumors and its functional implications remains challenging, largely 

due to technical limitations. Methods such as fluorescent in situ hybridization (FISH) and 

immunohistochemistry can only measure a handful of pre-selected transcripts or proteins, whereas 

single cell RNA-seq (scRNA-Seq) does not directly capture spatial relations. Recent advances in 

spatial genomics and proteomics allow multiplexed or genome-scale measurements in situ (Angelo 

et al., 2014; Giesen et al., 2014; Goltsev et al., 2018; Marx, 2021; Rodriques et al., 2019; Ståhl et 

al., 2016; Stickels et al., 2021; Waylen et al., 2020), but with a trade-off between genomic scale 

and spatial resolution (Palla et al., 2022). This leaves open many fundamental questions about 

tissue organization and collective function, including whether there are canonical functional units 

in tumors, what may be their organization in the tumor landscape, and what role does each play in 

tumor progression. 
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A case in point is colorectal cancer (CRC), where initial lesions, adenomatous polyps, progress 

over time to carcinoma and eventually to metastatic disease. While the mutations that drive this 

process were extensively studied (Cancer Genome Atlas Network, 2012; Fearon, 2011; Fearon 

and Vogelstein, 1990; Kwong and Dove, 2009), and the cellular ecosystem of CRC has now been 

deeply charted (Becker et al., 2022; Chen et al., 2021; Pelka et al., 2021), the spatial landscape is 

less well-characterized. In a recent study of human CRC, we statistically associated cell profiles 

across tumors and showed that they map to different cellular communities (Pelka et al., 2021), 

reside in different locations in the tumor and reflect different tumor subtypes. However, absent 

genome wide in situ measurements, these statistical inferences do not yet reflect the full spatial 

organization of the tumor. 

 

Here, we deciphered the spatial and cellular organization of colorectal cancer (CRC) by combining 

scRNA-seq and spatial transcriptomics by Slide-seq, using a novel computational framework 

(Mages et al., 2022). We first profiled an inducible genetic mouse model of colorectal cancer that 

recapitulates key features of human CRC (Roper et al., 2017, 2018), before and at two time points 

following tumor initiation, integrating the spatial and cellular profiles to create a cellular map of 

the tumor landscape, revealing dysplastic-specific cellular layout and potential physical 

interactions. We found that the tumor landscape is organized in archetypal cellular neighborhoods, 

with distinct epithelial, immune, and stromal cell compositions, each governed by different gene 

programs. Three of the cellular neighborhood archetypes are associated with tumor progression, 

each activating different biological pathways but all active simultaneously albeit in different parts 

of the tumor. We devised a computational framework to compare single cell and spatial features 

of tumors between species and applied it to scRNA-seq and Slide-seq data from human CRC. 
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Multiple features were conserved between tumors in the mouse model and the human patients, and 

the mouse archetypal neighborhoods correlated with malignancy and clinical outcome 

(progression-free intervals (PFI) and overall survival (OS)) in human patient tumors. Our findings 

highlight the multicellular functional tissue modules in the CRC tumor ecosystem and provide a 

general approach that can be applied to other tissues, tumors and disease conditions. 

 

RESULTS 

A cellular atlas of genetic models of colorectal cancer initiation and progression  

To chart the cellular ecosystem of CRC and how it changes during tumor initiation and 

progression, we studied two genetic mouse models of CRC, with inactivation of Apc (leading to 

benign adenoma), followed by an oncogenic KrasG12D/+ mutation and then inactivation of Trp53 

(associated with the transition to carcinoma) (Golovko et al., 2015; Roper et al., 2017, 2018) (Fig. 

1a). In the AV/premalignant model, Apcfl/flVillincreERT2  mice are injected with 4-hydroxytamoxifen 

to the submucosal layer of the colon, inducing the deletion of Apc specifically in epithelial cells 

within the injection site, and resulting in a local lesion, reproducing the pathology of human 

adenoma, three weeks later (Roper et al., 2017). In the AKPV/malignant model (Apcfl/fl; LSL-

KrasG12D; Trp53fl/fl;Rosa26LSL-tdTomato/+; VillinCreERT2  mice, Methods), 4-hydroxytamoxifen 

injection also induces an oncogenic KrasG12D/+ mutation and then inactivation of Trp53, resulting 

in invasive carcinomas. 

  

We first generated a single-cell atlas of the models consisting of 48,115 high quality scRNA-seq 

profiles from normal colon, premalignant (AV, 3 weeks after 4-hydroxytamoxifen induction) and 
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malignant (AKPV, 3 and 9 weeks after induction) tissues. We captured a diverse cellular census 

(Fig. 1b,c, Methods), with 35 clusters annotated post hoc by the expression of known marker 

genes (Fig. 1b, Supp. Fig. 1a,b, Methods) across epithelial, immune and stromal cell 

compartments (Supp. Fig. 1c).  

 

Tumorigenesis causes shifts in cell composition and infiltration of stromal and immune cells  

In immune and stromal cells, dysplasia induced shifts in proportions of cells pre-existing in normal 

tissue, as well as infiltration of new cell subsets in the tissue (Fig. 1c,d and Supp. Fig. 1d,e). This 

resulted in both increase in cells of existing populations (e.g., γδT cells (TNK05 (GdT_Il17+)) and 

emergence of new dysplasia-associated cells (e.g., granulocytes (Gran01, Gran02) and monocytes 

(Mono02, Mono03)) mirroring observations in human CRC (Pelka et al., 2021), breast cancer 

(Hagerling et al., 2019), and non-small cell lung cancer (Arenberg et al., 2000) (Fig. 1c,d and 

Supp. Fig. 1d,e and 2a,b). Infiltration is likely to underlie many of these changes as many of the 

increasing cell subsets (granulocytes, monocytes, mast cells) expressed genes, such as Sell and 

Ccr2, indicating tissue recruitment, and as the cells dramatically increase in proportion despite 

negligible signals of proliferation programs. 

 

Two of four monocyte subsets, Mono02 and Mono03, were unique dysplasia-associated cells 

(Supp. Fig. 2d-f), and were respectively enriched for general inflammatory response genes 

(FDR=5.7 10-30, Fisher’s exact test in GO term enrichment) and interferon beta and gamma 

response genes (FDR=3.5 10-11, 1.0 10-13). T cell subsets showed the expected diversity across 

nine subsets (Supp. Fig. 2g-i) (Smith and Garrett, 2011), with a significant decrease (out of all T 

cells) in gamma delta (γδ) and Cd8 T cell (TNK01) in the dysplastic microenvironment and an 
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increase in IL17-producing γδT cells (TNK05) (Supp. Fig. 2j). This is consistent with the T cell 

composition in tumors from mismatch repair proficient (MMRp) CRC patients (Supp. Fig. 2k).   

 

Within the five subsets of stromal cells (including vascular endothelial and lymphatic endothelial 

cells and three fibroblast subsets, Supp. Fig. 2l-n and Methods), vascular endothelial cells 

(Endo01) were enriched in dysplastic lesions compared to normal colon (FDR=1.8 10-3, Welch’s 

t test on CLR transformed compositions; Supp. Fig. 2o). This is in line with vascular adaptation 

to the tumor’s growing needs for nutrients and oxygen (Ziyad and Iruela-Arispe, 2011) and with 

the increased expression of the vascular growth factor Vegf-A in both monocytes and macrophages 

(Supp. Fig. 2p).  

Cell-intrinsic expression shifts in different sub-lineages in the dysplastic epithelium  

Epithelial cells showed dramatic cell-intrinsic changes between normal tissues and either 

premalignant adenomas or malignant carcinomas, such that the cell profiles of dysplastic epithelial 

cells in both the premalignant and malignant models were highly distinct from normal epithelial 

cells (and similar to each other) (Fig. 1c, Supp. Fig. 3a and Methods). In a two-dimensional 

embedding, normal epithelial cell profiles (41% of cells, from normal mice) separated from those 

from premalignant and malignant models (59% of cells; Fig. 2a and Supp. Fig. 3a), suggesting a 

shift in expression profiles from the normal state common to all dysplastic cells. Notably, 11% of 

the epithelial cells from premalignant/malignant mice were classified as non-dysplastic healthy 

cells, indicating that normal, non-dysplastic, cells are present in or adjacent to the lesion 

microenvironment (Fig. 2b and Supp. Fig. 3a). We annotated three clusters as dysplastic – Epi01 

(dysplastic enterocyte-like), Epi05 (dysplastic secretory-like) and Epi10 (dysplastic enterocyte-

like) – because they expressed high levels of Apc target genes (e.g., Axin2, Ascl2, Myc, Ccnd1, 
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Lgr5) and were enriched in tdTomato+ cells from AKPVT (malignant) mice (Fig. 2c and Supp. 

Fig. 3b). 

 

Interestingly, dysplastic secretory-like epithelial cells (Epi05 (dysplastic secretory-like)) had 

distinguishing markers (e.g., Ccl9, Mmp7, Ifitm3) from their counterparts in normal tissue (Epi04 

(secretory)) (Fig. 2a-c and Supp. Fig. 3a,c). Mmp7 and Ifitm3 are known to promote metastasis in 

human CRC (Li et al., 2011; Zeng et al., 2002), and Ccl9 expression by epithelial cells promotes 

tumor invasion through recruitment of Ccr1+ myeloid cells to the tumor’s invasive front in a mouse 

model of CRC (Kitamura et al., 2007). Notably, Ccr1 is expressed by newly recruited monocytes, 

macrophages and granulocytes in our model, suggesting a potential mechanism for tumor 

infiltration and invasion (Supp. Fig. 3c). Thus, dysplastic secretory epithelial cells may perform 

additional functions in support of tumor progression. 

 

Expression programs for stem-like functions, Wnt signaling, angiogenesis and inflammation 

are activated in dysplastic epithelial cells 

In addition to the major distinctions between the absorptive and secretory lineage in the normal 

and dysplastic epithelial compartment, both normal and dysplastic epithelial cells varied along a 

continuum, as expected and previously observed in the ongoing differentiation in the colon 

epithelium (Biton et al., 2018; Haber et al., 2017; Pelka et al., 2021; Smillie et al., 2019). Using 

non-negative matrix factorization (iNMF from LIGER (Welch et al., 2019), Methods), we 

recovered 20 expression programs spanning the different epithelial functions, and annotated them 

by Gene Ontology terms enriched in their top 100 weighted genes (Fig. 2d,e, Supp. Fig. 3d-j, 

Methods).  
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The programs enriched in different dysplastic cells highlighted key processes that play a role in 

tumor promotion, including stem cell programs, Wnt signaling, angiogenesis, and inflammation 

and innate immunity, including interferon alpha, beta and gamma pathways (Fig. 2d,e). In 

particular, the stem cell program (#16) detected in some cells across all conditions, was enriched 

in dysplastic samples (FDR=5.6 10-10, Welch’s t-test on CLR transformed compositions), 

reminiscent of a recently described population in human (Becker et al., 2022; Chen et al., 2021). 

