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Abstract 

The flagellar axoneme is a complex protein-based machine capable of generating 

motile forces by coordinating the action of thousands of dynein motors.  A key element 

of the axoneme is the central pair apparatus, consisting of a pair of microtubules 

surrounded by additional structures.  In an effort to better understand the organization of 

the central pair, we used 2D DIGE to identify proteins that are depleted from flagella 

isolated from two different Chlamydomonas reinhardtii mutants, pf15 and pf18, that lack 

the central pair.   The set of proteins contained almost no components of the central 

apparatus.  We find that three proteins of the radial spoke head RSP1, RSP9, and 

RSP10, as well as a number of other protein components associated with the outer 

doublets, are depleted from flagella of mutants lacking the central apparatus.   Two of 

the other proteins depleted from pf15 and pf18 flagella, the microtubule inner proteins 

(MIPs) FAP21 and FAP161, are missing from the genome of Thalassiosira, an organism 

that lacks a central pair and radial spokes, and RNAi of FAP21 in planaria shows that it 

has a role in ciliary motility.  Based on the depletion of radial spoke head proteins, as 

well as MIPs and other axonemal components, from flagella lacking the central pair 

apparatus, we hypothesize that the central apparatus may play a role in scaffolding the 

assembly or retention of radial spokes and other axonemal structures. 
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Introduction 

The proper assembly of complex structures within cells is a challenging self-

assembly problem.  Flagella and cilia are among the most complex structures found in 

the cell.  The internal structure of most motile cilia and flagella consists of nine parallel 

doublet microtubules arranged around a central pair of singlet microtubules (Figure 

1A).  Force for propulsion is provided by thousands of dynein motors, anchored in two 

rows along one side of each doublet and organized into multi-headed complexes called 

the inner and outer dynein arms (DiBella 2001; Yamamoto 2021), that can walk along 

the microtubule of the adjacent doublet.   

The central pair apparatus is a complex sub-structure within the flagellum, which 

contains not only a pair of microtubules, C1 and C2, but also an elaborate set of 

projections (Figure 1B).  Various projections from the central pair apparatus are 

responsible for different behaviors, for example, studies in sea urchin sperm and 

Chlamydomonas show that only those dynein arms located near one side of the central 

pair C1 microtubule are active, while the rest are inactive (Nakano et al., 2003; Wargo 

and Smith, 2003).   

 Radial spokes are protein complexes consisting of a stalk anchored on the outer 

doublet microtubules and extending a head inwards towards the central pair apparatus 

(Curry, 1993; Diener 2011; Poghosyan 2020).  The projections on the central pair 

interact with the radial spoke head (Kohno et al., 2011), inducing a change in state on 

the radial spoke.  The resulting signaling cascade is not well understood, but likely 

involves use of secondary messengers, especially calcium, signaling to the dynein 

regulatory complex located on the A tubule of the outer doublets, which in turn triggers 
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activation of a subset of dyneins (Heuser et al., 2009; Bower 2013; Oda 2015; Gui 

2019).  In order for all these interactions to occur in their prescribed manner, cells must 

properly assemble the proteins of the central pair apparatus in the proper structure, 

correctly aligned with the radial spokes.   

Two mutants have been described in Chlamydomonas, pf15 and pf18, which 

have paralyzed flagella and which lack the organized central pair apparatus structure 

(Warr 1966; Adams 1981; Witman 1978).  The pf15 strain carries a mutation in the p80 

subunit of Katanin, a heterodimeric protein with microtubule-severing activity (Dymek 

2004) while the identity of the PF18 gene is not known.  Previous studies reported that 

the flagella of pf18 cells fixed in situ retain a large amount of electron dense material 

within their center, where the central pair structure would typically be located (Adams et 

al., 1981).  A similar electron dense core was reported in purified axonemes of pf15 

(Witman 1978).  However, when axonemes are isolated from pf18, the dense material is 

lost from the center of the axoneme, suggesting that the proteins present in pf18 flagella 

may have been removed during axoneme preparation (Zhao 2019).  This fact was used 

to analyze the proteome of the central pair apparatus by comparing the proteins found 

in axonemes isolated from wild type versus pf18 mutant cells (Zhao 2019).   

