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Highlights 

• MPS IIIA represents one of the most common causes of broadly fatal childhood 

dementia, but the mechanisms underlying disease progression are poorly understood. 

• The first systems-level analyses of disease state and progression in the CNS of an 

MPS IIIA animal model were performed. 

• Experimental data-based Integrative Ranking (ExIR) was developed to provide 

unbiased prioritisation and classification of biological data as drivers, biomarkers 

and mediators of biological processes from high-throughput data at a systems level. 

• Application of ExIR to a transcriptomic and proteomic analyses of a zebrafish model 

of MPS IIIA implies progressive deficiencies in synaptic activity as a key driver of 

disease progression correlating with progressive neuronal endolysosomal burden 

and secondary storage diseases. 

• A novel unifying explanation of pathobiology and progression of MPS IIIA 

facilitates identification of clinically targetable features and may be generalised to 

other neuronopathic storage disorders. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.03.510585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510585
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

Mucopolysaccharidoses are lysosomal storage diseases that collectively represent a major 

cause of lethal, treatment-refractory childhood dementias 1-7. Clinically-useful interventions 

are hampered due to an incomplete understanding of their neuropathological origins. Using the 

zebrafish sgsh model of mucopolysaccharidosis IIIA 8 (MPS IIIA, Sanfilippo syndrome A), we 

conducted several ‘omics-based analyses, and developed and benchmarked a novel 

bioinformatic feature classification and ranking model for high-throughput datasets – ExIR – 

to prioritise important features in the progression of neurological manifestations of the disease. 

We find that the massive endolysosomal burden resulting from increased lysosomal storage of 

heparan sulfate and other secondarily accumulating substrates, such as sphingolipids, induces 

abnormal microtubule organisation and vesicle trafficking in neurons. This results in a gradual 

impairment of synaptic vesicle localisation at the presynaptic terminal and consequently 

impaired neuronal activity. Importantly, the endolysosomal phenotype in MPS IIIA zebrafish 

well-precedes the onset of neural pathology, though the larval MPS IIIA brain was found to be 

more susceptible to perturbation than wild type siblings. Collectively, these analyses 

demonstrate the presence of a progressive ‘functional neurodegenerative’ phenotype 

underpinning neurological disease in MPS IIIA. Our findings provide direct mechanistic 

evidence linking the well-described lysosomal storage basis for MPS IIIA to its 

disproportionately severe neural clinical involvement, enabling development and refinement 

of future therapeutic interventions for this currently untreatable disorder. 

 

Introduction 

Mucopolysaccharidosis IIIA (MPS IIIA, Sanfilippo syndrome A, OMIM #252900) is a 

paediatric neurodegenerative disease resulting from impaired catabolism of the 

glycosaminoglycan heparan sulfate (HS) due to loss of enzymatic function in the lysosomal 

sulfoglucosamine sulfohydrolase SGSH. Though this loss of function results in global 

accumulation of HS, MPS IIIA patients primarily present clinically with central nervous system 

(CNS)-specific symptoms, which represent the primary source of morbidity. It remains unclear 

why the CNS is particularly adversely affected in this disease state despite global HS 

accumulation, and the specific mechanisms and drivers of CNS disease progression are 

similarly incompletely understood. As the neuronopathic and cognitive features of MPS IIIA 

are similar to those observed in other mucopolysaccharidoses 5, a generalisable mechanism 

underlying these pathologies would be highly clinically relevant and may inform future work 

towards therapies. In order to better investigate and molecularly dissect MPS IIIA CNS 

pathology, we previously generated and characterised the first zebrafish model of MPS IIIA 8, 

utilising the excellent genetic tractability of the zebrafish 9 to demonstrate highly conserved 

pathological features between the model and human MPS IIIA. We sought to further explore 

the molecular basis of MPS IIIA CNS disease progression through the first transcriptomic and 
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proteomic analyses of the whole CNS of an MPS IIIA disease model. To robustly determine 

transcriptomic features underlying disease progression in the CNS of MPS IIIA zebrafish in an 

unbiased manner, we developed ExIR (Experimental data-based Integrative Ranking), a novel 

feature classification and prioritisation model that accurately and sensitively identified several 