Comparing cells from dysplastic and normal samples that express the stem cell program, the 

dysplastic cells had distinct expression profiles with induction of negative regulators of Wnt 

signaling (FDR=4.5 10-5, Fisher’s exact test in GO term enrichment, e.g., Notum, Wnt inhibitory 

factor 1 (Wif1) and Nkd1) and genes that are related to cellular response to interferon-gamma 

(FDR=1.7 10-6, e.g., Ccl9, Ccl6) and immune system process (FDR=6.4 10-4, e.g., Ifitm1 and 

Ifitm3). This is consistent with recent studies showing that Apc-mutant stem cells secrete negative 

regulators of Wnt signaling to induce the differentiation of the WT stem cells in their proximity, 

thereby outcompeting them and promoting tumor formation (Flanagan et al., 2021; van Neerven 

et al., 2021). Thus, stem cells from dysplastic lesions may have non-canonical function and 

regulation (Fig. 2e,f). In addition, the programs for Wnt signaling (expressing both positive and 

negative regulators; #4, FDR=2.8 10-6), angiogenesis (#14, FDR=1.2 10-9), inflammatory response 

(#6, FDR=1.4 10-6), and innate immune response and interferon response (#7, FDR=1.2 10-2) were 

all predominantly expressed or enriched in premalignant/malignant epithelium (all with Welch’s 

t-test on CLR transformed compositions, Fig. 2e and Supp. Fig. 3g-j,l). These results are 

consistent with the known role of the Wnt signaling pathway in CRC, and of angiogenesis, 

response to hypoxia and inflammation in tumor progression (Clevers, 2006; Folkman, 2002; Lasry 

et al., 2016). 
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Malignant-like tissue programs and composition are conserved between mouse and human 

tumors 

To evaluate the relevance of our findings to human colorectal cancer, we compared them to a 

scRNA-seq atlas we recently generated from tumor and adjacent normal tissue from 62 patients 

with either MMRp or MMRd CRC (Pelka et al., 2021). We compared mouse and human tumors 

in terms of their epithelial expression programs, cellular composition, and cell associations in 

multicellular hubs (Pelka et al., 2021). 

To assess the similarity between mouse and human programs we controlled for overall cross-

species and batch differences by normalizing program-specific expression profiles with species-

specific background profiles (Methods), and then calculating the Pearson correlation coefficients 

of these normalized scores between the human and mouse programs. Epithelial cells from human 

and mouse tumors expressed programs highly correlated between the species (Fig. 3a and Supp. 

Fig. 4a,b, Methods), including for cell cycle, inflammation, epithelial secretory, angiogenesis, 

Wnt signaling, stem cell like and normal colon functions.  

 

Co-variation in cell proportions across samples (by scRNA-seq) was also conserved between 

human and mouse tumors, suggesting broad conservation of tumor composition. For example, in 

both species the proportion of endothelial cells and fibroblasts correlated across samples, as did T, 

B and epithelial cell proportions in human MMRd tumors and mouse dysplastic lesions (Supp. 

Fig. 4c). Moreover, when we transferred epithelial program annotations from mouse to human 

scRNA-seq and calculated their co-variation across samples in each species, programs 11 
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(proliferation), 14 (angiogenesis) and 16 (stem cells), co-varied both across dysplastic mouse 

tumors and across human MMRp and MMRd tumors (Supp. Fig. 4d and Methods), suggesting a 

conserved dysplastic tissue architecture.  

 

“Tissue hubs” originally defined as expression programs from different subsets of cells (epithelial, 

T/NK and myeloid cells) that co-vary across human CRC tumors (Pelka et al., 2021) were also 

conserved in mouse tumors. Specifically, we used TACCO to map human expression programs to 

cell subsets in mouse scRNA-seq, and then assessed their correlation across mouse tumor samples. 

We found correlated program activation reminiscent of tissue hubs 2, 3 and 5 from MMRp human 

tumors and with tissue hub 3 from MMRd tumors (Fig. 3b and Supp. Fig. 4e, Methods) (Pelka et 

al., 2021).  

 

Integrated spatial and single-cell atlas of mouse CRC tumors 

To decipher the distribution of cells and programs in the tumor spatial niche, we next used Slide-

seqV2 (Stickels et al., 2021) for genome-wide spatial RNA-seq at 10 µm resolution. We sectioned 

and profiled frozen tissues from four normal colon and six premalignant (AV) lesions using 10 

Slide-seqV2 pucks (Methods), recovering 385,428 high quality beads (Supp. Fig. 5a-c, Methods).  

 

We then integrated the single cell census and spatial profiles using TACCO (Mages et al., 2022) , 

a novel framework that allowed us to annotate each bead with compositions of discrete cell types 

(from epithelial, immune and stromal compartments) and to further annotate the epithelial fraction 

of each bead with a composition of epithelial program activity (Fig. 1a “annotation”).  
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We first used TACCO to annotate every bead in the Slide-seq data with a composition of discrete 

cell subtypes for every puck separately, using its matching single-cell reference (normal or disease; 

Fig. 1a, Supp. Fig. 5a-c Methods). To this end, TACCO iteratively solved optimal transport 

problems to assign cell subtypes to fractions of reads of the beads (Mages, et al., 2022). TACCO 

relies on unbalanced optimal transport to allow for shifts in the frequency of cell subtypes in the 

pucks vs. the single-cell dataset, while using the reference cellular frequencies as prior knowledge 

(Supp. Fig. 5d,f). TACCO’s cell type mapping recapitulated the muscularis layer in its expected 

tissue location based on the inferred cellular composition pattern (Supp. Fig. 5c). This illustrates 

how TACCO mapped cells correctly by composition. 

 

Next, we used TACCO to map the epithelial gene programs (defined above), focusing on transcript 

counts that are inferred as derived from epithelial cells. TACCO partitioned the read count matrices 

for each puck, assigning counts to epithelial cells based on the mapped per-bead cell subtype 

annotations (from the first step) and the expression profiles associated with each subtype (Mages 

et al., 2022) (Methods). It then summed all epithelial contributions into an epithelial-only spatial 

count matrix, followed by optimal transport to assign epithelial program contributions to 

individual beads, based on epithelial-only read signals. As for cell type mapping, the proportional 

contribution of the programs largely recapitulated their contributions in scRNA-seq (Supp. Fig. 

5e,g). 

 

Altered and less ordered local cellular organization of dysplastic lesions 

We assessed the local cellular architecture in term of the preferential proximity of cells of certain 

type or expressing particular epithelial programs, within a fixed-sized neighborhood, by adapting 
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an earlier method (Keren et al., 2018). We defined a z-score as significance of the observed 

neighborship relations compared to the null (Mages et al., 2022) for neighborhoods of 20, 40 or 

60 µm diameter (Fig. 4a,b and Supp. Fig. 6a,b). This z-score is defined with respect to a 

population of random cell type annotations generated by random permutations of the cell type 

annotations between the beads, where in our case we permute fractional cell type contributions. 

  

Cell proximity preferences in the normal colon tissue are consistent with the expected morphology, 

validating our approach (Fig. 4a,c). Epithelial cells were organized such that differentiated 

enterocytes (Epi02 (Enterocytes)) are excluded from the stem cell niche (Fig. 4a and Supp. Fig. 

6c), and endothelial cells and fibroblasts were also spatially co-located in a focused region (Fig. 

4a), with T cells in their vicinity (Fig. 4a).  

 

While some normal tissue features are preserved in dysplastic samples, including co-location of 

cells of the same lineage (Goltsev et al., 2018; Keren et al., 2018) (Fig. 4a-c), there were notable 

changes, and more disorder. Cell types were more randomly distributed in premalignant vs. normal 

tissue, reflected in lower z-scores (p=1.6 10-37, Mann-Whitney U test; Supp. Fig. 6d). At short 

distances, all epithelial cells (normal and dysplastic) were preferentially located close to cells from 

the same subtype (Fig. 4b) and even to cells with similar functions: epithelial cells expressing 

programs associated with malignant-like function (e.g., program 4 (Wnt signaling), 14 

(angiogenesis) and 16 (stem cells)) resided close to each other and were spatially distant from cells 

expressing programs that are related to normal epithelial functions (e.g., program 5 (basolateral 

plasma membrane), 8 (apical plasma membrane) and 10 (oxidation-reduction process)), supporting 

a model where tumor progression is structured and compartmentalized (Supp. Fig. 6e). Immune 
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and stromal cells were excluded from epithelial cell neighborhoods with the exception of TNK08 

(proliferating T cells) which were highly represented in the proximity of dysplastic epithelial cells 

(Epi01 (dysplastic enterocyte-like)) (Fig. 4b, *), consistent with increased proliferation of T cell 

subsets that are in contact with tumor cells in CRC (Golby et al., 2002). Granulocytes aggregated 

together (self-proximal) (Fig. 4b) and were relatively close to endothelial cells and dysplasia-

associated monocytes (Mono02, Mono03), consistent with their recruitment from the blood 

through the vessels (Fig. 4b and Supp. Fig. 6f).  

 

Epithelial regional analysis recovers canonical structures in normal colon  

We next defined spatial tissue regions by first identifying “epithelial program regions” as areas of 

distinct epithelial program activity, and then finding immune or stromal cells associated with each 

region (Fig. 1a “annotation”). Using TACCO, we defined epithelial program regions by Leiden 

clustering of the weighted sum of neighborship graphs for spatial bead proximity and epithelial 

expression program similarity, such that transcriptionally similar epithelial beads on different 

pucks can be connected (despite “infinite” spatial distance, Methods). We then used this single 

framework for region annotation across all pucks (Fig. 5a), to determine the distinctive 

composition of additional cell types in the same set of spatial regions (Fig.5b-d and Supp. Fig. 

7a). 

 

In the normal colon, the regional analysis robustly recovered the expected spatial organization of 

the healthy colon across five regions and their cellular composition and sublayers (Fig. 1a), from 

luminal/apical to basal. Four regions recovered by TACCO corresponded to different layers of the 

mucosa (Fig. 5a and 5e,f): a luminal layer with reads found beyond the cellular layer and likely 
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representing cellular debris trapped in the mucus; three apical layers expressing programs related 

to normal epithelial function (transmembrane transport, oxidation-reduction process) with gradual 

transition from apical to basal features; and a basal-most layer, enriched for the deep crypt, 

proliferation (G1/S,G2/M), MHCII and basolateral plasma membrane programs, all common 

features of the deep crypt area (Biton et al., 2018; Haber et al., 2017; Sasaki et al., 2016). Finally, 

region 2, enriched with fibroblasts, myofibroblasts and endothelial cells, and located in the most 

basal side of the tissue, captured the submucosal and muscularis propria layers, which are 

predominantly comprised of fibroblasts and muscle, respectively, alongside blood and lymphatic 

vessels, nerves and immune cells. Overall, TACCO recovered the known organization of the colon, 

showing the power of our unsupervised mapping approach and shedding light on expression 

programs that are required for the maintenance of normal colon homeostasis. 