Using a small panel of antibodies directed against selected central pair apparatus 

proteins, Lechtreck (2013) found that a subset of central pair proteins, normally 

associated with the C1 microtubule, are specifically retained in pf15 and p18 flagella 

even though they are missing from isolated pf18 axonemes, while C2 associated 

proteins were missing from the flagella of the mutants as well as from the axonemes.  

This was an extremely interesting result, because it implies that central pair apparatus 
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C1 proteins can be imported into flagella, and placed in roughly the right location, but 

cannot be assembled into the proper arrangement in these mutants.   Based on this 

study, we took an alternative, more systematic approach, in which we identified proteins 

depleted from isolated whole flagella from pf15 and p18 mutants, in the hopes of being 

able to divide up the central pair apparatus proteins into two groups, one that is retained 

in flagella and therefore likely to be associated with the C1 part of the complex, and 

another set depleted from the flagella and therefore likely to be associated specifically 

with the C2 microtubule.  Contrary to our expectation, with a single  exception, the 

proteins that we found to be depleted from pf15 and pf18 flagella did not correspond to 

any of the known central pair apparatus proteins.  Instead, we found that a specific set 

of radial spoke head proteins, RSP1, RSP9, and RSP10, were depleted in both pf15 

and pf18 flagella, raising the possibility that a correctly organized central pair apparatus 

is required to scaffold the proper assembly of other axonemal structures such as the 

radial spokes.  Our study also reveals the microtubule inner protein (MIP) FAP21 to be 

a protein involved in motility and whose presence correlates with the presence of the 

central pair apparatus. 
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Results 

Proteomic analysis of central apparatus mutants 

We isolated Chlamydomonas flagella, as detailed in Materials and Methods, by 

subjecting cells to pH shock, and isolating flagella using sucrose cushions to separate 

flagella from cell bodies.  The efficiency of the pH shock and enrichment of flagella in 

the final preparation were confirmed visually using DIC microscopy, which also allowed 

for the verification of low amounts of cell body contamination of the preparation.  As 

shown in Figure 2, flagella from WT, pf15, and pf18 Chlamydomonas strains were 

isolated and differentially labeled, then subjected to 2D DIGE (Viswanathan 2006), in 

which the proteins of the isolated flagella were separated using 2-dimensional gel 

electrophoresis after fluorescent labeling.  This method provides a quantitative readout 

of protein differences between two samples by measuring the ratio of fluorescence 

intensity of each 2D gel spot in both wavelengths.   The fold enrichment of individual 

spots on the gel was determined for each mutant relative to WT samples run on the 

same gel, and spots with a 1.5 fold change or more in either mutant relative to WT, 

were excised from the gel and their identity determined using mass spectrometry.   

This analysis provided a list of 57  proteins with differential abundance in the flagella 

of both mutants (Table 1), out of which 42 were depleted in both pf15 and pf18 relative 

to wild type, while 13 were enriched in both pf15 and pf18.  Two proteins (FAP155 and 

RAN1) behaved differently in the two mutants.    

Out of the 42 proteins detected as being differentially depleted in both pf15 and pf18 

mutant flagella, the majority (32) were known flagellar proteins.   Eight proteins were 

clearly non-flagellar contamination, given that they are either cell wall or chloroplast 
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components, but all of these were among the differentially enriched, rather than 

depleted, proteins.  The degree of enrichment or depletion was highly correlated 

between the two mutants (r=0.91), suggesting that even though the pf15 and pf18 

mutations are in different genes, their effects on flagellar protein composition were 

similar. 

Contrary to our initial expectation, the most well-known central pair proteins, for 

example CPC1, Hydin,  PF20/SPAG16, and PF16/SPAG6, were not included in our list.   

In fact, the only two central pair apparatus proteins identified were Hsp70 (Mitchell 

2005), which is involved in many cellular processes, and DIP13, a protein whose 

expression is upregulated during flagellar regeneration (Stolc 2005), which has been 

identified as part of the central pair apparatus by a proteomic analysis (Zhao 2019), but 

which also localizes extensively to the outer doublet microtubules (Pfannemschmid 

1993).   Thus, neither of the central pair proteins depleted in the mutant flagella 

proteomes localize exclusively, or even primarily, in this structure.  We do however note 

that DIP13 was the most highly depleted protein in both mutants (Table 1). 