drivers which collectively provide a novel mechanistic framework for the basis of CNS 

pathology in MPS IIIA. Unlike existing prioritisation models which rely on external data 

sources (e.g. gene/pathway ontology and protein-protein interaction databases) or the presence 

of a biological ‘ground truth’ to rank features, ExIR is a standalone model which extracts, 

classifies and prioritises candidate features (e.g. genes, proteins etc.) solely from high-

throughput experimental data. Benchmarking using several different transcriptomic and 

proteomic datasets demonstrated that ExIR outperforms other prioritisation methods in 

specifically and sensitively identifying, classifying and ranking features by their functional 

importance. By utilising ExIR-prioritised candidate genes from brain-wide transcriptomic and 

proteomic profiling of the MPS IIIA zebrafish, we provide a wholistic model of MPS IIIA CNS 

pathology implicating cumulative, microtubule-dependent neuronal endolysosomal storage of 

HS as well as other secondary substrates. Subsequent impaired intracellular trafficking of 

neurotransmitter-containing vesicles depleted the presynaptic reserve pool, leading to 

progressively-worsening defective synaptic activity and driving functional neurodegeneration 

in MPS IIIA. 

 

Transcriptomic and proteomic profiling of early and late CNS-specific features of MPS IIIA 

zebrafish 

A major outstanding issue limiting development of effective clinical interventions for MPS 

IIIA is a lack of understanding of the fundamental mechanisms underlying disease progression. 

While it is known that MPS IIIA results from accumulation of HS due to SGSH dysfunction, it 

remains unclear how this leads to the manifestation of a functional neurodegenerative 

phenotype. While several animal models of MPS IIIA exist, none so far have been utilised for 

CNS-specific systems-level analyses. To this end, we performed bulk RNA sequencing of 

young (3-month-old) and aged (18-month old) brains from the homozygous sgshΔex5-6 zebrafish 

mutant 8 (aka sgshmnu301, hereafter referred to as sgsh) and age-matched wild type sibling 

controls towards better understanding the biological processes and mechanisms underlying 

MPS IIIA and its CNS pathology.  
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Between young wild type and sgsh brains, 26 genes were differentially expressed (DE, 12 up, 

14 down, Fig. 1a). Most downregulated DEGs in young sgsh brains were immediate-early 

genes (IEGs)/primary response genes 10, namely npas4a, fosab, egr1, egr2a, egr4, btg2, junba, 

junbb, nr4a1, ier2a and npas4l. These IEGs represent a class of transcription factors that – in 

the context of the CNS – are induced in postsynaptic neurons following synaptic 

neurotransmission, where they are able to direct downstream neural circuit activity in a MAPK-

dependent, de novo translation-independent manner 10,11. Upregulated DEGs in young sgsh 

brain included tyrp1b, pmela and pmelb (components of the premelanosome, a lysosome-like 

organelle 12), and baiap2b, involved in membrane trafficking and cytoskeletal organisation 13 

as well as a component of CNS synapses 14. Examination of enriched gene ontology biological 

processes (GO-BPs) in DEGs in the young sgsh brain demonstrate overrepresentation of 

transcription factor-associated functions associated with downregulation of multiple IEGs (Fig. 

1b). Analysis of potential protein-protein interactions between young brain DEGs using 

STRING 15 demonstrates two major clusters of DEGs; one comprising the downregulating 

IEGs, and the other associated with components of premelanosome assembly (Fig. 1c).  

We next sought to determine if the differential gene expression patterns observed by RNA 

sequencing were associated with specific neuroanatomical domains. In situ hybridisation (ISH) 

for baiap2b in adult wild type and sgsh brain demonstrated roughly equivalent levels of 

expression in neuronal nuclei in the dorsal tegmentum and cells in the cerebellar Purkinje layer 

in both wild type and sgsh brains (Extended Data Fig. 1a-d`). While weak expression was 

observed in telencephalic neurons in wild type brains (Fig. 1d-d`), baiap2b was strongly 

expressed in this domain in homozygous sgsh siblings (Fig. 1e-e`). Contrastingly, egr1 was 

observed to be robustly expressed in the optic tectum periventricular grey zone (Fig. 1f-f`) and 

cerebellar granule cell layer in wild type brain (Fig. 1g-g`), but almost completely abolished 

from these regions in sgsh brains (Fig. 1h-h`, i-i`). 