 

Dysplastic lesions maintain some of the programs of the corresponding regions in healthy 

tissue 

Premalignant lesions did not maintain the robust organization of normal tissues, and reflected the 

expected histopathology of high grade dysplasia, when dysplastic cells are confined to the mucosal 

layer and do not invade the submucosa (Fleming et al., 2012) (Fig. 1a and 5a) . Specifically, the 

submucosal and muscularis propria layers from both normal and premalignant tissues were 

assigned to region 2 (Fig. 5a).  

 

Despite the altered morphology, some of the disrupted regions also expressed programs 

characteristic of their normal healthy function, suggesting that tumor progression is spatially 

structured and compartmentalized. For example, the region above the submucosa, captured as 
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region 1 in premalignant lesions and region 5 in normal colon (Fig. 5a), had similar features in 

both premalignant and normal samples. Thus, although the overall spatial organization of the 

lesion was disrupted, region 1 in premalignant tissue expressed programs that are reminiscent of 

the normal deep crypt, and was enriched for deep crypt cells and programs that are related to 

proliferation and MHC II (Biton et al., 2018) (Fig. 5a,c).  

 

Other regions in the premalignant tissue also contained some epithelial cells with normal profiles, 

expressing programs that should allow them to maintain their capacity to perform normal tasks. 

For example, region 3 expressed apical plasma membrane functions and region 10 was enriched 

with oxidation-reduction functions (Fig. 5c).  

 

To learn about the spatial distribution of the premalignant regions, we measured their distance 

from region 2 (muscularis) which is a stable landmark in the lesions. Remnants of the layered 

structure of the healthy tissue were still observed in the premalignant tissue, especially at relatively 

low distances from the muscularis. For example, healthy region 5 – characteristically located at 

distances of about 150-200µm from the muscularis – is replaced by dysplastic region 1, peaking 

at 200µm. All malignant-like regions were spatially associated at ~300-700µm from the 

muscularis (Supp. Fig. 7b), located ~100-400µm apart from each other (Supp. Fig. 7c).  

 

Three spatially and functionally distinct tumor region archetypes associated with tumor 

progression in premalignant lesions  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2022.10.02.508492doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.02.508492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Three regions – 6, 8, and 11 – had epithelial composition and programs that suggested advanced 

malignant-like characteristics, each highlighting a potentially different mechanism for tumor 

progression (Fig. 5g,h). These three ‘malignant-like regions’, were enriched (vs. all other regions) 

in stem cell, Wnt signaling and angiogenesis programs (#16, #4 and #14; FDR=6.2 10-19, 5.4 10-

14, 1.8 10-8, Welch’s t-test on CLR transformed compositions) and depleted of normal epithelial 

programs (#5, #8, and #10; FDR=7.9 10-13, 2.1 10-13, 4.5 10-10, Fig. 5i). Furthermore, the 

malignant-like regions were enriched in immune cells, including monocytes-macrophages 

(FDR<=2.4 10-5; excluding Lyve1+ macrophages (Mac02)), T cells (FDR<=6.6 10-5; excluding 

TNK01,  gd/Cd8a T cells; Welch’s t-test on CLR transformed compositions), infiltrating 

granulocytes (FDR<=1.7 10-5), and mast cells (FDR=1.3 10-7), suggesting an ongoing immune 

response (Fig. 5j). However, each one of the three regions had a different epithelial program 

composition, suggesting that in each type of region there is a different dominant pathway/feature 

that may drive tumor progression (Fig. 5c and 5h).  

 

Region 6 was characterized by an inflammatory and angiogenic multicellular community, with 

epithelial and immune cells expressing inflammatory programs, endothelial cells and monocytes 

connected in a pro-angiogenic circuit, and pro-invasive genes expressed by both endothelial and 

immune cells (Fig. 5b,c). Specifically, region 6 was distinctly enriched for proliferation (programs 

3 and 11; FDR=4.1 10-32, 2.0 10-25, Welch’s t-test on CLR transformed compositions) and 

inflammatory epithelial programs (programs 6 and 7; FDR=1.3 10-9, 6.6 10-12), and its non-

epithelial compartment was correspondingly enriched for genes from inflammatory pathways, 

including the response to TNF, IL-1 and IFN g (FDR=4.4 10-3 , 4.3 10-3, 1.1 10-5, Fisher’s exact 

test in GO term enrichment), and chemotaxis of monocytes, neutrophils, and lymphocytes 
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(FDR=8.6 10-5, 3.4 10-11, 1.3 10-2), suggesting recruitment of inflammatory cells from the 

circulation or other parts of the tissue. Region 6 was also enriched for collagen binding genes and 

collagen-containing extracellular matrix (ECM) genes (FDR=1.5 10-2, 2.4 10-5, Fisher’s exact 

test), which are important for migration and invasiveness (Winkler et al., 2020). These include 

Sparc, expressed mainly by endothelial cells and fibroblasts in our data, known to promote 

colorectal cancer invasion (Drev et al., 2019); and Ctss, a peptidase expressed by T cells and 

monocytes-macrophages that promotes CRC neovascularization and tumor growth (Burden et al., 

2009). Finally, gene expression patterns in endothelial cells and monocytes in region 6 suggested 

active angiogenesis through a multi-cellular feedback loop, with enriched numbers of vascular 

and lymphatic endothelial cells expressing immune-attracting chemokines (Cxcl9) and adhesion 

molecules (e.g. Chd5, Mcam) (Fig. 5b and Supp. Fig. 7d), monocytes expressing proangiogenic 

factors that induce proliferation of endothelial cells (e.g., Mmp12), and monocytes and 

macrophages expressing Ctsd, which increases tumorigenesis in CRC models (Basu et al., 2019) 

(Supp. Fig. 7d).  

 

Region 8 was enriched for deep crypt cells (program 13; FDR=9.0 10-7, Welch’s t-test on CLR 

transformed compositions), reminiscent of the normal stem cell niche in normal colon, an epithelial 

innate immune program (program 1; FDR=1.2 10-50) expressed by secretory cells in premalignant 

and malignant lesions, and plasma and B cell activity. Unlike the canonical (normal) deep crypt 

region (region 5), which is enriched for MHCII expression (program 18; FDR=5.7 10-27), this 

region was depleted for the program’s expression (FDR=1.2 10-33), suggesting a possible evasion 

mechanism (Fig. 5b,c). The region’s non-epithelial compartment was enriched for B cell activation 

and BCR signaling genes (FDR=4.8 10-4, 2.3 10-4, Fisher’s exact test in GO term enrichment). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2022.10.02.508492doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.02.508492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

This may be related to B cell function in protection from lumen antigens (Spencer and Sollid, 

2016) or to tertiary lymphoid structures (TLS), which is correlated with clinical benefits in cancer 

patients (Sautès-Fridman et al., 2019).  

 

Region 11 was heavily populated by cells expressing the Wnt signaling pathway program (#4, 

FDR=5.5 10-23, Welch’s t-test on CLR transformed compositions), with several lines of evidence 

supporting an active epithelial to mesenchymal transition (EMT) in this region. Epithelial cells in 

region 11 were enriched for the expression of mesenchymal genes, including Vimentin (Mendez 

et al., 2010) (Vim, FDR=1.2 10-242, Fisher’s exact test), Prox1 (Lu et al., 2012) (FDR=1.4 10-155), 

and Sox11 (Oliemuller et al., 2020) (FDR=3.5 10-233) (Supp. Fig. 7e), as well as for EMT 

signatures from a mouse model of lung adenocarcinoma (Marjanovic et al., 2020) (FDR=4.0 10-

137, Mann-Whitney U test) and from human head and neck squamous cell carcinoma tumors 

(Puram et al., 2017) (FDR=1.4 10-51, Mann-Whitney U test). This is consistent with the role of 

Wnt signaling in promoting EMT and a mesenchymal phenotype in CRC, breast cancer and other 

epithelial tumors (DiMeo et al., 2009; Schwab et al., 2018). Region 11 non-epithelial cells also 

expressed genes encoding MHC-I binding proteins (FDR=4.5 10-2, Fisher’s exact test in GO term 

enrichment) and actin cytoskeleton filament and binding proteins (FDR=9.0 10-6, 1.9 10-2,1.2 10-

8). Organization of the cytoskeleton affects migration, adherence, and interaction of lymphocytes 

with antigen presenting cells (Penninger and Crabtree, 1999). Notably, region 11 also peaked at a 

more distal part of the tissue at ~900µm from the muscularis suggesting an outgrowth of the tissue 

towards the lumen (Supp. Fig. 7b).   
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Non-epithelial cells formed two cellular hubs in the malignant-like regions (6,8,11) (Supp. Fig. 

7f): An endothelial-fibroblast hub, detected in all three regions, and an immune hub with B cells, 

TNK cells, monocytes, and macrophages, which was prominent in inflammatory region 6, weaker 

(less spatially correlated) in region 8, and not correlated in region 11. Thus, activation of an 

immune response is reflected by close proximity between immune cells. 

 

Overall, our analysis identified three regional archetypes of multicellular communities associated 

with tumor progression: (1) inflammatory epithelial regions with endothelial cells and monocytes 

expressing angiogenesis, inflammation and invasion programs; (2) epithelial stem-like regions, 

associated with plasma and B cell activity; and (3) regions with epithelial to mesenchymal 

transition (EMT) and Wnt signaling dysplastic cells. Each region archetype highlights different 

processes that modulate tumorigenesis or invasion, and the three archetypes co-exist in the same 

tumor at different spatial locations. 

 

Conservation of the spatial organization of human and mouse tumors 

 

The overall spatial distribution of cell types and epithelial profiles was conserved between mouse 

and human tumors, when comparing scRNA-seq (Pelka et al., 2021) with Slide-Seq data from two 

MMRd patients and mouse pre-malignant tumors. First, we focused on areas of the pucks that were 

at least 75µm away from fibroblast-enriched areas and measured the distribution of each cell type 

relative to endothelial cells, as a proxy to blood vessels. Cell type composition at short distances 

from endothelial cells was consistent in both species, suggesting a close correspondence of spatial 

distributions (Supp. Fig. 8a). Next, we examined mouse-defined regions in human tumors, using 
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TACCO to map the expression profiles associated with the epithelial, immune and stroma 

compartment in each of the TACCO-identified mouse regions to scRNA-seq profiles from human 

CRC, and probabilistically annotated region-specific expression profiles for each scRNA-seq 

profile from the human samples. This identified two main “meta compartments”, with epithelial, 

stromal and immune profiles from human MMRp and MMRd tumors associated with archetypal 

malignant regions 6, 8 and 11 (as well as 0 and 2), while those from normal human tissue were 

associated with normal regions (e.g., 5, 10, 12) (Fig. 6a and Supp. Fig. 8b, Methods). Finally, 

transferring human cell type and mouse region annotations to the human pucks showed that one 

tumor (C110, high grade MMRd with immune cell infiltration), expressed mostly profiles 

associated with inflammatory region 6 and epithelial stem cell like region 8, whereas the other 

(G4209T) expressed mostly region 11 profiles, with patches of inflammatory region 6 (Fig. 6b 

and Supp. Fig. 8c,d, Methods). 

