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Abstract16

Background: The linear regression method (LR) was proposed to estimate population bias and accuracy17

of predictions, while addressing the limitations of commonly used cross-validation methods. The validity18

and behavior of the LR method have been provided and studied for linear model predictions but not for19

non-linear models. The objectives of this study were to 1) provide a mathematical proof for the validity of20

the LR method when predictions are based on conditional mean, 2) explore the behavior of the LR method21

in estimating bias and accuracy of predictions when the model fitted is di↵erent from the true model, and22

3) provide guidelines on how to appropriately partition the data into training and validation such that the23

LR method can identify presence of bias and accuracy in predictions.24

Results: We present a mathematical proof for the validity of the LR method to estimate bias and accuracy25

of predictions based on the conditional mean, including for non-linear models. Using simulated data, we26

show that the LR method can accurately detect bias and estimate accuracy of predictions when an incorrect27

model is fitted when the data is partitioned such that the values of relevant predictor variables di↵er in the28

training and validation sets. But the LR method fails when the data are not partitioned in that manner.29

Conclusions: The LR method was proven to be a valid method to evaluate the population bias and accuracy30

of predictions based on the conditional mean, regardless of whether it is a linear or non-linear function of31

the data. The ability of the LR method to detect bias and estimate accuracy of predictions when the model32

fitted is incorrect depends on how the data are partitioned. To appropriately test the predictive ability of a33

model using the LR method, the values of the relevant predictor variables need to be di↵erent between the34

training and validation sets.35
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Background36

Advances in high-throughput genotyping have enabled the implementation of genomic prediction, which37

has facilitated the genetic improvement of animals and plants based on more accurate estimated breeding38

values (EBV) at an early stage [e.g., 1–6]. Various genomic prediction models have been proposed and39

prediction performance across or within models is usually evaluated by cross-validation (CV) methods [1, 7–40

9]. With CV, the data set is partitioned into training and validation sets, with the training set used to fit a41

prediction model and estimate the breeding values of individuals in the validation set. Prediction performance42

is commonly evaluated with the statistic of predictivity, which is the correlation coe�cient between the EBV43

and phenotypes adjusted for fixed e↵ects of individuals in the validation set. Scaling predictivity by the44

square root of heritability (h2) provides an estimator for prediction accuracy of the EBV [10], defined as the45

correlation between true and estimated breeding values. While accuracy estimated with CV has been widely46

used to quantify the performance of genomic prediction models, pre-correcting phenotypes in the validation47

set using estimates of fixed e↵ects obtained using the whole data set will overestimate the accuracy when48

multiple levels of fixed e↵ects are present [11]. Additional limitations include that it can not be applied to49

complex models (e.g., random regression models), indirect traits (e.g., unobserved latent traits), and traits50

with low heritability (h2) [11].51

To address these limitations of the CV methodology, Legarra and Reverter [11] proposed a linear regression52

(LR) method to estimate the accuracy of genomic prediction. The LR method quantifies the population53

accuracy and bias of predictions based on the comparison of EBV of individuals in the validation set estimated54

using the training data set with the EBV of those same individuals estimated using the combined training55

and validation sets. In the LR method literature, the training set is referred to as the partial data set (p)56

and the combined training and validation data set is referred to as the whole data set (w). The LR method57

was mathematically proven to provide unbiased estimates of the accuracy and bias of predictions for best58

linear unbiased prediction (BLUP) by Legarra and Reverter [11] based on results from Reverter et al. [12].59

Macedo et al. [13] investigated the behavior and properties of the LR method by analyzing simulated data60

with pedigree-based genetic models. They studied the LR estimators of population bias and accuracy of61

predictions by using wrong values of h2 in the analysis and by fitting wrong models, and claimed that “the62
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LR method works reasonably well for detection of bias when the model used is robust or close to the true63

model, and that it works well for estimation of accuracy even when the model is not good”. The validity64

and performance of the LR method for a non-linear model was explored by Bermann et al. [14]. In their65

study, they evaluated the performance of the LR method by fitting a threshold model to both simulation66

and real data sets and concluded the LR method can be useful to estimate the directions of bias, dispersion,67

and accuracy, though with di↵erent magnitudes. The original proof of the LR method [11] was based on the68

setting where the whole data set had additional phenotype records relative to the partial data set. Belay et69

al. [15] have recently shown that the LR method can also be applied to the setting where the whole data70

set has additional genotypes (rather than phenotypes) relative to the partial data set. They used the LR71

method to evaluate the bias and accuracy in single-step genomic predictions.72

While the validity and performance of LR method has been explored using linear and non-linear models73

in previous studies [13, 14], a mathematical proof of its validity for non-linear methods of prediction has74

not yet been presented. In addition, studies about the performance of the LR method when a model other75

than the true model is fitted are still relatively scarce in the literature. The objectives of this study are to76