A much greater number of DEGs were detected between aged sgsh and wild type brains 

compared to young samples (166 genes; 78 up, 88 down, Fig. 1j), indicative of a significantly 

perturbed brain transcriptome associated with the progression of CNS disease. Eleven genes 

were consistently DE across both young and aged timepoints (42.31% of young DEGs, 6.63% 

of aged DEGs – namely, pmela, pmelb, tyrp1b, prr5a, baiap2b, tet1, junba, egr2a, egr1, 

npas4a and fosab), and thus are likely to be most fundamentally involved in CNS pathology in 

the sgsh zebrafish – the direction of differential expression was the same over time for all genes 

except prr5a, which is upregulated in young sgsh brain compared to wild type siblings but 

downregulated in aged sgsh brains. Aside from these temporally conserved DEGs, a large 
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proportion of downregulated genes in aged sgsh brains indicated involvement in membrane 

and endo-lysosomal trafficking (synj1, rab22a, vapb, ergic2, ap1g2), protein aggregate 

degradation (ptges3a, dnajc11a, cops7a, fbxo45), and cytoskeletal remodelling (add3b). In 

addition to pmela, pmelb and baiap2b, the non-centrosomal microtubule organiser camsap2a, 

the acid ceramidase asah1a and the mitochondrial respiratory complex subunit ndufab1a were 

upregulated in aged sgsh brains. GO-BP analysis demonstrated enrichment of melanosome-

associated genes, in addition to hallmarks of endo-lysosomal trafficking and associated 

cytoskeletal remodelling (Fig. 1k). STRING network analysis highlighted two major node 

clusters; one comprising multiple IEGs and centring on fosab, and another primarily composed 

of up-regulated genes associated with mitosis or nucleotide metabolism (kpna2, pbk, ncapg, 

tyms, top2a, plk4 – only one gene, mcm7, in this cluster is down-regulated) (Fig. 1l). Other 

smaller gene clusters relate to the pigmentation-associated genes detected as DE in young sgsh  

brains (pmela, pmelb, tyrp1b, dct, Fig. 1l). Taken together, transcriptomic analyses of young 

and aged sgsh brains highlight early neuronal activity-related deficits preceding subsequent, 

wide-scale cellular dysfunction in MPS IIIA. 

While the above transcriptomic analyses are sensitive in detecting acute patterns of gene 

expression associated with the underlying neuropathological features of MPS IIIA, they are 

less robust in highlighting chronic features that accumulate in the CNS during disease 

progression. Such features are better explained by examination of the translational output of 

cells in affected tissues, whose latency within a cell does not necessarily correlate to the timing 

of gene expression. To define the translational signature of young and aged sgsh brains, we 

performed quantitative TMT (tandem mass tag) label-based mass spectrometry (nanoLC-ESI 

MS/MS) on age-matched wild type or sgsh brains at the same time points as the previous 

transcriptomic analyses. Thirty-three proteins were found to be differentially abundant (DA) 

between young wild type and sgsh brains; 30 of these proteins were enriched in sgsh brains, 

while only three were enriched in wild type brains (Fig. 2a). Protein-protein interaction (PPI) 

analysis with STRING showed strong interactivity and functional relationships between most 

DA proteins. The majority of DA proteins (DAPs) were either lysosomal proteases/peptidases 

including multiple cathepsins (Ctsh, Ctsla, Ctsba and Loc100333521 [designated here as Ctsz-

l based on orthology]), or were associated with lysosomal degradation of glycosaminoglycans, 

gangliosides or other sphingolipids (Gnsa, Gusb, Hexb, Naga, Gaa2) (Fig. 2b). This was 

supported by pathway, process and organellar enrichment analyses demonstrating that most 

DAPs were directly associated with lysosomal catabolic functions (Fig. 2c). Similarly, 38 

proteins were differentially abundant between aged brains from both genotypes, with 35 
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enriched in the aged sgsh brain, and three enriched in the brain of wild type siblings (Fig. 2d). 