 

Region archetypes are associated with tumor progression in human colorectal tumors 

 

We assessed if the regional epithelial programs that we spatially identified in mouse and are 

conserved in human are relevant to definition of human disease. To this end, we constructed 

pseudo-bulk profiles from epithelial cells for our mouse samples and for recently published human 

samples profiled along different stages of malignant transformation, from normal tissue to polyp 

to CRC (Becker et al., 2022; Che et al., 2021; Chen et al., 2021; Joanito et al., 2022; Khaliq et al., 

2022a; Pelka et al., 2021; Zheng et al., 2022). We scored each epithelial pseudo-bulk profile with 

the differentially expressed genes between the epithelial parts of the regions and computed the 

principal components of these scores across all human and mouse samples (Methods). The first 
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principal component captured features that are related to malignancy, with higher values for human 

tumors vs. polyps (Fig. 6c and Supp. Fig. 8e). In addition, malignant-like region (6/8/11) scores 

were higher in dysplastic vs. normal samples (Fig. 6d). Thus, the spatial region profiles defined in 

mice capture features that correlate with malignant transformation in human. 

 

Moreover, expression of the malignant like regions (6/8/11) in tumors is associated with clinical 

outcome data. We scored each tumor based on genes that were differentially expressed between 

the full expression profile of malignant-like regions (6/8/11) and compared the progression-free 

interval (PFI) and overall survival (OS) for patients in TCGA whose RNA-seq profiles were in the 

top and bottom quartile of malignant-like region scores (Methods). High scores for malignant-like 

region 11 (EMT) were correlated with shorter PFI and shorter overall survival (OS) (although OS 

was less robust to changes in the number of differentially expressed genes used to construct the 

score), while those for malignant-like region 6 (inflammation) correlate with longer PFI and longer 

OS (Fig. 6e,f). This suggests that region 11 is associated with pro-tumorigenic properties in human 

patients, while region 6 might be associated with tumor controlling properties. This highlights the 

importance of multicellular functional tissue modules in the CRC tumor ecosystem. 

 

DISCUSSION 

 

Here, we systematically charted the spatial organization of cellular expression in dysplastic tissue 

of colorectal adenoma, to help identify putative functional units in the tumor. We used TACCO 

(Mages. et al., 2022) to integrate scRNA-seq and Slide-seq data, not only by mapping cell types 

to their positions, but also distinguishing different cell programs, the regions that they dominate, 
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and their characteristic microenvironments. This allowed us to overcome technical limitations, 

such as lack of spatial context in scRNA-seq and sparse readout in Slide-seq, and to generate a 

high-resolution spatial map of the dysplastic landscape transcending beyond the mapping of 

individual cells to spatial positions. We used this map to show correlation with clinical outcome 

in human patient tumors. 

 

Our scRNA-seq analysis revealed profound enrichment of a stem cell program in dysplastic 

tissues. The profiles of dysplastic cells expressing this program are distinct from normal stem cells 

and enriched with expression of negative regulators of the WNT signaling pathway and 

inflammation, suggesting a non-canonical function. The abundance of these cells with stemness 

potential across all our malignant-like regions, points to a dynamic population that can affect the 

cells in its proximity, by secretion of negative regulators of the WNT signaling and inflammatory 

function but may also adopt various functions depending on the environmental cues and dysplasia-

associated cells in its proximity. A similar population, designated “high-plasticity cell state”, was 

previously described in a mouse model of lung adenocarcinoma and in human patients, where it 

was correlated with resistance to chemotherapy (Marjanovic et al., 2020). Whether these cells can 

be manipulated to take on specific phenotypes or even to differentiate into normal-like enterocytes 

given the appropriate signal from the microenvironment, remain as open questions. 

 

Within the premalignant lesions, alongside malignant-like regions, we found regions with normal 

features (Regions 3,4,9,10), comparable to regions found in the normal colon, most likely 

representing compartments driven by clones that were not affected by the genetic perturbation. 

One of these regions, region 4, contained mainly goblet cells with normal expression profiles. 
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Whether this neighborhood represents normal cells that reside alongside malignant cells or a 

cancer transition state, it may modify tumor progression, by recruiting immune cells or by 

secreting factors that affect epithelial proliferation in adjacent regions. For example, region 4 in 

premalignant lesions is enriched with chemokine activity genes relative to region 4 in normal colon 

suggesting a possible role in recruitment of immune cells to the dysplastic landscape. Further work 

is required to understand the role of these regions (expressing normal features) in tumor 

progression.  

 

Malignant-like regions activated one of three archetypal regional programs, with coordinated 

features across epithelial, immune and stromal cells, demonstrating how tumor progression occurs 

across space. Although the regions are spatially distinct, they reside near each other, and as such 

may still affect each other by signaling or by using branches of the same main vessels. For 

example, Osm is expressed by cells in region 6, whereas its receptor is expressed on fibroblasts 

and endothelial cells enriched in region 11. OSMR was previously shown to be expressed by 

inflammatory fibroblasts (Smillie et al., 2019; West et al., 2017) and in CAFs, endothelial cells 

and pericytes in human CRC (Pelka et al., 2021), and its activation in malignant cells promotes 

EMT in breast cancer and pancreatic cancer (Smigiel et al., 2017; West et al., 2013) and a 

mesenchymal state in glioblastoma (Hara et al., 2021). Future studies can help determine if these 

regions are functionally inter-dependent and if they evolved from the same clones and can inter-

convert, or whether they developed independently.  

 

We developed several approaches to allow cross species comparison of tumors at the single cell 

and spatial level, despite the high level of both intra- and inter-individual variation within each 
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species. Comparing to human CRC, our analysis suggests that the CRC landscape is organized in 

similar multicellular functional tissue modules between human and mouse, across disease stages 

(e.g., mouse adenomas and human carcinomas) and disease subtypes (e.g., MMRp and MMRd). 

Future studies applying our approaches to patient cohorts could help understand whether the 

expression of different tissue modules may contribute to the partial response to immunotherapy 

reported for MMRd patients (André et al., 2020), and to define specific tissue modules predictive 

of response to therapy. Notably, while our study focused on tumor initiation and progression, its 

findings may be relevant for tissue response to other challenges (e.g., inflammation, fibrosis, 

wound healing), which involve activation of similar functional tissue modules, a result of 

collective function of parenchymal, immune and stromal cells.   

Taken together, our integrative approach facilitates spatial analysis with high resolution, 

constructing regional neighborhoods and their spatial layout at both high cellular resolution and 

genomic scale. Our work is an important step toward a systematic understanding of the 

organization of dysplastic tissue with the potential to contribute to improved patient stratification 

by the multicellular functional units in the tumor landscape.  
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Figure 1. A single cell atlas of healthy colon and dysplastic lesions in mouse.  

a. Study overview. b. Major cell subsets of healthy colon and dysplastic lesions. 2D embedding of 

48,115 single cell profiles colored by cluster (top, legend) or annotated cell type (bottom, legend). 

c,d. Changes in cell composition in dysplastic tissues. c. 2D embedding of single cell profiles, 

showing only the cells in each condition state, subsampled to equal numbers of cells per condition 

state, colored by cluster (same legend as in b). d. Proportion of cells (y axis) of each cell type in 

each sample (x axis).  
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Figure 2. Composition and cell intrinsic expression program changes in dysplastic epithelial 

cells. 

a-c. Compositional changes in epithelial cells in dysplastic tissue. a. 2D embedding of epithelial 

cell profiles colored by clusters (legend). Cluster Epi06: doublets (not called by Scrublet (Wolock 

et al., 2019)). b. Proportion of cells out of all epithelial cells (y axis) of each epithelial cell subset 

in each sample (x axis). c. Fraction of expressing cells (dot size) and mean expression in expressing 

cells (dot color) of marker genes (columns) for each cluster (rows). d-e. d. Use of epithelial cell 

programs changes in dysplastic tissue. d. Weights (x axis) of each of the 20 top ranked genes (y 

axis) for each program. e. Proportion of program weights summed over all epithelial cells (y axis) 
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in each sample (x axis). f. Stem cell program 16 is induced in epithelial cells in dysplastic tissue. 

Scaled log-normalized expression (color bar) of the top 100 genes differentially expressed between 

cells from normal colon and from dysplastic (premalignant and malignant) across the 10,812 cells 

that accounted for 90% of program 16’s expression across all epithelial cells (columns). Selected 

program genes are marked.  
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Figure 3. Conservation of malignant-like programs and multicellular hubs between mouse 

and human CRC. 

a. Conservation of epithelial programs in human and mouse. Pearson correlation coefficients 

(color) between program-specific expression profiles of human (rows) and mouse (columns) 

programs (Methods). b. Key human multicellular hubs are conserved in mouse tumors. Pearson 

correlation coefficients (color) between the per sample composition profiles of each human 

expression program (rows, columns) in mouse samples. Boxes: MMRd (left) and MMRp (right) 

conserved multicellular hubs defined in human tumors (Pelka et al., 2021). 
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Figure 4. Altered cell type neighborship in CRC.  

a,b. Cell type neighborships in normal and dysplastic colon tissue. Short-range (up to 20µm) 

neighborship enrichment (Z score, color bar) vs. a background of spatially random annotation 

assignments for each pair of cell annotations (rows, columns) in normal (a) and dysplastic (b) 

tissue. Asterisks: interactions mentioned in the text. c. Cell type distributions in situ. Slide-seq 

pucks of dysplastic (top) and normal (bottom) tissue colored by TACCO assignment of cell labels 

(legend) (x and y axis: spatial coordinates in µm).  
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Figure 5. Three cellular neighborhood archetypes associated with tumor progression. 
 
a. Spatial regions. Slide-seq pucks of premalignant (top) and normal (bottom) mouse colon colored 

by TACCO regions (legend) (x and y axis are spatial coordinates in µm). b,c. Enrichment and 

depletion of cell subsets and epithelial programs across different regions. Significance (P value, 

color bar, Welch’s t-test on CLR-transformed compositions) of enrichment (red) or depletion 

(blue) of specific cell subsets (rows, b) or epithelial cell programs (rows, c) in the different regions 

defined by TACCO (columns) as well as all normal (“N (ref.)”, leftmost column) and premalignant 

(“PM (ref.)”, leftmost column) samples. d. TACCO defined regions preferentially relate to normal 

or premalignant tissue. Significance (P value, color bar, Welch’s t-test on CLR-transformed 

compositions) of enrichment (red) or depletion (blue) of each TACCO defined region (rows) in 

normal (“N vs. rest”) and premalignant (“PM vs. N”) samples (columns). e. TACCO reveals 

normal colon architecture. Left: Slide-seq puck of normal mouse colon colored by TACCO region 

annotations (legend) (x and y axis: spatial coordinates (µm)). Right: Main epithelial expression 

programs enriched in each region (FDR<6.3 10-4, Welch’s t test on CLR-transformed 

compositions) except region 2 (muscularis), which is characterized by non-epithelial (stromal) cell 

types. f. Expression signatures of cells in normal regions 3,5,10 and 12. Scaled log-normalized 

expression of the top 20 differentially expressed genes (rows) for each bead (columns) in the 

region. g,h. Archetypal malignant-like regions. g. Slide-seq pucks of two premalignant lesions 

colored by TACCO annotations of malignant-like regions 6, 8 and 11. h. Scaled log-normalized 

expression of the top 20 differentially expressed genes (rows) of each bead (top, columns) in the 

region; or epithelial (top right), immune (bottom left) or stromal (bottom right) fractions of beads 

(columns) in regions 6, 8 and 11 in dysplastic lesions. i,j. Epithelial cell subsets and programs 

associated with “malignant-like”, “normal-like” and normal tissues. Significance (P value, color 
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bar, Welch’s t-test on CLR-transformed compositions) of enrichment (red) or depletion (blue) of 

epithelial cell programs (i, rows) or epithelial, immune and stromal cell subsets (j, rows) in 

different tissue types (columns) based on Slide-seq or scRNA-seq (“ref.”) samples 
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Figure 6. Tumor region archetypes associated with tumor progression in human colorectal 

tumors.  

a. Expression profiles characterizing mouse regions are recapitulated in human tumors. 