1) present a mathematical proof of the validity of the LR method when predictions are based on conditional77

mean, regardless of whether it is a linear or non-linear function of the data 2) investigate the ability of the78

LR method to estimate the bias and accuracy of predictions when the fitted model di↵ers from that used to79

generate the data, and 3) provide some guidelines on how to partition the data set such that the LR method80

can detect bias and estimate accuracy of predictions when the incorrect model is fitted.81
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Theory82

Proof that Cov(ûw, ûp) = Var(ûp)83

In the LR method, Legarra and Reverter [11] used var(x) to denote the variance of a random element, x,

sampled from a single realization of the random vector (x). Here we will denote this variance by Var(x) =

var(x). Let u denote the breeding value of a validation animal, and ûp and ûw denote the estimated breeding

value of u obtained from partial data and whole data, respectively. Legarra and Reverter [11] proposed the

LR method for BLUP by showing Cov(ûw, ûp) = Var(ûp) using the results from Reverter et al. [12] and

assumptions of Cov(u, û) = Var(û) and E(ûp) = E(ûw) = E(u). In the following, we prove the validity of the

LR method for non-linear models by generalizing the proof of Cov(ûw, ûp) = Var(ûp) for prediction using

the conditional mean, which may be non-linear. Let

yw =

2

664
yp

yr

3

775 ,

where yw, yp, and yr indicate a vector of phenotype records in the whole, partial, and validation data set,

respectively. It is convenient to first show that Eyr|yp
(ûw|yp) = ûp:

Eyr|yp
(ûw|yp) =

Z

yr

ûw · f(yr|yp)dyr

=

Z

yr

Z

u
u · f(u|yp,yr)du · f(yr|yp)dyr

=

Z

yr

Z

u
u · f(u,yp,yr)

f(yp,yr)
du · f(yr|yp)dyr

=

Z

yr

Z

u
u · f(u,yp,yr)

f(yr|yp) · f(yp)
du · f(yr|yp)dyr

=

Z

u

Z

yr

u · f(u,yp,yr)

f(yr|yp) · f(yp)
· f(yr|yp)dyrdu

=

Z

u
u · f(u,yp)

f(yp)
du

=

Z

u
u · f(u|yp)du

= ûp
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Now, we write the Cov(ûw, ûp) as:

Cov(ûw, ûp) = Eyw [ûw(ûp � ✓)]

= Eyw [(ûw � ûp + ûp)(ûp � ✓)]

= Eyw [(ûw � ûp)(ûp � ✓) + ûp(ûp � ✓)],

where ✓ is the expected value of ûp. But the first term of this expectation can be shown to be null:

Eyw [(ûw � ûp)(ûp � ✓)] = Eyp{Eyr|yp
[(ûw � ûp)(ûp � ✓)|yp]}

= Eyp{(ûp � ✓)Eyr|yp
[(ûw � ûp)|yp]}

= Eyp [(ûp � ✓)(ûp � ûp)]

= 0,

because, as shown previously, Eyr|yp
(ûw|yp) = ûp. Thus, the Cov(ûw, ûp) becomes:

Cov(ûw, ûp) = Eyw [ûp · (ûp � ✓)]

= Eyp [ûp · (ûp � ✓)]

= V ar(ûp).