 

Proteins depleted in central apparatus mutants 

Among the proteins depleted in pf15 and pf18 mutant flagella, three protein 

components of the radial spoke, RSP1, RSP9, and RSP10.  Two of these proteins, 

RSP1 and RSP10, contain MORN domains.  All three of these proteins are part of the 

radial spoke head (Yang 2006), and it has been speculated that these proteins in 

particular may take part in direct interactions with the central pair apparatus (Yang 

2006).  Consistent with this idea, structural studies show that RSP1 and RSP10 form 
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protrusions from the spoke head (Grossman-Haham 2021).    

In addition to the radial spoke head proteins, we also found that the pf15 and pf18 

flagella were depleted for Rib43a, a component of the protofilament ribbon (Norrander 

2000; Ichikawa 2019);  Fap52 and Fap106, two components of the inner junctional 

complex of the outer doublet (Owa 2019; Khalifa 2020); FAP85 and FAP115, seven 

Microtubule Inner Proteins (MIPs) of the outer doublet (Kirima 2018; Ma 2019; Li 2021); 

and thioredoxin, which is part of the outer dynein arm (Patel-King 1996).  In fact, 

virtually every part of the axoneme except the central pair apparatus is well represented 

among the proteins depleted from the two ostensible central pair apparatus mutants. 

Also depleted was phosphoglyceromutase (PGM), a glycolytic enzyme that is 

normally found in flagella.  Although PGM is in the soluble membrane+matrix fraction 

(Mitchell 2005), the downstream glycolytic enzyme enolase is part of the central pair 

apparatus (Michell 2005), possibly suggesting that the central apparatus plays a role in 

retaining or organizing these enzymes. 

 

Comparative genomics 

As an alternative strategy to determine proteins that might depend on the central 

apparatus for their presence in flagella, we tested which of the proteins from  

Table S1 were represented in the genomes of other species with motile cilia, but absent 

from the genome of Thalassiosira pseudonana.  Thalassiosira are well-studied marine 

diatoms, and this particular species was the first eukaryotic marine phytoplankton to be 

sequenced (Armbrust 2004).  Importantly, Thalassiosira has flagella that lack central 

pairs, along with other flagellar structures that are responsible for regulating waveform, 
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including the radial spokes and inner arm dyneins (Heath and Darley, 1972; Manton et 

al., 1970).  This absence of the central pair makes it ideal for this type of comparison - 

genes for proteins that are lacking in Thalassiosira flagella are more likely to either be 

central pair components, or to rely on the central pair for their assembly into flagella.  

Among the proteins we have identified as depleted from central apparatus mutant 

flagella in Chlamydomonas, we failed to find orthologs in Thalassiosira for only 4:  IDA4, 

FAP21, RSP9, and FAP161.  IDA4 and RSP9 are already known as inner arm dynein 

and radial spoke proteins, respectively.  The other two proteins, FAP161 and FAP21, 

have been identified as a microtubule inner proteins (MIPs) of the outer doublet 

microtubules (Ma 2019), but no functional information is available about either protein.  

They are missing from the genomes of species that lack motile cilia but also from 

Thalassiosira (Figure 3).  

 

RNAi of FAP21 in Planaria 

The absence of FAP21 in Thalassiosira, which has motile flagella but lacks the 

standard machinery for coordinating flagellar motion via radial spokes and a central pair 

apparatus, suggested the possibility that this protein might be a component of the 

flagellum involved in regulating waveform or motility.  The planarian flatworm Schmidtea 

mediterranea is a rapid and convenient platform in which to test candidate genes for a 

role in ciliary motility.  The organism  is covered in cilia, with the cilia on the ventral 

surface of the worm used to drive motion over a surface, and RNAi is typically fairly 

robust and easily accomplished in Planaria via injection of double-stranded RNA 

(dsRNA)  (Rompolas et al., 2010).  We identified an ortholog of FAP21 in Schmidtea 
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(gene mk4.003874.01.01) and generated constructs to produce dsRNA against this 

gene.   