Enrichment (red) or depletion (blue) of region-associated epithelial, immune or stromal profiles 
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(rows) compared between normal, MMRp, or MMRd samples (columns). b. Mouse defined 

regions are discernable in human tumor spatial data. Human cell types (top, color) or mouse 

regions (bottom, color: malignant-like regions, grayscale: normal-like regions) mapped to Slide-

seq pucks of two MMRd tumors (x and y axis are spatial coordinates in µm). c. Mouse regions 

capture malignant features in human tumors. Left: First (PC1, x axis) and second (PC2, y axis) 

principal components of mouse region scores of mouse and human epithelial pseudo-bulk samples. 

Middle: PC1 loadings (x axis) of each mouse region score (y axis). Right: PC1 loadings (box plots 

show mean, quartiles, and whiskers for the full data distribution except for outliers outside 1.5 

times the interquartile range (IQR)) for each type of mouse or human sample (x axis). d. 

Enrichment (red) or depletion (blue) of region-associated profile scores (rows) between normal 

and dysplastic samples (columns) in human or mouse. e,f. Expression of malignant like regions 6 

and 11 in tumors are associated with PFI and OS in human patients. Kaplan-Meier PFI (e, n = 170 

(Liu et al., 2018)) or OS (f, n = 140 (Liu et al., 2018)) analysis of human bulk RNA-seq cohort 

stratified by malignant-like region profile scores.  
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Supp. Figure 1. Marker genes, cell states and cell types in the healthy and dysplastic mouse 

colon atlas. 
a. Cell-type expression signatures. Scaled log-normalized expression (color bar) of the top 20 

differentially expressed genes (rows) in cells (columns) from each cell type. b,c. Distinct condition 

states and compartments. 2D embedding of all single cell profiles (dots) colored by either condition 

state (b) or compartment (c). d. Changes in cell composition between healthy and dysplastic tissue. 

Proportion of cells (y axis) from each cell subset (x axis) out of all cells in each sample (x axis). e. 

Changes in cell composition in dysplastic lesions. Significance (P-value, Welch’s t-test on CLR-

transformed compositions, color bar) of enrichment (red) or depletion (blue) of each cell subset 

(rows) between samples from different conditions (columns). 
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Supp. Figure 2. Compositional and cell intrinsic changes in stromal and immune cells. 

a-c. Immune cell subsets and composition. a. 2D embedding of immune cell profiles colored by 

clusters (legend). b. Proportion of cells out of all immune cells (y axis) of each immune cell subset 

in each sample (x axis). c. Scaled log-normalized expression (color bar) of the top 20 differentially 

expressed genes (rows) in cells (columns) from each immune cell subset (color bar on top). d-f. 

Monocyte and macrophage cell subsets and composition. d. 2D embedding of monocyte and 

macrophage cell profiles colored by clusters (legend). e. Proportion of cells out of all monocytes 

and macrophages (y axis) of each monocyte and macrophage cell subset in each sample (x axis). 

f. Scaled log-normalized expression (color bar) of the top 20 differentially expressed genes (rows) 

in cells (columns) from each monocyte and macrophage cell subset (color bar on top). g-i. T/NK 

cell subsets and composition. g. 2D embedding of T/NK cell profiles colored by clusters (legend). 

h. Proportion of cells out of all T/NK cells (y axis) of each T/NK cell subset in each sample (x 

axis). i. Scaled log-normalized expression (color bar) of the top 20 differentially expressed genes 

(rows) in cells (columns) from each T/NK cell subset (color bar on top). j. Enrichment of IL17+ 

gdT cells and depletion of CD8+ gdT cells in dysplastic lesions. Significance (P value, Welch’s t-

test on CLR-transformed compositions, color bar) of enrichment (red) or depletion (blue) of each 

TNK cell subset (rows) between samples from different conditions (columns). k. TNK cell 

compositions is similar in human and mouse. Left: 2D embedding of TNK cell composition 

profiles of human and mouse samples colored by sample type (legend) (Methods). Right: 

Similarity of TNK cell composition (enrichment z-scores) in the 2D embedding between each set 

of samples (rows, columns). l-n. Stromal cell subsets and composition. l. 2D embedding of stromal 

cell profiles colored by clusters (legend). m. Proportion of cells out of all stromal cells (y axis) of 

each stromal cell subset in each sample (x axis). n. Scaled log-normalized expression (color bar) 
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of the top 20 differentially expressed genes (rows) in cells (columns) from each stromal cell subset 

(color bar on top). o. Enrichment of vascular endothelial cells and depletion of myofibroblasts in 

dysplastic lesions. Significance (P value, Welch’s t test on CLR-transformed compositions, color 

bar) of enrichment (red) or depletion (blue) of each stromal cell subset (rows) between samples 

from different conditions (columns). p. Increased VEGFA expression in monocyte-macrophage 

populations with dysplasia. Distribution of expression (y axis, log1p(counts)) of VegfA in 

monocytes and macrophages from different conditions (x axis).  
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Supp. Figure 3. Changes in cell composition and expression programs usage in dysplastic 

epithelium. 

a,b. Changes in epithelial cell composition in dysplastic tissues. a. 2D embedding of all single cell 

epithelial profiles showing only the profiles (dots) of cells from each condition state, subsampled 

to equal numbers of cells per condition state, colored by cluster. b. Significance (P value, Welch’s 

t test on ALR-transformed compositions with all non-tdTomato counts used as reference 

compartment, color bar) of enrichment (red) or depletion (blue) of tdTomato expression in cells 
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from malignant samples between every pair of epithelial clusters. c. Dysplastic secretory like 

(Epi05) cells express tumor-related genes. Distribution of expression (y axis) of different marker 

genes in cells from each epithelial/immune cell cluster (x axis). d-j. Epithelial gene programs. 2D 

embedding of all epithelial cells colored by the weight of each program (color bar) or the 

expression of selected program genes (color bar). k. Increase in G1/S cells in dysplastic lesions. 

Proportion of epithelial cells (y axis) assigned to each phase of the cell cycle in each condition (x 

axis). l. Epithelial programs characteristics of normal and dysplastic colon. Heatmap significance 

(P value, Welch’s t test on CLR-transformed compositions, color bar) of enrichment (red) or 

depletion (blue) of each epithelial program (rows) between normal vs. dysplastic tissues 

(columns). 
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Supp. Figure 4. Conservation of cellular composition and expression programs between 

mouse and human scRNA-seq data. 

a. Conservation of subtype-specific human and mouse epithelial expression programs. Pearson 

correlation coefficients (color) between program-specific expression profiles (Methods) of human 

MMRd- (left) or MMRp- (right) specific programs (rows) and mouse programs (columns). b. 

Mouse epithelial program enrichments in mouse and human tumor and normal samples. 

Significance (Welch t-test on CLR-transformed compositions) of enrichment (red) or depletion 
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(blue) of mouse epithelial program expression (rows) in sample classes from human or mouse 

(columns). c,d. Human-mouse conservation of cell type and program associations. Pearson 

correlation coefficients (color) of the CLR-transformed cell type (c) or epithelial program (d) 

compositions across samples in mouse (left) or human (right) single cell data. In (d), data are 

hierarchically clustered for the “not normal” mouse case (premalignant and malignant) and this 

ordering is applied to all other panels. e. Human multicellular hubs conserved in mouse tissue. 

Mean of the Pearson correlation coefficients (color) between the per sample composition profiles 

of each human expression program in mouse samples (as in Fig. 3b) calculated from all the 

programs in each pair of hubs defined in human data (excluding the diagonal (program against 

itself)). Black border: hubs highlighted in Fig. 3b. 
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Supp. Figure 5. Spatial distributions of cells and programs across regions. 

a,b. Slide-seq quality controls. Slide-seq pucks of premalignant (top) and normal (bottom) mouse 

colon colored by number of UMIs (A) or of genes (B) per bead. (x and y axis: spatial coordinates 

(µm)). c. Selected marker gene expression. Slide-seq pucks from a normal (top) and premalignant 

(bottom) sample, colored by marker gene detected per bead. d,e. Spatial mapping of cell types and 

programs yields comparable composition to scRNA-seq. Distribution of the proportion (y axis) of 

contributions to each cell type (d) or program (e; based on fractional annotations) in cells (for 

scRNA-seq; “ref”) or beads (for Slide-seq; “spatial”; based on fractional annotations) in samples 

from normal (N) or premalignant (PM) tissue. f,g. Distinct cell types and programs associated with 

premalignant and normal colon. Significance (P value, Welch’s t test on CLR-transformed 

compositions, color bar) of enrichment (red) or depletion (blue) of cell types (f, rows) or epithelial 

programs (g, rows) in normal (N) or premalignant (PM) tissues based on Slide-seq (“spatial”) data 

or scRNA-seq ("reference”). 
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Supp. Figure 6. Distinct cellular layout in normal and premalignant tissues. 

a,b. Neighborship analysis is robust to the distance and number of randomizations. Neighborship 

enrichment (z-scores, color) vs. a background of spatially random annotation assignments for each 

pair of cell annotations (rows, columns) in normal (top) and premalignant (bottom) samples at 

varying distance (a, left: £40µm; right: £60 µm) or number of permutations (b, left: 5, right: 50). 

c. Spatial arrangement of epithelial cells in normal colon. Co-occurrence (y axis) of normal 

epithelial cell types (color) at different distances (x axis) from different central normal epithelial 
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cell type (annotated on top). d. Decreased spatial order of cell types in premalignant vs. normal 

tissue. Distribution of enrichment z-values (x axis) of cluster-cluster interactions (as shown in Fig. 

4a,b) in premalignant lesions (orange) and normal colon (blue). e. Epithelial program 

neighborships in premalignant tissue. Short-range (£20µm) neighborship enrichment z-scores 

(color) vs. a background of spatially random annotation assignments for each pair of epithelial 

program annotations (rows, columns) in premalignant lesions. f. Spatial arrangement of dysplasia-

associated immune cells relative to endothelial cells. Co-occurrence (y axis) of dysplasia-

associated monocyte or granulocyte cells (color) with endothelial cells at different distances (x 

axis). 
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Supp. Figure 7. Cellular neighborhood archetypes. 

a. Distinct characteristic region distributions in healthy and premalignant tissue. Proportion of 

UMIs assigned to each region (y axis) in each Slide-seq puck (x axis). b,c. Spatial relations 

between the regions. Proportion of beads (y axis) of each region category (color code) at different 

distances (x axis) from region 2 (b, muscularis), 6 (c, left), 8 (c, middle) or 11 (c, right). d,e. 