With the proof of Cov(ûw, ûp) = V ar(ûp), we showed the LR method holds for non-linear models. This proof84

is similar in principle to that provided by Belay et al. [15], but we recognize that it is not limited to BLUP,85

as invoked in that study, but is applicable to any method of prediction based on the conditional mean [16],86

including for non-linear models.87
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Data simulation88

A longitudinal data set of body weights in pigs was simulated to evaluate the behavior of LR method for non-

linear models, both when the true and a wrong model are used for analysis. Body weights of 1500 individuals

from 70 to 500 days of age were simulated using a combination of multi-trait QTL e↵ects (30 bi-allelic QTL)

and a Gompertz growth model. Following van Milgen et al. [17], the body weight of individual i at age t

(BWit) was simulated as:

BWit = g(✓i, t) + ✏it, (1)

where ✓i = [Age115i Shapei BW65i] refers to three underlying latent variables for pig i of age at 115

kg, a shape parameter, and body weight at 65 days, and ✏it is the residual. We simulated a heterogeneous

residuals to mimic the real growth data for pigs using three di↵erent residuals across days 70 to 500 ( i.e.,

70-167: �2
✏1 = 3.0, 168-334: �2

✏2 = 4.0, and 335-500: �2
✏3 = 8.0). In equation (1), g(.) indicates the nonlinear

Gompertz function [17]:

g(✓i, t) = 115⇥
✓

115

BW65i

◆
✓
� e(�Shapei(Age115i�65))�e(�Shapei(�65+t))

�1+e(�Shapei(Age115i�65))

◆

.

The three underlying latent variables ✓i for individual i were considered correlated and modeled with a

multivariate QTL e↵ects model.

✓i = µ+CGi +
pX

j=1

mij↵j + ei,

where µ is a vector with the intercepts for each latent variable, CGi is a vector of contemporary group e↵ects,89

mij is the genotype covariate (0, 1, 2) of individual i at the jth QTL, ↵j is a vector of e↵ects for the three90

latent variables for the jth QTL, and ei is a vector of random environmental e↵ects associated with each91

latent variable. Based on the results of Yu et al. [18], the variance-covariance matrix used for simulation of92
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random environmental e↵ects was equal to

2

666664

3.65⇥ 10�3 1.05⇥ 10�3 5.51⇥ 10�3

1.05⇥ 10�3 3.52⇥ 10�2 �1.44⇥ 10�2

�5.51⇥ 10�3 �1.44⇥ 10�2 3.05⇥ 10�2

3

777775
. The variance-93

covariance used to simulate QTL e↵ects for the three latent variables was arbitrarily but without loss of94

generality derived by dividing the environmental variance-covariance by the number of QTL (i.e., 30).95

Using the QTL as markers, the simulated data were analyzed with two Bayesian Hierarchical models: 1)96

the Gompertz model that was used for simulation, i.e. the true model, and 2) a quadratic growth model,97

i.e. a wrong model. Variance components that were used to simulate the data were fitted into the true and98

wrong models for analysis. The prediction performances of these two models were evaluated using the LR99

method across 20 replicates. All analyses were performed in Julia [19].100

Data analysis models101

We analyzed the simulated data using the Bayesian Hierarchical Gompertz growth model (BHGGM) devel-

oped by Yu et al. [18], which integrates a Gompertz growth model, i.e. the true model, with a multi-trait

marker e↵ects models. Following equation (1), the three underlying latent variables in the Gompertz growth

model were assigned the following prior:

✓i ⇠ MVN

0

@µ+CGi +
pX

j=1

mij↵j ,⌃e

1

A ,

where ⌃e is the environmental variance-covariance matrix, which was assumed to have an inverse Wishart102

prior, W�1(Se, ⌫e). The prior for ✏it had a null mean and age specific variances (as described above) to103

allow fitting heterogeneous residuals. Flat priors were assigned to µ and CGi and the prior for ↵j followed104

MVN (0,⌃↵), where ⌃↵ has an inverse Wishart distribution, W�1(S↵, ⌫↵).105

To fit the Bayesian Hierarchical quadratic growth model (BHQGM), i.e. the wrong model, we introduced

a quadratic growth model for the non-linear function g(.) in equation (1):

BWit = bi0 + bi1t+ bi2t
2 + ✏it,

9
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where bi0, bi1, and bi2 refer to three underlying latent variables for individual i and were assigned the same106

multivariate normal prior as ✓i in BHGGM. The other parameters in BHQGM also used the same priors as107

in BHGGM.108

Design of the partial and validation data sets109

To investigate the behavior of the LR method, three partitioning scenarios (Figure 1) were implemented: 1)110

by animal: phenotype records for days 70 to 500 of the first 500 individuals comprised the partial set and the111

phenotypes of the remaining 1000 individuals were assigned into the validation set, 2) by age: phenotypes for112

days 70 to 300 of all 1500 individuals comprised the partial set and all 1500 individuals and their phenotypes113

from days 301 to 500 were considered as the validation set, and 3) by animal and age: phenotypes for days114