 In Planaria injected with dsRNA corresponding to the homolog of FAP21, we 

were able to observe a significant motility defect (Figure 4).  Microscopic analysis 

indicated that many of the cilia on the ventral surface of the worms subjected to RNAi 

were still motile, indicating that the RNAi did not cause completely ciliary paralysis.  This 

was expected due to the phenotype we saw - complete paralysis of the cilia is known to 

result in an inching-worming behavior, which we did not observe.   Under the imaging 

conditions employed, it was not possible to determine whether some cilia might have 

been fully paralyzed. 
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Discussion 

Why weren't known central pair proteins detected? 

Given that our study analyzed proteins depleted from flagella lacking the central 

apparatus, the obvious expectation would have been that most of the proteins identified 

would be part of the central apparatus itself, but this was not observed.   

One potential explanation for these results could be that the electron dense material 

noted in the flagella of these mutants is composed of central pair proteins, that were 

transported to the correct sub-cellular location, but were then unable to assembly into a 

stable structure that could survive the process of axoneme isolation (Lechtreck 2013).  

The presence of this material in isolated flagella, which were used in our study, would 

result in little alteration in their levels when compared to wild type, such that our analysis 

of differential enrichment would not have detected them.  Our results are thus consistent 

with a picture in which the mutants pf15 and pf18 are required for assembling central 

apparatus proteins into the correct structure, but are not required for the synthesis of 

these proteins or for their transport or retention in the flagellum.   Our results differ from 

those reported by Lechtreck (2013) who found that C1 associated proteins were 

retained in pf18 and pf19 mutants.  One possible difference is that our analysis looked 

for proteins retained in both pf15 and pf18 whereas Lechtreck focused on pf18 and pf19 

individually.   Differences could also simply reflect differences in the detection threshold 

for 2D DIGE versus Western blotting.  Further analysis will be required to establish with 

certainty the degree to which C1 versus C2 proteins are retained proteome-wide.   In 

any case, our results are broadly consistent with the prior work of Lechtreck in the 
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sense that flagella from mutants lacking an organized central pair apparatus may still 

contain a large number of the proteins that would normally compose this structure.  

However, a more trivial explanation may simply be that because an axoneme only 

contains a single central pair, but nine outer doublets along with their associated 

structures (dynein arms, radial spokes, DRC, etc), it is to be expected that central pair 

proteins will be much fainter on the 2D DIGE gel.  Even if the central pair apparatus 

proteins were technically within a detection threshold, they would tend to be missed in 

favor of the much more abundant proteins associated with the outer doublets.   

The one central apparatus protein that was highly depleted was DIP13, which is a 

microtubule remodeling protein (Basnet 2018).   Although electron microscopy has 

shown that there is substantial material remaining in the core of the axoneme in the two 

mutants, the one structure that is certainly missing is the organized pair of microtubules.  

We hypothesize that DIP13 might be uniquely dependent on these microtubules for its 

retention inside the axoneme core. 

 

  

A scaffolding function for the central apparatus 

The present study finds that when the central apparatus is absent, radial spoke head 

proteins, as well as proteins localizing to the protofilament ribbon and inner junctional 

complex are depleted, suggesting that the central apparatus is playing a crucial role in 

supporting the assembly of other structures.  We believe that these central apparatus 

interactions with other axonemal structures may represent a clear example of the 

general concept of one cellular structure scaffolding another.   
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We also note that the dependence can go the other way - it has been found that in 

mutations affecting radial spokes, the central pair apparatus can be affected (Castleman 

2009; Jeanson 2015).  Such complex interactions suggest that phenotypes resulting 

from mutations in one part of the axoneme can have effects that ramify to other parts, 

possibly contributing to the great pleiotropy seen in human ciliary disease mutations.  

With respect to the radial spoke head proteins depleted in pf15 and pf18, it is 

interesting to note that RSP1 and RSP10 had previously been proposed to interact 

directly with the central pair apparatus, based on the presence of interaction motifs 

found in these proteins (Yang 2006).   
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Materials and Methods 

Chlamydomonas strains used in this study and culture conditions 

Strains cc125 (WT), cc1033 (pf15), and cc1036 (pf18) were used in the 2D DIGE 

analysis.  All strains were obtained from the Chlamydomonas Center (www.chlamy.org).  

Strains were maintained on TAP plates, then were grown in liquid TAP media in 

constant light at 21C with agitation (5mL cultures in 18mm test tubes were grown on 

roller drums, 100-200 mL cultures were grown on an orbital shaker running at 150 rpm, 

and large 1L cultures were grown with gentle stirring and bubbling with house air).   