Fraction of expressing cells (dot size) and mean expression per celltype (d dot color) or per region 
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(e, dot color of marker genes (columns) across cell types in region 6 (d, rows) or regions 6, 8 and 

11 (e, rows). f. Cell type neighborships in different malignant regions. Short-range (£20µm) 

neighborship enrichment z-scores (color) vs. a background of spatially random annotation 

assignment for each pair of cell type annotations (rows, columns) in malignant-like regions 6, 8 

and 11 within premalignant lesions. 
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Supp. Figure 8. Transfer of mouse spatial region expression profiles to human patient data. 

a. Spatial arrangement of cell types in human and mouse dysplastic lesions. Co-occurrence (y axis) 

of different cell types with endothelial cells at different distances (x axis) for two human tumors 
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(solid and dashed lines) and mouse premalignant lesions (dotted lines). b. Expression profiles 

characterizing mouse regions in human and mouse samples. Significance (Welch t test on CLR-

transformed compositions) of enrichment (red) or depletion (blue) of mouse region-associated 

epithelial, immune or stromal profiles (rows) in pucks from normal colon and dysplastic lesions, 

in the same pucks but after mapping the region annotation to itself (consistency check), in mouse 

single cell data after mapping region annotation from mouse pucks, and in human single cell data 

after mapping region annotation from mouse pucks. c,d. Mouse defined regions discernable in 

human tumor spatial data. c. Human cell types (top, color) or mouse regions (bottom, color: 

malignant-like regions, grayscale: normal-like regions) mapped to Slide-seq pucks of two MMRd 

tumors (x and y axis are spatial coordinates in µm). d. Composition (y axis) of cell types (left) and 

regions (right) in each human tumor puck (x axis). e. PC1 scores (y axis; box plots show mean, 

quartiles, and whiskers for the full data distribution except for outliers outside 1.5 times the 

interquartile range (IQR)) in a PCA of region scores of mouse and human samples (x axis) sorted 

by malignant status and colored by status (top, legend) or study (bottom, legend). 
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Methods 

Human subjects 

The MGH Institutional Review Board approved protocols for tissue collection used for sequencing 

(Protocol 02-240). Informed consent was obtained from all subjects prior to collection. Only 

patients with primary treatment- naive colorectal cancer were included in this study.  

  

Mice 

Mice were housed in the animal facility at the Koch Institute for Integrative Cancer Research at 

MIT. All animal studies described in this study were approved by the MIT Institutional Animal 

Care and Use Committee (Protocol 1213-106-16). Apcfl/fl mice (Kuraguchi et al., 2006) were 

obtained from NCI mouse repository, KrasLSL-G12D/+ Ref. (Johnson et al., 2001), Rosa26LSL-tdTomato 

Ref. (Madisen et al., 2009) and Trp53fl/fl Ref. (Marino et al., 2000) mice obtained from Jackson, 

VillinCreERT2 Ref. (el Marjou et al., 2004) mice were a gift from Dr. Sylvie Robine. All mice were 

maintained on C57BL/6J genetic background. Approximately equal numbers of male and female 

mice of 6–10 weeks of age were used for all experiments. Where indicated, mice were injected to 

the submucosal layer of the colon with 4-hydroxytamoxifen (EMD Millipore # 579002) dissolved 

in ethanol at a concentration of 100 µM (for the mice that were kept for 3 weeks after injection) or 

30 µM (for the mice that were kept for 9 weeks after injection).  Tumors were resected at either 3 

or 9 weeks after 4-hydroxytamoxifen injection. Colonoscopy and colonoscopy-guided injection 

methods were previously described in detail (Roper et al., 2017, 2018). 

 

Tissue processing for scRNA-seq 
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Single-cell suspensions from healthy colon or dysplastic lesions were processed using a modified 

version of a previously published protocol (Smillie et al., 2019). Tissue samples were rinsed in 

30ml of ice-cold PBS (ThermoFisher 10010-049), chopped to small pieces and washed twice in 

25 ml PBS, 5mM EDTA (ThermoFisher AM9261), 1%FBS (ThermoFisher 10082-147). To prime 

tissue for enzymatic digestion, samples were incubated for 10 minutes at 37°C, placed on ice for 

10 minutes before shaking vigorously 15 times followed by supernatant removal. Tissues were 

placed into a large volume of ice-cold PBS to rinse prior to transferring to 5ml of enzymatic 

digestion mix (Base: RPMI1640, 10 mM HEPES (ThermoFisher 15630-080), 2% FBS), freshly 

supplemented immediately before use with 100 mg/mL of Liberase TM (Roche 5401127001) and 

50 mg/mL of DNase I (Roche 10104159001), and incubated at 37°C with 120 rpm rotation for 30 

minutes. After 30 minutes, enzymatic dissociation was quenched by addition of 1ml of 100% FBS 

and 10mM EDTA. Samples were then filtered through a 40 mM cell strainer into a new 50 mL 

conical tube and rinsed with PBS to 30 mL total volume. Tubes were spun down at 400 g for 7 

minutes, at 4oC. Resulting cell pellets were resuspended in 1ml PBS, placed on ice and counted. 

 

Cell hashing 

Cell hashing was performed based on the published protocol (Stoeckius et al., 2018) as 

summarized below. Dissociated cells were resuspended in 1ml of Cell Hashing Staining Buffer 

(1× PBS with 2% BSA (New England Biolabs, B9000S) and 0.02% Tween (Tween®-20 Solution, 

10%, Teknova, VWR-100216-360) and counted. 500,000 cells were resuspended in 100 µL of Cell 

Hashing Staining Buffer and incubated for 30 minutes on ice, with 2 µL of the appropriate 

BioLegend TotalSeq™ Hashing antibody (a 1:50 dilution, using a total of 1 µg of antibody per cell 

suspension). TotalSeq™-A anti-mouse Hashtag antibodies #1-8 (catalog numbers:155801, 
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155803, 155805, 155807, 155809, 155811, 155813, 155815) were used. Cells were washed three 

times with 0.5 mL of Cell Hashing Staining Buffer and filtered through low-volume 40-µm cell 

strainers. All cell suspensions were recounted to achieve a uniform concentration of 7,000 cells 

per microliter before pooling for capture by 10x Chromium controller following the manufacturer 

protocol for the v2 or v3 3’ kit (10X Genomics, Pleasanton, CA). 

 

Hashtag oligo (HTO) library preparation 

Separation of hashtag oligo (HTO)-derived cDNAs (<180 bp) and mRNA-derived cDNAs 

(>300 bp) was done after whole-transcriptome amplification by performing 0.6× SPRI bead 

purification (Agencourt) on cDNA reactions as described in 10x Genomics protocol. Briefly, 

supernatant from 0.6× SPRI purification contains the HTO fraction, which was subsequently 

purified using 1.4 and 2× SPRI purifications per the manufacturer’s protocol (Agencourt). HTOs 

were eluted by resuspending SPRI beads in 15 µL TE. Purified HTO sequencing libraries were 

then amplified by PCR (1μl clean HTO cDNA, 25μl 2X NEBNext Master Mix (NEB #M0541), 

10 µM SI-PCR and D701or D704 primers performed dial out PCR (98°C (10 sec), (98°C for 2 sec, 

72°C for 15 sec) x 12/18 then 72°C for 1 min) for 12 and 18 cycles, and used the 18 cycles product 

for sequencing. PCR reactions were purified using another 2× SPRI clean up and eluted in 15 µL 

of 1× TE. HTO libraries were quantified by Qubit High sensitivity DNA assay (ThermoFisher) 

and loaded onto a BioAnalyzer high sensitivity DNA chip (Agilent). 

SI-PCR: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC*T*C  

D701 : 

CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTGTGC   

D704 : 
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CAAGCAGAAGACGGCATACGAGATGGAATCTCGTGACTGGAGTTCAGACGTGTGC 

 

Sequencing 

Samples were sequenced using HiSeq X (Illumina). Hashing libraries were sequenced with spike-

ins of 2.5%. 

 

Tissue processing for Slide-seq 

Colons were flashed with cold PBS and a segment that includes the lesion and surrounding tissue 

(or a respective healthy segment from normal mice) was dissected. Samples were then mounted in 

cold OCT, flash frozen on dry ice covered with ETOH until and long-term stored in -80℃. For 

human experiments, fresh human tumor samples were snap frozen in Tissue Tek Optimal Cutting 

Temperature (Sakura) and stored at -80°C until sectioning.  

 

Slide-seq 

For mouse and human experiments, 10 µm sections were cut and the Slide-seq V2 protocol was 

used as previously described (Stickels et al., 2021). For mouse experiments, four and six arrays 

were collected from normal colons and premalignant lesions respectively. The muscularis was fit 

onto the array of both healthy and dysplastic lesions to allow appropriate orientation.  

 

scRNA-seq pre-processing and quality control filtering  

Count matrices for scRNA-seq were generated using the Cumulus feature barcoding workflow 

v0.2.0(Li et al., 2020) with CellRanger v3.1.0 and the mm10_v3.0.0 mouse genome reference. 

Cell profiles were quality filtered by requiring between 1,000 and 50,000 counts, and between 500 
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and 7,000 genes, less than 20% mitochondrial counts, and less than 10% hemoglobin counts. Cell 

profiles that did not meet all these criteria were discarded. The top 5,000 highly variable genes 

were annotated on the remaining cells after normalization to 10,000 counts and log1p transform 

using Scanpy's “highly_variable_genes” function (Wolf et al., 2018) and providing the chemistry 

(v2/v3) by hashing (True/False) combination as batch-annotation. Putative doublets were removed 

using Scrublet (Wolock et al., 2019) with default parameters. 

 

Selection of variable genes, dimensionality reduction and clustering 

A preliminary clustering using the Leiden algorithm with resolution 1.0 was performed after 

normalization to 10,000 counts, log1p transform, correction for number of counts and percentage 

of mitochondrial genes, scaling with a max_value of 10, and generating a k-nearest neighbors (k-

NN) graph with 15 neighbors on a PCA of the previously annotated 5000 highly variable genes 

with 50 components using Scanpy (Wolf et al., 2018). The single cell profiles were provisionally 

annotated with SingleR (Aran et al., 2019) cell-wise (i.e. without using clustering information) 

using the SingleR built-in MouseRNAseqData and an intestine specific dataset from Tabula Muris 

(Tabula Muris Consortium et al., 2018). https://figshare.com/ndownloader/files/13092143. For 

further processing, the dataset was then split into the three compartments, epithelial, immune and 

stromal, using the provisional SingleR annotations. 

For each compartment, the top 5,000 highly variable genes were annotated using Scanpy's 

“highly_variable_genes” function on cells normalized to 10,000 counts after log1p-transformation 

and providing the chemistry (v2/v3) by hashing (True/False) combination as batch-annotation.  