70 to 300 of the first 500 individuals comprised the partial set and phenotypes for days 301 to 500 for the115

remaining 1000 individuals were assigned to the validation set. The EBV of body weights for individuals in116

the validation set across days were then predicted based on the partial set of di↵erent scenarios.117

LR method estimators118

Following Legarra and Reverter [11], estimators of bias, inflation, and accuracy were calculated for EBV of119

body weights of the individuals in the validation set using the LR method, as described below.120

1 The LR estimator of population bias is �̂p = ûp� ûw, which is the di↵erence between the mean EBV121

of individuals in the validation set estimated from partial and whole data sets, where a value of 0122

indicates no bias.123

2 The estimator of inflation is obtained by computing the regression coe�cient of ûw on ûp, b̂wp =124

Cov(ûw,ûp)
Var(ûp)

, which is an estimator of the regression of true breeding value on ûp (bup). This estimator125

has been referred to as estimator of dispersion by Legarra and Reverter [11] and inflation by Belay126

et al. [15], where 1 indicates no inflation. Suppose animals are selected based on EBV to increase the127

values of a trait. Then if the true inflation is less than 1, the BV of selected candidates is expected to128

be lower than their EBV, which indicates an upward bias of the EBV of the selected animals. On the129

other hand, when b̂wp is larger than 1, the BV of selected candidates will be higher than their EBV,130

which indicates an downward bias of the EBV of the selected animals.131
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3 The estimator of population accuracy, ⇢̂p = Cov(ûw,ûp)q
\Var(u)⇥Var(ûp)

, where \Var(u) refers to an estimate of the132

genetic variance of individuals in the validation set. This estimate was obtained by Gibbs sampling133

as: \Var(u) = 1
ntrn

Pntrn

j=1 u2
j �

⇣
1

ntrn

Pntrn

j=1 uj

⌘2
, where uj refers to the sampled breeding value of134

individual j and ntrn is the total number of individuals in the training set.135

In addition to these LR estimators of bias, inflation, and accuracy for body weights predictions, we also136

calculated the “true” estimators of these parameters using the simulated values of u in place of ûw for each137

day. Note that these “true” estimators can only be computed in a simulation study, and they are used to138

study the performance of the LR estimators, which can be computed in real data analyses.139

For the true and estimated bias statistics, we calculated their means for each day of age across all animals140

in the validation set. These bias statistics were averaged across days within each replicate to test whether141

their mean was significantly di↵erent from 0 using a t test. Similarly, true and estimated regression coe�cient142

statistics were averaged across days within each replicate to test whether their mean was significantly di↵erent143

from 1 using a t test.144
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Results145

To better visualize the prediction performances across the fitted models and partitioning scenarios, we146

randomly picked one individual from the validation set and displayed its simulated data against its predictions147

in Figure 2. Both simulated body weight phenotypes, true breeding values, and estimated breeding values of148

the selected individual were displayed. The predicted data included the breeding values estimated from the149

partial and whole data sets for the three partitioning scenarios (Figure 2).150

Population bias151

Figure 3 shows the true and LR estimates of prediction bias of EBV for body weight at each day when the152

data were partitioned by animal. When the true model (BHGGM) was used, both the true and LR estimates153

of prediction bias were symmetrically distributed around 0 for each day, and their mean was not significantly154

di↵erent from 0 (P = 0.84 and P = 0.37). In contrast, when the wrong model (BHQGM) was used, the mean155

of the true estimates of bias was significantly di↵erent from 0 (P < 0.001), but the LR estimates of bias156

were symmetrically distributed around 0 for each day and their mean was not significantly di↵erent from 0157

(P = 0.4).158

Figure 4 shows the true and LR estimates of prediction bias of EBV for body weights at each day when159

the data were partitioned by age. When the true model was used, both the true and LR estimates of bias160

were symmetrically distributed around 0 for each day, and their mean was not significantly di↵erent from161