 

Isolation of Flagella from Chlamydomonas 

 1-3 small cultures of 120 mL were started with half a loop's worth of cells from TAP 

plates, then were grown for 3 days as described above.  100 mL of each of these 

cultures were used to start a 1 L TAP culture in a 2 L flask which was grown for 5 to 7 

days.  Cultures were checked visually for the presence of flagella.  Each 1 L culture was 

spun down in 1 L bottles at 1500xg in a Beckman Coulter Avanti J-20XP centrifuge in a 

JLA 8.1000 rotor for 10 minutes (min) at 19-21C with a low brake.  The cells were re-

suspended in 150 to 200 mL TAP media, transferred to a Corning 250 mL centrifuge 

tube (430776) and then spun again at ~1000xg (2000rpm in a Beckman Coulter Allegra 

6 with a GH3.8 rotor) for 10min at RT with no brake.  Cells were re-suspended in 80mL 

TAP and transferred to a flask, where they were allowed to recover for 2 hours at RT in 

the light with gentle stirring and bubbling.  These cultures were then pH shocked in the 

following way:  a calibrated probe from a pH meter was inserted into the culture, at 0min 

0.5 M acetic acid was added until the pH of the culture was between 4.5 to 4.6 typically 
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within 30 seconds of first adding the solution.  At 1.5min, 0.5 M KOH was added until 

the culture reached a pH of between 7 and 7.2, again typically within 30 seconds, then 

100 µL of Sigma protease inhibitor cocktail (P8340) and 100 µL of 100 mM of EGTA, 

pH7.5 were added to the culture, which was then transferred to a 250mL tube and 

placed on ice.  The efficiency of the pH shock was verified visually.  The rest of the 

protocol was completed on ice.  The culture was spun at ~1000 xg (2000 rpm GH3.8 

rotor in an Allegra 6R centrifuge) for 10 min at 4C with no brake.  The supernatant was 

removed and transferred to a new tube, and the cell bodies were discarded.  50 mL of 

25% sucrose in TAP with red food coloring, to allowed it to be seen, was pipetted 

beneath the supernatant as an underlay, and the tube was spun at ~2500xg (3300 rpm 

GH3.8 rotor) for 10 min at 4C with no brake.  The entire supernatant and the interface 

between the two layers was collected, transferred to a new tube, and the entire underlay 

process repeated.  The entire supernatant and interface was again collected, 

transferred to a new tube, and placed on ice.  35 mL of this supernatant at a time was 

transferred to a 50 mL Nalgene polycarbonate centrifuge tube (3117-0500) and spun at 

~16000xg (10000rpm in a HB-4 rotor in a Sorvall RC5C centrifuge) for 20 min at 4C.  

The supernatant was discarded, and the next aliquot placed in the tube and spun.  This 

was repeated until the entire sample was pelleted.  The pellet was re-suspended in 1mL 

Applied Biomic's Cell Washing Buffer (10 mM Tris-HCl, 5 mM magnesium acetate, pH 

8.0) and transferred to a 1.5 mL microfuge tube.  The quality of the isolation was 

assayed visually, checking for high concentrations of flagella with low amounts of cell 

body debris.  The isolated flagella were pelleted one final time at ~20000xg (14000rpm 
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in an Eppendorf 5417C centrifuge) for 20 min at 4 C, the supernatant aspirated, and the 

pellet frozen in liquid nitrogen, then transferred to a -80 C freezer.   

 

2D DIGE and protein identification 

Sample labeling, 2D DIGE, image analysis, spot analysis using DeCyder software, 

excision from gel, and identification using mass spectrometry were all performed by 

Applied Biomics, Hayward, CA (http://www.appliedbiomics.com). 