As in young sgsh brains, most DAPs in the aged sgsh brain were directly associated with 

protease activity or lysosomal substrate degradation (Fig. 2e-f). Notably, only one protein – 

the arylsulfatase Arsa – was consistently deficient in both young and aged sgsh brains 

compared to wild type brains. Human ARSA deficiency causes metachromatic leukodystrophy 

16 (OMIM #250100), a lysosomal sphingolipid storage disease with several overlapping clinical 

features with MPS IIIA. The proteomic data strongly suggested the presence of both lysosomal 

accumulation as well as secondary sphingolipid storage; indeed, LAMP1 immunoreactivity 

and LipidSpot 610 staining demonstrated significantly increased lipid storage in the dense 

interneuron populations of the midbrain (Fig. 2g, h) and cerebellum (Fig. 2i, j) in adult sgsh 

brain compared to wild type siblings. In the wild type midbrain, large cytoplasmic LAMP1+ 

organelles (interpreted here as endolysosomes) were observed predominantly in the ventricular 

radial glial population, many of which stained positive for lipid storage using the neutral lipid 

dye LipidSpot 610 (Fig. 2g). In contrast, massively increased LAMP1 immunoreactivity was 

seen in more dorsal neuronal layers in the sgsh tectum (Fig. 2h). LAMP1 immunoreactivity 

was sparse in the cerebellar granule neuron layer of wild type siblings (Fig. 2i and boxed 

region), but was strongly detected in putative microglia throughout the molecular layer of the 

sgsh cerebellum (Fig. 2j and boxed region) supporting our previous observations of profound 

neuroinflammation in the sgsh zebrafish brain 8. Additionally, large, electron-dense lipid-

containing organelles were routinely observed (Fig. 2m) across the sgsh CNS, alongside 

extremely dense networks of axonal microtubules (Fig. 2n, n`) compared to those of wild type 

siblings (Fig. 2l, l`). These observations suggest an increased requirement for trafficking of 

heparan sulfate- and lipid-containing endolysosomes in the MPS IIIA zebrafish CNS. Of note, 

LAMP1 immunoreactivity was significantly reduced in wild type (7 dpf) larval brains (Fig. 2o) 

compared to homozygous sgsh siblings (Fig. 2p), indicating the increased endolysosomal 

burden in the sgsh mutant is an early feature of the protopathological state. This finding 

supports our previous observation of lysosomal accumulation in larval sgsh zebrafish brains 

using the LysoTracker dye 8. Taken together, proteomics analyses of young and aged brains 

highlight consistent, massive endolysosomal burden in the sgsh CNS due to increased 

intracellular storage of diverse content, including lipids and partially-degraded GAG 

catabolites. 

 

Development and benchmarking of the ExIR workflow 
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Systems-level analyses of the sgsh zebrafish brain demonstrated the presence of complex 

transcriptional and protein signatures of MPS IIIA progression in our model. In particular, the 

drastic increase in the number of DEGs detected between young and aged wild type vs. sgsh 

brain transcriptomes highlights this complexity, wherein disease progression is reflected in 

significant derangement of homeostatic patterns of gene expression. In such perturbed states, 

it can be difficult to determine from these large gene/protein lists the most important features 

that are likely to be most relevant to the initiation and progression of the disease state, rather 

than secondary or indirect consequences of the pathobiology. Additionally, guided analyses of 

high-throughput data often rely on existing ontological information and manual annotations of 

gene/protein function. As such knowledge sources are derived from the broader literature, they 

are inherently in a state of flux; despite their effectiveness at communicating categorical 

information, these ontologies may fail to accurately account for heterogeneity or complexity 

inherent to the analysed data 17. In many cases, including the systems-level analyses of the sgsh 

zebrafish CNS, it would be desirable to determine importance of features in high-throughput 

datasets without relying on external sources of information.  

To this end, we established the Experimental data-based Integrative Ranking (ExIR) model, 

which solely utilises high-throughput experimental data to calculate several scores used to 

classify and rank features from that data (Fig. 3a-b, supplementary methods). In ExIR, 

normalised high-throughput data is input, and an adjacency matrix is generated through 

correlation analysis. Correlated features are then used to generate a final matrix used in network 

reconstruction. On the basis of combinations of the derived scores (Fig. 3b), features are 

categorised as drivers, biomarkers and/or mediators prior to ranking features within each class. 