0 (P = 0.10 and P = 0.09). When the wrong model was used, the true and LR estimates of bias were162

significantly di↵erent from 0 (P < 0.001 and P = 0.002). Results for the partitioning by animal & age were163

consistent with those in Figure 4 and are shown in Supplemental Figure S1.164

Figure 5 shows the true and LR estimates of regression coe�cient of EBV for body weights at each day when165

the data were partitioned by animal. When the true model was used, both the true and estimated regression166

coe�cients were symmetrically distributed around 1 for each day, and their mean was not significantly167

di↵erent from 1 (P = 0.75 and P = 0.53). When the wrong model was used, the true and LR estimates of168

regression coe�cient were significantly di↵erent from 1 (P < 0.001). Results for the partitioning by age and169

12
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by animal & age were consistent with those in Figure 5 and are given in Figure 6 and Supplemental Figure170

S2, respectively.171

Population accuracy172

In Figure 7, the true and LR estimates of prediction accuracy of EBV for body weights at each day when the173

data were partitioned by animal are presented. The LR estimate of prediction accuracy had a similar pattern174

as the true estimate of accuracy when using the true model but not when the wrong model was used. When175

partitioning the data by age, the LR estimate of accuracy showed a similar pattern as the true estimate of176

accuracy curve regardless of which model was fitted. We also evaluated the di↵erence between cov(u, ûp)177

and cov(ûw, ûp) when fitting the true and wrong model for the three data partitioning scenarios (Table 1).178

There was a non-significant di↵erence (P � 0.74) between cov(u, ûp) and cov(ûw, ûp) when the true model179

was fitted, but a significant di↵erence (P  0.004) was observed for each scenario when the wrong model180

was fitted.181
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Discussion182

Based on the initial idea from Reverter et al. [12], Legarra and Reverter [11] proposed the LR method to183

quantify the prediction bias and accuracy of EBV at the population level. They proved the validity of LR184

method for EBV from a linear model using standard BLUP theory and applied the LR method to a real185

cattle data set [11]. While the LR method has also been applied to EBV from a threshold model [14], a186

mathematical proof of its validity for a non-linear method of prediction has not been provided. In this study,187

we presented a mathematical proof for the validity of the LR method for predictions based on the conditional188

mean [16]. In our proof, we assume the partial data contains a subset of the phenotypes in the whole data.189

Belay et al. [15] showed the LR method is also applicable to BLUP when the partial data contains a subset190

of the genotypes in the whole data. The proof presented in the current paper is similar in principle to that191

provided by Belay et al. [15]. Taken together, these two proofs show that the LR method is applicable192

to predictions based on conditional mean, regardless of whether the data are partitioned by genotypes or193

phenotypes and regardless of whether the model is linear or non-linear. Strictly, however, the LR method is194

only valid if the true model is fitted.195

Using simulated longitudinal data, we confirmed our proof and investigated its behavior when a wrong196

model was used for estimation. Furthermore, we explicitly explored how the strategy for partitioning the data197

into training and validation sets a↵ect the ability of the LR method to detect bias and estimate accuracy198

with the model fitted is not the true model, using three di↵erent data partitioning strategies. Below, we199

summarize the implications of the fitted model and data partitioning strategies on the performance of the200

LR method, thereby providing guidelines for its use to detect bias and estimate accuracy of predictions when201

a wrong model is fitted.202

When the wrong model (BHQGM) was fitted and the data were partitioned by animal, the true estimate of203

bias was significant, but the LR estimate was not able to identify this bias (Figure 3). Macedo et al. [13] also204

observed that for a certain misspecification of the model, the LR method was not able to correctly detect205

and estimate a bias. Figure 5 shows that when the wrong model was used, the true estimate of regression206

of ûw on ûp had a significant deviation from 1, and in this case the estimate of the regression coe�cient207

based on the LR method was also significantly di↵erent from 1, although di↵ering in magnitude from the208
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true estimate of regression coe�cient. This is also consistent with the results observed by Macedo et al. [13].209

The pattern of EBV against age were presented in Figure 2 (left column) for a randomly selected individual.210