 

cDNA cloning 

FAP21 cDNA was obtained by RT-PCR on total RNA isolated using TRIzol (Invitrogen, 

15596-026) according to the manufacturer's instructions.  For Planaria, the RNA was 

isolated from the asexual strain, the cDNA sequences for our genes of interest amplified 

using the primers listed below, and the sequences were cloned into pPR-T4P, a 

modified pDONR-dT7 in which the gateway cloning site was replaced by a ligation-

independent cloning site (kind gift from J. Rink).  The primers for FAP21  were as 

follows: 

Forward 5' CATTACCATCCCGGCCTAATCATGTGTTTGGAAC 3' 

Reverse 5' CCAATTCTACCCGGCCAGTTAAAGCTGTCAGTAAA 3' 

 

RNAi via dsRNA injection 

Sense and antisense DNA templates for in vitro transcription were obtained by 

amplifying sequences cloned into pPR-T4P using the following primer pairs:   

Sense     F: AACCCCTCAAGACCCGTTTAGA and R: GAATTGGGTACCGGGCCC;  

Antisense    F: CCACCGGTTCCATGGCTAGC and R: GAGGCCCCAAGGGGTTATGTG 
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dsRNA was synthesized using the T7 Ribomax Express RNAi system (Promega, 

Madison, WI). For RNAi experiments, 10 ~ 0.8-1cm long planarians were injected 3 

consecutive days with 20-50 ng dsRNA per injection using a Nanoject II injector 

(Drummond Scientific, Broomall, PA). The animals were then amputated from their head 

and tail at day 4. An additional injection was performed at day 11 and the flatworms 

were amputated again pre- and post-pharyngically at day 12. Phenotypes were 

assessed on regenerating heads, tails and trunks at day 21 (10 days after the second 

amputation).   

 

 
Imaging of Planaria 

Live images were acquired using a Stemi 2000C stereomicroscope equipped with an 

AxioCam MRc digital microscope camera (Carl Zeiss MicroImaging, Thornwood, NY). 

Planarian locomotion speed was determined using ImageJ software, by measuring the 

distance covered by a single worm between frames separated by known time intervals.   
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Table 1.  Proteins depleted from both pf15 and pf18, or enriched in both, or showing a 

mixed effect being depleted from one and enriched in the other.  The first two columns 

give the ratio of fluorescence between each mutant and wild-type flagella, with negative 

values giving the fold depletion in the mutants and positive values the fold enrichment.   

Each line represents one spot identified on the 2D DIGE gels.  In some cases, the same 

protein was present in more than one spot, likely due to phosphorylation or other 

modifications, and in those cases the protein will be listed more than once in the table.  

 

Depleted     
pf15/WT pf18/WT name flagellar location Reference 

-13.19 -9.5 DIP13 central pair Zhao 2019 
-7.31 -8.69 TRXh1 outer dynein arm Patel-King 1996 
-6.71 -4.69 RABB1  

 
-5.8 -2.08 EF1A1 Membrane matrix Pazour 2005 
-5.77 -9.67 hypothetical  

 
-4.32 -3.17 FAP162 Membrane matrix Pazour 2005 
-4.32 -4.11 HSP70A central pair Mitchell 2005 
-4.18 -3.97 PGM1a membrane matrix Mitchell 2005 

-4 -3.88 IDA4 inner dynein arm  
-3.91 -7.35 PGM1b membrane matrix Mitchell 2005 
-3.48 -5.05 ICL1 Membrane matrix Pazour 2005 
-3.44 -5.93 Rib43a PF ribbon of outer doublet Norrander 2000 
-2.97 -5.26 hypothetical  

 
-2.79 -4.69 FAP90/BUG13 MIP of outer doublet Ma 2019 
-2.74 -3.83 GDIC1  

 
-2.73 -3.57 SIN3  

 
-2.72 -2.88 FAP12 Inner dynein arm Pazour 2005 
-2.7 -3.03 FAP106/Enkurin inner junctional complex Khalifa 2020 
-2.66 -3.89 FAP144 axoneme Pazour 2005 
-2.52 -2.81 TUA1 outer doublet and CP  
-2.44 -5.13 hypothetical  

 
-2.44 -2.9 IDA5 inner dynein arm  
-2.35 -2.97 FAP252 MIP of outer doublet Ma 2019 
-2.31 -2.49 TUA1 outer doublet and CP  
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-2.28 -3.49 RSP10 radial spoke Yang 2006 
-2.19 -2.59 FAP182 MIP of outer doublet Pazour 2005 
-2.18 -3.13 FAP106/Enkurin inner junctional complex Khalifa 2020 
-2.11 -5.41 RIB43a PF ribbon of outer doublet Norrander 2000 
-2.05 -4.4 TUA2 outer doublet and CP 0 