 

Expression programs and batch correction 
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For the dataset of each compartment separately (generated as described above), an integrative 

NMF was performed (using a part of the LIGER implementation) with k=20 and lambda=5 to 

identify 20 programs and their respective weights per cell. The same approach was also used with 

a higher k (epithelial and immune: 200, stromal: 50) to yield a detailed and batch corrected 

decomposition of expression which was then combined to obtain a count-like corrected expression 

matrix for the top 5,000 highly variable genes. For each compartment separately, these batch-

corrected data were normalized to 10,000 counts, log1p transformed, corrected for number of 

counts and percentage of mitochondrial genes by linear regression, scaled with a max_value of 10, 

followed by a PCA of the previously annotated 5,000 highly variable genes. A a k-nearest 

neighbors (k-NN) graph was constructed from the top 50 PCs, with k=15 neighbors using Scanpy, 

and clustered using a compartment-specific Leiden resolution parameter (epithelial: 0.2, immune: 

0.4, stromal: 0.1). This clustering was used as the cluster level annotation of the mouse scRNA-

seq data for the epithelial and stromal compartment. Separately per compartment the data were 

annotated with SingleR using the cluster information. The same per-compartment batch-corrected 

and preprocessed data from the Leiden clustering was used to create UMAP embeddings with 

PAGA initialization using Scanpy.  

 

To improve the clustering and annotation in the immune compartment and to filter out additional 

doublets not detected by Scrublet, the immune data were separately filtered and clustered using 

information from the compartment level clustering and annotation. To that end, myeloid and TNK 

cells were partitioned separately and further processed, and additional likely doublet cells were 

labeled and removed by the following procedure: 
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1. Cells were labeled as doublets based on higher number of UMIs of marker genes for other 

compartments than the 95th percentile observed in this immune partition (i.e., Epcam and Cdh1 

to remove immune-epithelial doublets and Cav1 and Kdr to remove immune-stromal doublets) 

and other immune partitions (i.e., Cd3d, Cd3e, and Cd3g to remove myeloid-lymphoid 

doublets from the myeloid cells). This type of filter criterion for lowly expressed genes ("larger 

than some percentile" on integer counts) also allows to keep more than 95% of the cells if, for 

example, all cells of this partition happened to have 0 UMIs of a particular marker gene. 

2. Cell were labeled as doublets if they had inconsistent cell-wise and cluster-wise SingleR 

annotations. 

3. Cells were labeled as doublets if they had significantly (Benjamini-Hochberg FDR=0.05, 

Fisher’s exact test) more neighbors in the k-NN graph from the immune compartment that were 

already marked as doublets. 

4. All cells labeled as doublets were removed. 

After filtering, the count matrices were batch corrected as above using the integrative NMF from 

LIGER with k=20 and lambda=5, and clustered like above with group specific Leiden resolution 

(myeloid: 0.2, TNK: 0.4). For myeloid and TNK cells, this clustering superseded the original 

clustering. The integrative NMF result here was only used for updating the clustering and not for 

generating an extra set of expression programs. 

 

Cell cycle phase annotation 

Annotation of single cell profiles with a cell cycle phase was performed with scvelo’s (Bergen et 

al., 2020) score_genes_cell_cycle function. The resulting cell cycle annotation was corrected 
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according to the original gene list annotation from (Tirosh et al., 2016): “G1” was renamed to “G0” 

and “S” was renamed to “G1/S”. 

 

Selection of human single cell data for the comparison of cell type and epithelial program 

composition 

ScRNA-seq data from Ref (Pelka et al., 2021) was used as reference for human CRC. To avoid 

biases in cell type compositions, only the subset of the data where "PROCESSING_TYPE = 

unsorted" were used. 

 

Comparison of human and mouse samples by cell type composition 

To compare human and mouse samples by composition of T/NK cell subsets, T/NK annotations 

from mouse and human data (Pelka et al., 2021) were matched by TACCO (Mages. et al., 2022), 

using optimal transport (OT). First, human expression data were mapped to mouse genes using 

MGI homology information [subsection “Mapping of mouse and human orthologs”]. Then, human 

cell cluster annotations ('cl295v11SubFull') (Pelka et al., 2021) were mapped from the subset of 

human cells annotated as T/NK/ILC to the subset of mouse cells annotated as T/NK using 

TACCOs "annotate" function with OT as core method, basic platform normalization, entropy 

regularization parameter epsilon 0.005, marginal relaxation parameter lambda of 0.1, and 4 

iterations of bisectioning with a divisor of 3. Annotation with maximum probability per cell was 

used as the unique cluster level annotation for mouse T/NK cells. Annotations were aggregated 

per sample to yield a compositional annotation over the identical cluster annotation categories 

(from the human dataset) for the T/NK subsets of human and mouse samples. Annotations vectors 

were then processed using the sc.pp.neighbours and sc.tl.umap functions from Scanpy (Wolf et 
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al., 2018) to yield a 2D sample embedding with respect to T/NK cell composition. Using the 

coordinates in the UMAP in place of spatial coordinates, neighborship enrichment z-scores were 

computed with TACCO’s co_occurrence_matrix function with max_distance=2 and 

n_permutation=100. 

 

Slide-seq annotation 

For the compositional annotation of Slide-seq beads with the categorical cell clusters from the 

single cell data, the “annotate” function of TACCO with OT was used as core annotation method 

per Slide-seq puck with the subset of the single cell data with matching disease state, with basic 

platform normalization, entropy regularization parameter epsilon 0.005, marginal relaxation 

parameter lambda of 0.001, and 4 iterations of bisectioning with a divisor of 3. 

 

For the compositional annotation of Slide-seq beads with the compositional epithelial programs, 

the annotated beads were split using the “split_observations” function of TACCO on the cluster-

level annotation, aggregated to compartment level, and the epithelial part was then annotated using 

again the “annotate” function with OT as core annotation method, basic platform normalization, 

entropy regularization parameter epsilon 0.01, and a marginal relaxation parameter lambda of 0.01. 

 

Region annotation was done for all pucks (with normal and premalignant pucks) in one step to get 

comparable region annotations across pucks. This is done with the “find_regions” function of 

TACCO, using a position weight of 0.7, a Leiden resolution of 1.3, and 15 nearest neighbors per 

bead in position space and epithelial program space. To determine the neighbors in epithelial 

program space, the square-roots of the program weights were used for neighbor finding which 
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effectively uses Bhattacharyya coefficients as overlap in epithelial program space instead of the 

Euclidean scalar products used for position space. These regions are defined by construction only 

on beads with a large enough epithelial contribution and are then extended to all beads by assigning 

unannotated beads the region from the nearest bead with region annotation. 

 

To determine region composition at a certain distance of a reference region, TACCO’s 

“annotation_coordinate” function is used with max_distance=1000 and delta_distance=10. 

Region- and cell type- characterizing genes in Slide-seq data 

Genes to characterize regions on Slide-seq pucks irrespective of compartment composition were 

found using Scanpy’s rank_genes_groups function on the full bead expression profiles. To find 

them separately for each compartment, the compartment-level split beads [sub-section “Slide-seq 

annotation”] were used instead of the full beads. To compare gene expression between cell types 

on Slide-seq pucks, cluster-level split beads [sub-section “Slide-seq annotation”] were aggregated 

to cell type level. 

Cell-type neighborships in Slide-seq data 

To evaluate the local cell-type neighbourship relations in the different disease states on the cluster 

level, the clusters were filtered per disease state to contain only clusters which account for at least 

1% of the UMIs in that state. Then neigbourhood-enrichment z-scores were calculated using 

TACCO’s “co_occurrence_matrix” function with max_distance=20 and n_permutation=10. To 

evaluate the stability of the result, this is also repeated for (max_distance, 

n_permutation)=(40,10),(60,10),(20,5), and (20,50). To get the significance of the overall change 
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in z-scores between the states, a Mann-Whitney-U test was performed on the values of the upper 

triangular half of the matrix between the two disease states for (max_distance, 

n_permutation)=(20,10). 

 

A similar neighbourship analysis was performed on the coarser cell-type level separately for the 

three malignant regions 6, 8, and 11, using TACCO’s “co_occurrence_matrix” function with 

max_distance=20 and n_permutation=10. 

Cell-type co-occurrence in Slide-seq data 

Cell-type compositions relative to a spatial landmark, Region 2=muscularis, was evaluated using 

TACCO’s “annotation_coordinate” function with max_distance=1000 and delta_distance=10. To 

reduce tissue structure bias from the muscularis, the distance dependency of cell-type frequency 

relations was evaluated only for beads deep in the “epithelial domain”, defined as follows. The 

effective distance from stromal annotation was computed using TACCO’s 

“annotation_coordinate” function (with max_distance=100, delta_distance=10, 

critical_neighbourhood_size=4.0) and only beads with a distance of at least 75µm were used. On 

these remaining beads, TACCO’s “co_occurrence” function was used (with delta_distance=20, 

max_distance=1000) to compute cell types co-occurrence as a function of their distance. 

Epithelial program neighborships in Slide-seq data 

As for cell types above, neighborship relations were evaluated for epithelial programs in the 

premalignant Slide-seq samples using TACCO’s “co_occurrence_matrix” function with 
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max_distance=20 and n_permutation=10, after selecting only the programs which make up at least 

1% of the UMIs in the premalignant Slide-seq samples. 

 

Mapping of mouse and human orthologs 

We mapped human to mouse genes using the ortholog mapping from Mouse Genome Informatics 

(http://www.informatics.jax.org/homology.shtml), downloaded April 26th, 2021. 

Comparison between mouse and human programs 

To compare mouse and human epithelial expression programs (Pelka et al., 2021), genes were 

mapped to mouse homologs using MGI homology information [subsection “Mapping of mouse 

and human orthologs”]. Mouse and human programs were then characterized by a single vector of 

mean expression per program in mouse gene space. Specifically, both mouse and human programs 

were defined such that their weighted sum approximates the expression profiles of the cells without 

any transformations. Programs and weights were normalized to sum to 1. To reduce batch-effects 

(including species-specific ones), a background expression profile was defined for each species 

dataset as the pseudo-bulk epithelial expression profile in the respective scRNAs-seq data. 

Program and background profiles were normalized to 10,000 counts and the log ratio of the 

normalized program and background expression vectors was used to define a vector for each 

species. Pearson correlation coefficients were calculated for each pair of program vectors (mouse 

vs. human). 