When the wrong model was fitted, the EBV from the partial and whole data sets deviated more from the211

true BV than EBV from the true model did. However, even when the wrong model was used, the EBV212

from partial and whole data sets were very similar. This explains why the estimate of bias based on the LR213

method was not significant when the wrong model was used, although there was a true bias. Figure 7 shows214

that, with the wrong model, the accuracy estimated by the LR method was slightly higher than the true215

estimate of accuracy, which is consistent with Macedo et al. [13].216

When the data were partitioned by age, the LR method was able to correctly detect a bias and inflation217

when the wrong model was used (Figures 4 and 6). Figure 2 (middle column) shows the EBV of a randomly218

selected individual when the data were partitioned by animal. When the wrong model was fitted, the EBV219

estimated from partial and whole data sets both deviated from the true BV but the EBV based on the partial220

set was quite di↵erent from that estimated from the whole set. This illustrates the significant bias that was221

detected by the LR method for this scenario. Results for the partitioning by animal & age (right column in222

Figure 2) were similar to those when partitioning by age. As in Macedo et al. [13], even with the use of a223

wrong model, the accuracy estimated by the LR method was quite close to the true accuracy (Figure 8).224

The inconsistent bias estimates obtained with the LR method for di↵erent data partitioning strategies225

suggests that the LR method captures di↵erent aspects of the model for di↵erent data partitions. When226

the data were partitioned by animal, both the partial and whole data sets included phenotypes over the227

range from 70 to 500 days. Thus the fit of the growth curve from the partial and whole data sets were228

similar, even for the wrong model, although the fit might deviate from that using the true model. Fitting229

the wrong growth model is only incorrect in the relationship between age and body weight within individual230

but correctly models relationships between relatives. Thus to appropriately test the predictive ability of the231

growth model using the LR method, we needed to predict the body weights of animals that are outside the232

observed age range for animals in the training set. When the data are partitioned by age, the partial data set233

has only body weights measured at ages up to 300 days, whereas the validation data set has body weights234

measured at ages up to 500 days. Thus when we predict the body weights of the individuals in the validation235

set based on the fit of the growth model from the partial data set, we are testing the predictive ability of the236
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growth model. In this case, the LR method was able to correctly detect a bias when using the wrong model237

(bottom right plots in Figure 4 and Figure 6). In real data analyses, repeated k-fold LR can be used to test238

the significance of bias. Or if Bayesian method is employed for the LR analysis, the posterior probability of239

bias can be computed from a single partitioning of the data.240

In general, to properly test the predictive ability of a model with the LR method, we need to use the241

model to predict the performance of individuals that have values for the relevant predictor variables or242

combination of predictor variables that were not present in the training data. In our simulated data, the243

predictor variables included the marker genotypes, as well as age. Let’s define the predicted performance of244

individual i as ŷi = f(xi; ✓̂), where f(.) is the linear or non-linear function used for prediction, xi is a vector245

of predictor variables for individual i, and ✓̂ is estimates of model parameters. Below we will use genomic246

prediction by ridge regression BLUP (RR-BLUP) as an example for illustration. To evaluate the predictive247

ability of RR-BLUP, the data are partitioned into training and validation sets. The training set is used to248

fit the predictive model f(.) and to estimate the model parameters ✓ (i.e., marker e↵ects). By plugging the249

marker e↵ect estimates ✓̂ and observed marker genotypes x into f(.), the performance of individuals in the250

validation set can be predicted. The predictive ability of the model can then be quantified by comparing251

the predicted and observed performances of individuals in the validation set. In RR-BLUP, the relevant252

predictor variables are the marker genotypes. Thus the same records cannot be used in both the training253

and validation sets. In our example, the LR method was used to determine whether it could detect a bias254

when a wrong model was used for analysis of longitudinal body weight data. When predicting longitudinal255

body weights, the relevant predictor variable is not the genotype but the age of the animal. When the data256

were partitioned by animal, the training (partial) and validation sets included phenotypes for animals with257

age ranging from days 70 to 500, the same age range as training data was used for the validation data and,258

therefore, the LR method failed. However, when the data were partitioned by age, the model was trained259

using phenotypes with ages ranging from days 70 to 300 and it was tested by predicting body weights for260

animals with age ranging from days 301 to 500. In this case, the LR method was able to detect a bias when261

using the wrong model. This was even true when the same genotypes were used in both the training and262

validation sets, because to check if the model used for predicting longitudinal body weights is correct, the263

relevant predictor variable is age.264

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.02.510518doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.02.510518
http://creativecommons.org/licenses/by/4.0/