This is performed in two major steps, first employing supervised machine learning (ML) 

through a random forest algorithm to filter the input normalised data, then unsupervised ML 

by way of principal component analysis to generate a rotation value for network assembly (Fig. 

3a, further detailed in Supplementary Methods).  

Unlike other gene/protein prioritisation methods such as Endeavour 18 and ToppGene 19, which 

require a seed or training set to derive correlated features, detection of drivers, biomarkers and 

mediators by ExIR relies only on interrogation of experimental data through both supervised 

and unsupervised ML approaches (Fig. 3a, b). The supervised random forest ML process 

prioritises genes that would significantly affect inter-group variation between samples. ExIR 

then reiteratively places more weight on the genes with a greater potential to differentiate all 

samples from each other, regardless of which group they belong to. Accordingly, those genes 
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that have more sensitivity to inter-group variation and to the severity of the phenotype within 

each group (i.e. intra-group variation) are assigned a higher rank.  

We benchmarked ExIR’s performance against other feature prioritisation methods in ranking 

influential driver and biomarker genes/proteins using a diverse set of previously-published 

high-throughput transcriptomic and proteomic datasets representing several disease states 

(glioblastoma 20, schizophrenia 21, breast cancer 22,23, thyroid cancer 22, lung adenocarcinoma 

22,24 and hepatocellular carcinoma 22) or physiological processes (oogenesis 25). The 

experimental modalities tested included bulk- and single-cell RNA sequencing, RNA 

microarray, as well as proteomics datasets, and all processes investigated have at least some 

known ground-truth drivers and biomarkers (Extended Data Fig. 2a-d and Supplementary 

Notes). For driver and biomarker gene/protein prioritisation, ExIR outperformed all other 

methods (ToppGene 19, Endeavour 18, GeneMANIA 26 and log fold-change for driver features; 

mutual information 27 [MI], Student’s t-test, and point-biserial and Spearman correlation 

coefficients for biomarker features) in correctly ranking the same set of ground-truth features 

in all but one dataset analysed (TCGA THCA) as determined by receiver operating 

characteristic (ROC) analyses (Extended Data Fig. 2e-h). In addition to generally 

outperforming all other feature classification and ranking methods, our application of ExIR to 

the Cancer Genome Atlas lung adenocarcinoma RNA-sequencing dataset suggested EMP2 as 

a potential novel biomarker, which was supported by immunohistochemical data from the 

Human Protein Atlas database 28 (Extended Data Fig. 3).  

An additional utility of ExIR is its capacity to determine a feature class we refer to as 

‘mediators’. Mediators are features that may or may not be differentially expressed/abundant, 

but have key roles in the propagation of information between nodes corresponding to driver 

genes in the ExIR-generated network. Thus, mediators are predicted to directly and/or 

indirectly associate with major drivers of the biological process in question. To our knowledge, 

only one other model (Machine Learning-Assisted Network Inference, MALANI) 29 has so far 

been described with the capacity to compute mediator features, and has so far only been utilised 

in the context of breast cancer 29. Benchmarking of ExIR’s capacity for mediator feature 

detection against MALANI by overrepresentation analysis using the TCGA breast cancer 

RNA-sequencing dataset demonstrated that ExIR significantly outperformed MALANI in 

identification of mediators associated with breast cancer-related GO biological processes (GO-

BPs) and KEGG pathways. Extension of this analysis to mediator identification in other disease 

high-throughput datasets identified, on average, that >30% of mediators corresponded to 

disease-relevant GO-BPs and KEGG pathways (Extended Data Fig. 2i-l, Extended Data 
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Tables 1-2). Taken together, our benchmarking demonstrates ExIR’s powerful capacity to infer 

and rank driver, biomarker and mediator features from high-throughput datasets without 

reliance on external sources of information. 