Human expression program associations across mouse scRNA-seq  

All sets of programs that were previously used to define human CRC tissue hubs (Pelka et al., 

2021) (epithelial, T/NK cells and myeloid cells) were mapped to mouse genes with MGI homology 
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information [subsection “Mapping of mouse and human orthologs”] and then to mouse single cell 

data with TACCO, using TACCOs platform normalization to account for batch effects. The 

“annotate” function in TACCO was used with OT as the core annotation method, on the 

comparable subsets of cells from mouse and human single-cell datasets (e.g., myeloid cells from 

mouse and human), with basic platform normalization, entropy regularization parameter epsilon 

0.005, marginal relaxation parameter lambda of 0.1, and 4 iterations of bisectioning with a divisor 

of 3, and flat annotation prior distribution. The resulting probabilistic per-cell program annotations 

were aggregated to get probabilistic per-sample program annotations for all dysplastic mouse 

samples and CLR-transformed. For each pair of programs, the Pearson correlation coefficient was 

calculated on these transformed values. Using the published mapping from programs to hubs 

(Pelka et al., 2021), these per program-pair correlation coefficients were aggregated per hub-pair 

(excluding the values of identical programs) by computing their mean. 

 

Annotating human scRNA-seq data with mouse-derived region information 

Human scRNA-seq profiles (Pelka et al., 2021) were mapped to mouse gene space using MGI 

homology information [subsection “Mapping of mouse and human orthologs”]. Working in the 

same expression space, the “annotate” function in TACCO with OT as core annotation method 

was used on the full human scRNA-seq and mouse Slide-seq dataset with basic platform 

normalization, entropy regularization parameter epsilon 0.005, marginal relaxation parameter 

lambda of 0.1, and 7 iterations of bisectioning with a divisor of 3, and 10-fold sub-clustering of 

the region annotations. The region transfer is done separately per compartment, with the Slide-seq 

compartment split as described above and the human scRNA-seq data split using the cell type 
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annotation of the data. For validation, mapping was also performed with mouse scRNA-seq data, 

as well as mapping the region information from the mouse pucks back to themselves. 

 

To test for enrichments of region annotations across disease state, region composition was 

aggregated to sample-level (for Slide-seq to 4-way split pucks), CLR-transformed, and enrichment 

was calculated using Welch’s t-test. This was done for region annotation on human and mouse 

scRNA-seq data, and on the original and mapped region annotation on the mouse Slide-seq data. 

 

Annotating human Slide-seq data 

Human Slide-seq data were annotated with cell type clusters using the annotation 

("cl295v11SubFull") from the human single cell reference (Pelka et al., 2021). Cluster level 

annotations were mapped to the human pucks using TACCOs "annotate" function with OT as core 

method, basic platform normalization, entropy regularization parameter epsilon 0.005, marginal 

relaxation parameter lambda of 0.1, and 4 iterations of bisectioning with a divisor of 3, and 10-

fold sub-clustering of the annotations. This fine grained cluster-level annotation was aggregated 

to cell type level ("clTopLevel” in Ref. (Pelka et al., 2021)). 

 

To annotate human Slide-seq data with mouse region information, human genes were mapped to 

mouse orthologs using MGI homology information [subsection “Mapping of mouse and human 

orthologs”], and mouse region annotations were mapped to human pucks using TACCOs 

"annotate" function with OT as core method, basic platform normalization, entropy regularization 

parameter epsilon 0.005, marginal relaxation parameter lambda of 0.1, and 4 iterations of 
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bisectioning with a divisor of 3. Cell type and region information were aggregated to a pseudo 

bulk cell type and region composition per sample. 

 

Cell-type associations across samples 

To compare associations of cell types across samples in human and mouse scRNA-seq the 

"clMidwayPr” cell type annotation in the human data (Pelka et al., 2021) was aggregated to the 

same level as mouse cell type annotation, and then aggregated per sample and CLR-transformed. 

Pearson correlation coefficients were calculated for every cell type pair for different subsets of 

samples: all samples, normal samples, dysplastic, and for human MMRd/MMRp samples. 

 

Epithelial program associations across human samples 

To determine epithelial program associations across human samples, TACCO’s “annotate” 

function was used to annotate human epithelial scRNA-seq (after mapping to mouse orthologs 

using MGI homology information [subsection “Mapping of mouse and human orthologs”]) with 

mouse epithelial programs from mouse scRNA-seq data using OT as core method, basic platform 

normalization, entropy regularization parameter epsilon 0.005, marginal relaxation parameter 

lambda of 0.1, and 4 iterations of bisectioning with a divisor of 3. The remaining steps were 

performed as for cell-type association (subsection “Cell-type associations across samples”).  

 

Comparing cell-type spatial organization in human and mouse 

To compare the spatial co-occurrence of cell types in human and mouse, human Slide-seq data 

was mapped to mouse orthologs using MGI homology information [subsection “Mapping of 

mouse and human orthologs”]. Cell subset (cluster) annotation was mapped from mouse scRNA-
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seq to human Slide-seq using TACCO’s “annotate” method with OT as core method, basic 

platform normalization, entropy regularization parameter epsilon 0.005, marginal relaxation 

parameter lambda of 0.1, and 4 iterations of bisectioning with a divisor of 3. Cluster annotation 

was aggregated to cell type and compartment levels. To reduce bias from muscularis beads, the 

comparison was restricted to beads deep in the “epithelial domain”, identified by using TACCO’s 

“annotation_coordinate” function (with max_distance=100, delta_distance=10, 

critical_neighbourhood_size=4.0) to compute the effective distance from stromal annotation and 

including only beads with a distance of at least 75µm. TACCO’s “co_occurrence” function was 

applied to the selected beads (with delta_distance=20, max_distance=1000) to determine cell type 

co-occurence as a function of distance. 

 

Comparing spatial organization of epithelial programs in human and mouse 

To compare the spatial organization of epithelial programs in human and mouse, epithelial 

programs were defined based on the epithelial component of beads. To extract the epithelial 

component, human Slide-seq data was annotated with human cell cluster (cell subset) annotations 

from human scRNA-seq (Pelka et al., 2021) using TACCO’s “annotate” function with OT as core 

method, basic platform normalization, entropy regularization parameter epsilon 0.005, marginal 

relaxation parameter lambda of 0.1, and 4 iterations of bisectioning with a divisor of 3. Using this 

annotation, beads were split into contributions of every cluster using TACCO’s 

“split_observations” function, and these split contributions were aggregated up to compartment 

level. Epithelial contributions were mapped to mouse orthologs using MGI homology information 

[subsection “Mapping of mouse and human orthologs”]. Epithelial program annotations were 

mapped from mouse scRNA-seq (from dysplastic samples only) to the epithelial fraction of each 
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human Slide-seq bead (using compartment-level aggregated split beads, including from every bead 

those UMIs that were assigned to any of the epithelial clusters), using TACCO’s “annotate” 

method with OT as core method, basic platform normalization, entropy regularization parameter 

epsilon 0.005 and marginal relaxation parameter lambda of 0.001. These data and the mouse data 

were subsetted to the same “epithelial domain” beads as in the cell-type case [subsection 

“Comparing cell-type spatial organization in human and mouse”] and TACCO’s “co_occurrence” 

function was used (with delta_distance=20, max_distance=1000) to determine the co-occurrence 

of epithelial programs as a function of their distance. 

 

Scoring epithelial mouse regions in mouse and human epithelial pseudo-bulk data 

The published processed and filtered count matrices were used (where available) or instead raw 

count matrices for single cell/nucleus RNA seq data from Pelka (Pelka et al., 2021), Chen (Chen 

et al., 2021), Khaliq (Khaliq et al., 2022b), Becker (Becker et al., 2022), Zheng (Zheng et al., 2022) 

(excluding 'blood' samples), Che (Che et al., 2021) (only 'CRC' and 'LM' samples) and Joanito 

(Joanito et al., 2022) (excluding the ‘LymphNode’ sample). 

 

To subset the human single cell data to epithelial cells, the epithelial annotation was used where 

readily available (Chen et al., 2021; Pelka et al., 2021). For the remaining datasets (Becker et al., 

2022; Che et al., 2021; Joanito et al., 2022; Khaliq et al., 2022b; Zheng et al., 2022), TACCOs 

tc.tl.annotate function was used with default parameters to transfer the 'cl295v11SubShort' 

annotation from Pelka (Pelka et al., 2021), from which a compositional compartment annotation 

was constructed, and then a cell was assigned to the epithelial compartment if it had more than 

95% epithelial fraction. 
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To correct for batch effects between the different data sources, first batches were defined by 

species times protokoll: 'mouse-10x3p', 'mouse-SlideSeq', 'human-10x3p' (Che et al., 2021; 

Joanito et al., 2022; Pelka et al., 2021; Zheng et al., 2022), 'human-10x5p' (Joanito et al., 2022; 

Khaliq et al., 2022b), 'human-inDrop' (Chen et al., 2021), and 'human-snRNA' (Becker et al., 

2022). Then TACCO's "tc.pp.normalize_platform" function was used to determine per gene batch 

normalization factors using only the normal samples of one data source per batch (choosing the 

normal samples from Zheng for 'human-10x3p' and the normal 5’ samples from Joanito for 

'human-10x5p'). The resulting factors are then used to rescale the sample-by-gene count matrices 

for the full dataset per batch, i.e. including non-normal samples. The normalization factors are 

calculated with respect to an (arbitrarily chosen) normal reference dataset (Zheng et al., 2022). 

The epithelial mouse region score was defined as the mean of the clr-transformed expression 

values in the pseudo-bulk expression profile of the epithelial part of a dataset using the top 200 

differentially expressed genes between all regions by Fisher’s exact test. 

To account for species-specific biases (in-set vs. out-of-set prediction: the DEGs are calculated in 

mouse), the scores per region across samples were zero-centered and scaled to unit variance across 

all samples (including normal and non-normal samples and all batches) per species. A Principal 

Components Analysis (PCA) of the region scores across all species, batches and samples was 

conducted and the values for the first PC were compared between different conditions using Mann-

Whitney U test with Benjamini-Hochberg FDR. 

 

Assessing the relation between mouse regions and clinical endpoints in human bulk RNA-

seq 
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Published RNA-seq data from the COAD and READ cohorts of TCGA PanCancerAtlas were used. 

Mouse region scores were defined as the mean of the log1p-transformed, zero-centered and scaled 

expression values in the bulk expression profile using the top 200 differentially expressed genes 

between the malignant mouse regions (6, 8, 11) by Fisher’s Exact test (comparing each of the three 

regions to the other two). Scores were stratified into quartiles. PFI was compared between patients 

with tumors whose scores were in the lowest and highest quartiles using the Logrank test as 

implemented in the lifelines package, followed by Benjamini-Hochberg FDR. 

 

Compositional enrichment analyses 

Enrichments on compositional data (cell type compositions, etc.) were evaluated with a one-sided 

Welch’s t test on sample level using CLR-transformed compositions followed by Benjamini-

Hochberg FDR. For the enrichment of tdTomato, counts and ALR-transformation were used 

instead with all non-tdTomato counts used as reference compartment. Enrichment analyses were 

performed using TACCO’s “enrichments” function. 

 

GO term enrichment analyses 

GO term enrichment analyses are performed using TACCO’s setup_goa_analysis and 

run_goa_analysis methods, which use GOATOOLS (Klopfenstein et al., 2018) and a Scipy’s two-

sided Fishers Exact test stats.fisher_exact internally. 

 

Pearson correlation 

For all analyses, Pearson correlation coefficients were calculated using TACCO’s utils.cdist which 

internally used Scipy’s spatial.distance.cdist function. 
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