Conclusions265

In the present study, we provide a mathematical proof for the validity of applying the LR method to266

predictions based on the conditional mean, regardless of whether it is a linear or non-linear function of data.267

Using simulated data, we observed that the LR method was able to detect bias in predictions when an268

incorrect non-linear model was fitted. However, when a wrong model is fitted, testing the predictive ability269

of the model using the LR method is only valid if the validation set includes values of relevant predictor270

variables that are not present in the training set. To our knowledge, this marks the first study that provides271

a mathematical proof of the validity of using LR method to a non-linear method of prediction, and we272

provide guidelines on how to partition data such that the LR method can detect bias and estimate accuracy273

of predictions when the model fitted is incorrect.274

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.02.510518doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.02.510518
http://creativecommons.org/licenses/by/4.0/


Acknowledgements275

Funding276

This work was funded by USDA National Institute of Food and Agriculture award number 2020-67015-31031.277

Authors’ contributions278

HY, JCMD, and RLF conceived the research idea. HY and RLF derived a mathematical proof for the validity279

of the LR method for predictions based on conditional mean. HY performed the data analyses and drafted280

the manuscript. JCMD and RLF edited the manuscript. All authors read and approved the final manuscript.281

Ethics declarations282

Ethics approval and consent to participate283

Not applicable.284

Consent for publication285

Not applicable.286

Competing interests287

The authors declare that they have no competing interests.288

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.02.510518doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.02.510518
http://creativecommons.org/licenses/by/4.0/


Tables289

Table 1: Significance (p-values) of tests for the di↵erence between Cov(u, ûp) and Cov(ûw, ûp) for the three

data partitioning scenarios and the two models.

By animal By age By animal & age

True model 0.74 0.85 0.79

Wrong model 0.004 0.002 0.002
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Figure legends290

Figure 1: Outline of three data partitioning scenarios to create partial and validation sets for the LR method.291

Figure 2: Example of simulated phenotypes, true breeding values (BV), and estimated breeding values (EBV)292

for body weight by age using the true model (TM) and the wrong model (WM) when the partial data set293

(Part) was partitioned using di↵erent scenarios.294

Figure 3: True and LR estimates of bias of EBV of body weights at each day when the true or wrong model295

was fitted and when partitioning the data by animal. Grey lines are results of 20 simulation replicates, the296

red line is the mean of 20 replicates, and the black line indicates bias = 0. P refers to significance of tests297

for the di↵erence between true or LR estimate of bias and 0.298

Figure 4: True and LR estimates of bias of EBV of body weights at each day when the true or wrong model299

was fitted and when partitioning the data by age. Grey lines are results of 20 simulation replicates, the red300

line is the mean of 20 replicates, and the black line indicates bias = 0. P refers to significance of tests for301

the di↵erence between true or LR estimate of bias and 0.302

Figure 5: True and LR estimates of regression coe�cient of EBV of body weights at each day when the true303

or wrong model was fitted and when partitioning the data by animal. Grey lines are results of 20 simulation304

replicates, the red line is the mean of 20 replicates, and the black line indicates regression coe�cient = 1. P305

refers to significance of tests for the di↵erence between true or LR estimate of regression coe�cient and 1.306

Figure 6: True and LR estimates of regression coe�cient of EBV of body weights at each day when the true307

or wrong model was fitted and when partitioning the data by age. Grey lines are results of 20 simulation308

replicates, the red line is the mean of 20 replicates, and the black line indicates regression coe�cient = 1. P309

refers to significance of tests for the di↵erence between true or LR estimate of regression coe�cient and 1.310
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Figure 7: True and LR estimates of accuracy when the true or wrong model was fitted and when partitioning311

the data by animal. Grey lines are results of 20 simulation replicates, the red line is the mean of 20 replicates,312

and the black line indicates accuracy = 1.313

Figure 8: True and LR estimates of accuracy when the true or wrong model was fitted and when partitioning314

the data by age. Grey lines are results of 20 simulation replicates, the red line is the mean of 20 replicates,315

and the black line indicates accuracy = 1.316
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Supplemental Figure legends317