 

Implementation of the ExIR workflow to systems-level analyses of the sgsh zebrafish CNS 

highlights diverse functional contributors to MPS IIIA pathology 

In order to prioritise differentially-expressed/abundant features resulting from RNA-seq and 

quantitative proteomics analyses of young wild type and sgsh brain in a manner independent 

of external ontological data, we applied the ExIR workflow to each dataset and the time points 

therein. Ranks were thus called for upregulated/accelerating (Extended Data Fig. 4a) and 

downregulated/decelerating genes (Extended Data Fig. 4b) and proteins (Extended Data Fig. 

4c, d). The top three accelerating transcriptional drivers of the MPS IIIA disease state in young 

sgsh brain (i.e. upregulated features that have the highest driving potential within the generated 

ExIR network, and are surrounded in that network by other prioritised driver features) were 

baiap2b; ppargc1b, and tet1 (Extended Data Fig. 4a). The top three ranked accelerating 

transcriptional biomarkers (i.e. upregulated genes that exhibit significantly and consistently 

altered behaviour in different conditions, and have the greatest potential to discriminate 

between conditions) somewhat overlapped with the corresponding accelerating driver 

population; these were tyrp1b, baiap2b, and tet1. Accordingly, the top three decelerating 

transcriptional drivers in the young sgsh brain were the IEGs junbb and npas4a, and the serine-

threonine kinase sik1. Top decelerating biomarkers in the young sgsh brain included the 

predicted long non-coding RNA LOC100535167, as well as the IEGs npas4a and junbb 

(Extended Data Fig. 4b).  

In the aged sgsh brain, the top accelerating transcriptional drivers were pmela, tspan36 and 

acvr2aa – all pigmentation/melanocyte-associated genes 30-32 – and top accelerating 

transcriptional biomarkers included pmelb, pmela and pdgfrl (Extended Data Fig. 4e). In situ 

hybridisation demonstrated no detectable expression of pmela in the wild type zebrafish brain, 

but strong expression specifically within the choroid plexus in sgsh brain (Extended Data Fig. 

1e-f). Top aged decelerating transcriptional drivers included the predicted ATP-binding protein 

si:ch73-236c18.5, a collagen alpha-1 (XXVI) chain-like protein LOC101885935 and the 

kinesin family member kif21a involved in microtubule-dependent intracellular transport and 

regulation of the axonal cytoskeleton 33. ExIR-prioritised downregulated transcriptional 

biomarkers in aged sgsh brains included the endosome-associated rab22a, si:ch73-236c18.5, 
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and the ubiquitin ligase fbxo45 that regulates proteasomal degradation at the synapse 34 

(Extended Data Fig. 4f). 

ExIR was additionally used to rank and classify the differentially abundant proteins identified 

between both young and aged wild type and sgsh brains. The top sgsh-enriched driver and/or 

biomarker proteins in young brains were Gnsa, Cpvl, Ctsla, and Dnase2 (Extended Data Fig. 

4c); while the top wild type-enriched protein drivers and/or biomarkers were Arsa, Gaa2, Mdkb 

and Mfap4.2 (Extended Data Fig. 4d). While the sgsh-enriched proteins in the aged brain 

largely overlapped with those observed in the young brain, the ExIR rankings of these proteins 

was noticeably altered; top sgsh-enriched driver and/or biomarker proteins in aged brain were 

Hexb, Napsa, Ctsba, Dnase2, Stm and Naga (Extended Data Fig. 4g). Top WT-enriched 

driver/biomarker proteins in the aged brain included Arsa, Palm1a, Mdkb and Ckmt2a 

(Extended Data Fig. 4h). 

In addition to classification and ranking of driver and biomarker features, the ExIR model infers 

a class of genes – mediators – which represent nodes in the generated network important for 

the flow of information between prioritised drivers (Fig. 3b). 365 transcriptional mediators 

were present in both young and aged RNA-sequencing datasets. We performed STRING 

analysis on these genes and, due to their large number and broad functional diversity, applied 

stringent filters for interaction score. Following exclusion of singletons from the STRING 

network, 34 conserved mediators remained (Extended Data Fig. 5a). Gene ontology 

overrepresentation analysis showed that these genes were functionally enriched in mitophagy, 

nucleophagy and microautophagy, vesicle fusion at the presynaptic active zone membrane and 

tetrahydrofolate metabolism (Extended Data Fig. 5b). Application of ExIR to the proteomic 

analysis of sgsh CNS yielded a large number of protein mediators between young and aged 

timepoints (620 shared out of 1777 young and 1689 aged mediators (Extended Data Fig. 5c). 