-2 -4.37 FAP103 Membrane matrix Pazour 2005 
-2 -5.7 MSD1  

 
-1.92 -2.39 RSP1 radial spoke Yang 2006 
-1.92 -2.7 TUB1 outer doublet and CP 0 
-1.82 -2.25 FAP115 MIP of outer doublet Ma 2019 
-1.75 -1.85 RSP9 radial spoke Yang 2006 
-1.71 -2.63 RIB43a PF ribbon of outer doublet Norrander 2000 
-1.55 -2.78 FAP21/BUG15 MIP of outer doublet Ma 2019 
-1.53 -2.09 DLC1 outer dynein arm  
-1.5 -1.78 FAP52 inner junctional complex Owa 2019 
-1.5 -2.92 FAP85 MIP of outer doublet Kirima 2018 
-1.33 -2.52 ICL1 Membrane matrix Pazour 2005 
-1.27 -1.72 FAP161 MIP of outer doublet Ma 2019 

    
 

Enriched    
 

pf15/WT pf18/WT name flagellar location Reference 
1.26 5.04 hypothetical  

 
1.39 9.34 CSP41b  

 
1.57 6.56 FAP12 Membrane matrix Pazour 2005 
2.25 4.9 PRPL7  

 
5.63 7.07 PHC17 cell wall Hallmann 2006 
6.71 6.52 FAP233 flagellar proteome Pazour 2005 
7.13 7.26 FAP233 flagellar proteome Pazour 2005 
7.25 6.2 PHC15 Cell wall Hallmann 2006 
9.24 12.08 hypothetical  

 
12.11 7.23 PHC7 cell wall Hallmann 2006 
16.42 14.89 PHC7 cell wall Hallmann 2006 
19.97 13.54 PHC7 cell wall Hallmann 2006 
23.03 17.35 PHC2 cell wall Hallmann 2006 

     
Mixed     
pf15/WT pf18/WT name flagellar location Reference 

1.06 3.73 FAP155 flagellar proteome Pazour 2005 
1.21 -4.54 RAN1  
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Figure Legends 

 

Figure 1.  The structure of a flagellum.  Microtubules (blue circles) make up the 

backbone of the structure.   (A)  Cross section of a flagellum, showing nine outer 

doublets arranged around the central pair microtubules, with radial spokes projecting 

inward.  (B)  Magnified view of the central pair, consisting of the C1 and C2 tubules with 

their associated projections (1a-2c, purple) and sheath (light blue); together with a 

single outer doublet with its radial spoke (green) and inner (ida) and outer (oda) dynein 

arms (red).   

 

Figure 2.  Gel images from 2D DIGE experiment.  (A) Images of the individual 

channels of WT and pf15, as well as an image of the overlay of the two channels 

together.  (B) Equivalent images to (A), but for WT and pf18.  (C) Images showing the 

comparisons for WT:pf15 and WT:pf18, with circles indicating the spots picked for 

analysis.  Estimated molecular weights (kDa) are indicated by the blue lines on the gel, 

and the pH range for isoelectric focusing (pH) by a red line at the bottom of the gel.   

 

Figure 3.  FAP 21 and FAP161 are present only in organisms which have motile 

cilia with central pairs.   

This figure is adapted from the Tree of Life project, and is based on the relationships 

between the different species.  The presence or absence of the FAP homologs in each 

species is indicated with the presence or absence of an orange box.  The diagrams on 

the left column illustrate the axoneme configuration in each species, with an empty box 
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denoting species that lack cilia and flagella entirely.  FAP161 and FAP21 appear only in 

organisms with motile cilia containing central pairs, and are absent in organisms lacking 

this structure. Rib72 is included as a control; it is a structural component of the A-tubule 

of the outer doublets.  It therefore can be found in all organisms with cilia, but is absent 

from organisms that do not have cilia or flagella.   

 

Figure 4.  Knock-down of FAP21 impairs cilia-driven motility in Planaria.   

RNAi knock-down of FAP21 in S. mediterranea results in impaired movement of the 

flatworm.  Their motility is reduced by 20% when compared to control worms.  This data 

represents the quantification of two separate experiments, denoted xpt1 and xpt2, with 

the analysis of all collected data represented in the 'total' columns.   
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