Figure S1: True and LR estimates of bias of EBV of body weights at each day when the true or wrong model318

was fitted and when partitioning the data by animal & age. Grey lines are results of 20 simulation replicates,319

the red line is the mean of 20 replicates, and the black line indicates bias = 0. P refers to significance of tests320

for the di↵erence between true or LR estimate of bias and 0.321

Figure S2: True and LR estimates of regression coe�cient of EBV of body weights at each day when the322

true or wrong model was fitted and when partitioning the data by animal & age. Grey lines are results of323

20 simulation replicates, the red line is the mean of 20 replicates, and the black line indicates regression324

coe�cient = 1. P refers to significance of tests for the di↵erence between true or LR estimate of regression325

coe�cient and 1.326

Figure S3: True and LR estimates of accuracy of EBV of body weights at each day when the true or wrong327

model was fitted and when partitioning the data by animal & age. Grey lines are results of 20 simulation328

replicates, the red line is the mean of 20 replicates, and the black line indicates accuracy = 1.329
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Figure 1: Outline of three data partitioning scenarios to create partial and validation sets for the

LR method.
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Figure 2: Example of simulated phenotypes, true breeding values (BV), and estimated breeding

values (EBV) for body weight by age using the true model (TM) and the wrong model (WM) when

the partial data set (Part) was partitioned using di↵erent scenarios.
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Figure 3: True and LR estimates of bias of EBV of body weights at each day when the true or

wrong model was fitted and when partitioning the data by animal. Grey lines are results of 20

simulation replicates, the red line is the mean of 20 replicates, and the black line indicates bias =

0. P refers to significance of tests for the di↵erence between true or LR estimate of bias and 0.
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Figure 4: True and LR estimates of bias of EBV of body weights at each day when the true or wrong

model was fitted and when partitioning the data by age. Grey lines are results of 20 simulation

replicates, the red line is the mean of 20 replicates, and the black line indicates bias = 0. P refers

to significance of tests for the di↵erence between true or LR estimate of bias and 0.
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Figure 5: True and LR estimates of regression coe�cient of EBV of body weights at each day when

the true or wrong model was fitted and when partitioning the data by animal. Grey lines are results

of 20 simulation replicates, the red line is the mean of 20 replicates, and the black line indicates

regression coe�cient = 1. P refers to significance of tests for the di↵erence between true or LR

estimate of regression coe�cient and 1.
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Figure 6: True and LR estimates of regression coe�cient of EBV of body weights at each day when

the true or wrong model was fitted and when partitioning the data by age. Grey lines are results

of 20 simulation replicates, the red line is the mean of 20 replicates, and the black line indicates

regression coe�cient = 1. P refers to significance of tests for the di↵erence between true or LR

estimate of regression coe�cient and 1.
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Figure 7: True and LR estimates of accuracy when the true or wrong model was fitted and when

partitioning the data by animal. Grey lines are results of 20 simulation replicates, the red line is

the mean of 20 replicates, and the black line indicates accuracy = 1.
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Figure 8: True and LR estimates of accuracy when the true or wrong model was fitted and when

partitioning the data by age. Grey lines are results of 20 simulation replicates, the red line is the

mean of 20 replicates, and the black line indicates accuracy = 1.
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Figure S1: True and LR estimates of bias of EBV of body weights at each day when the true or

wrong model was fitted and when partitioning the data by animal & age. Grey lines are results of

20 simulation replicates, the red line is the mean of 20 replicates, and the black line indicates bias

= 0. P refers to significance of tests for the di↵erence between true or LR estimate of bias and 0.
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Figure S2: True and LR estimates of regression coe�cient of EBV of body weights at each day

when the true or wrong model was fitted and when partitioning the data by animal & age. Grey

lines are results of 20 simulation replicates, the red line is the mean of 20 replicates, and the black

line indicates regression coe�cient = 1. P refers to significance of tests for the di↵erence between

true or LR estimate of regression coe�cient and 1.
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Figure S3: True and LR estimates of accuracy of EBV of body weights at each day when the true

or wrong model was fitted and when partitioning the data by animal & age. Grey lines are results

of 20 simulation replicates, the red line is the mean of 20 replicates, and the black line indicates

accuracy = 1.
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