The resulting STRING network assembled from cross-timepoint proteomic mediators, 

comprising 99 nodes excluding singletons, exhibited a far greater degree of interactivity 

(Extended Data Fig. 5c).Only one protein was represented in the top 10 mediators of both 

time points (bloc1s5, rank #8 young, #9 aged) (Extended Data Fig. 5d-e). Major mediator 

functional clusters represented proteins involved in ribosomal assembly and translation 

initiation, vesicle fusion and exocytosis (including of synaptic vesicles), nucleotide/nucleoside 

biosynthesis, and amino acid biosynthesis (Extended Data Fig. 5f). By way of the definition 

of a mediator in ExIR, none of the genes or proteins in the above data are differentially 

expressed or abundant due to the low dimensionality of these datasets (Fig. 3a, b) – thus, it is 

notable that despite the ExIR network being assembled purely on the basis of normalised 
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expression/abundance values, many biological processes associated with MPS IIIA pathology 

are inferred by ExIR without input from extraneous knowledge sources.  

 

Immediate early gene perturbation indicates deficient synaptic activity underlies progression 

of MPS IIIA neuropathology  

With the assistance of feature refinement and prioritisation by ExIR, our transcriptomic 

analyses highlight profound dysregulation of factors involved in synaptic neurotransmission in 

the sgsh brain, as well as broadly downregulated expression of neural activity-related IEGs 

(Fig. 1a-c, f-i`). Constitutively reduced IEG expression across the sgsh CNS is a logical 

consequence of reduced synaptic activity. Examination of IEG expression in wild type brain 

by in situ hybridisation against egr1 transcripts demonstrated particularly strong expression in 

the midbrain and hindbrain (Fig. 1f-g`), which was largely ablated in the sgsh mutant brain 

(Fig. 1h-i`). We thus sought to study synapses at the ultrastructural level in these regions in 

adult wild type and sgsh brains using TEM, and observed that wild type axon terminals 

generally exhibited abundant synaptic vesicles (SVs) in both the active zone and reserve pool 

(Fig. 4a). Contrastingly, axon terminals in sgsh neurons frequently exhibited greatly reduced 

numbers of reserve pool SVs (RP-SVs), with most observed SVs located at the active zone(s) 

(Fig. 4b, c). This, in combination with the previously-observed accumulation of dense axonal 

microtubule networks (Fig. 2n, n`), suggests that RP-SV depletion in the sgsh brain may be 

associated with impaired SV trafficking. To elaborate on this, we quantified the number of 

cerebellar Synapsin-1/2 immunoreactive glomeruli (tripartite synapses of presynaptic axon 

terminals of mossy fibres and Golgi cells, and postsynaptic granule cells) in adult wild type 

and sgsh zebrafish (Fig. 4d-e). Synapsins are major components regulating the organisation of 

SV clusters that occur at presynaptic terminals 35; and perturbed synapsin expression or 

function impairs SV availability at the reserve pool 36,37. sgsh cerebelli had significantly fewer 

Syn1/2+ glomeruli throughout the granule cell layer compared to wild type siblings (Fig. 4f). 

Taken together, downregulation of multiple IEGs in the sgsh CNS coincides with reduced 

synapsin immunoreactivity, which collectively manifests as a reduction in RP-SVs in the sgsh 

mutant CNS. Examination of basal expression levels of several IEGs (i.e. in the context of 

normal levels of neural activity) by RT-qPCR (Extended data Fig. 6a) and in situ 

hybridisation (Extended data Fig. 6b-e) indicated they were not differentially expressed in 

larval sgsh brains as they are in the adult CNS. This demonstrates that overtly deficient IEG 

expression in the adult sgsh brain is a result of a progressive phenotype. Despite this, we sought 

to establish whether abnormalities in neuronal activity could be observed earlier than the later-
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detected molecular and ultrastructural changes in the adult sgsh brain. To dynamically detect 

early changes in neural activity, we employed live imaging of calcium signalling dynamics 

using pan-neuronally-expressed H2B-GCaMP6s 38 in sgsh larvae and wild type siblings acutely 

administered a high dose of the convulsant pentylenetetrazole (PTZ) in conjunction with rapid, 

intermittent (every 0.5s) photic stimulation (Fig. 4g). This was performed to challenge the 

neural circuitry of the larval sgsh brain, and induce stereotypic patterns of neuronal firing. Like 

other mechanisms of ectopic neural stimulation – both electrical 39 and pharmacological 40 – 

PTZ is able to induce mobilisation of RP-SVs beyond what is observed in physiological 

behaviours 41. Treatment of wild type and sgsh larvae with PTZ resulted in stronger npas4a 

expression in wild type larval brains than in sgsh brains (Extended Data Fig. 6f-h) suggesting 

a difference in neuronal excitability or capacity for full depolarisation. GCaMP imaging 

demonstrated that PTZ-treated wild type larvae generally exhibited a single, large brain-wide 

depolarisation event, followed by an extended refractory period in which GCaMP6s 

fluorescence was heavily reduced (mean seizure count = 2.083 ± 0.3128 SEM) (Fig. 4h, j). In 

contrast, PTZ-treated sgsh larvae exhibited multiple low-grade seizures (mean seizure count = 

4.333 ± 0.3404 SEM) with short refractory periods between each seizure (Fig. 4i, j). This 

observation further supports the hypothesis that synaptic activity exhibits underlying 

susceptibility to dysfunction in the developing sgsh CNS. Collectively, these data indicate that 

the sgsh zebrafish exhibits a susceptibility to perturbed neuronal activity well-preceding the 

onset of later IEG dysregulation and functional neurodegeneration. 

 

Discussion 

The pathological origin of mucopolysaccharidoses – that is, impaired GAG catabolism (HS in 

the case of MPS IIIA) – has long been known. Despite this, it remains unclear how this 

manifests as the characteristic progressive functional neurodegeneration observed in MPS 

patients. Several studies have implicated multiple factors contributing to disease progression, 

including microgliosis and neuroinflammation 1,8,42, CNS atrophy 43, and more recently an 

increasing recognition of the role of functional synaptic impairments 44-46. However, most 

studies have looked at these features largely in isolation; here, we have performed the first 

transcriptomic and proteomic characterisation of the CNS of an animal model of MPS IIIA, 

the sgsh zebrafish 8, with the aim of globally determining the features associated with disease 

progression and defining the diverse cellular and molecular perturbations that accumulate in 

the MPS IIIA brain. The sgsh zebrafish brain exhibits profound accumulation of LAMP1-

immunoreactive organelles as well as abnormal lipid storage in major neuronal populations, 
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reflecting the increased endolysosomal burden that results from impaired HS catabolism 

without negative regulation of its biosynthesis. This observation was supported by our 

quantitative proteomics analyses, which highlighted massive enrichment of proteins involved 

in lysosomal substrate degradation, indicative of the progressive accumulation of lysosomes 

and lysosome-like organelles. Such a phenotype would be expected to correlate with formation 

of dense microtubule networks, which are required for endocytosis and lysosome formation; 

such networks were widely observed upon ultrastructural examination of myelinated axons in 

the sgsh brain. A consequence of this relates to the requirement of microtubule-dependent 

intracellular trafficking of neurotransmitter-containing vesicles 47; as endocytosis and 

lysosomal sequestration of extracellular HS in MPS IIIA requires increased microtubule-based 

cytoskeletal remodelling, this phenotype may interfere with intracellular SV trafficking and 

directly relate to the observed reduction in SV localisation at presynaptic terminals. This is 

supported by reduced synapsin-1/2 immunoreactivity observed in neuronal populations in the 

sgsh brain, and a consequent significant reduction in the number of SVs present in the 

presynaptic reserve pool. Synaptic perturbation in the sgsh brain was further evidenced in our 

transcriptomic analyses, wherein a profound relative brain-wide reduction IEG expression (a 

transcriptional hallmark of postsynaptic activation 10,48) was observed in both young and aged 

sgsh brains. While expression levels of IEGs are expected to fluctuate depending on 

stimulatory input, constitutively diminished expression in homozygous sgsh brains compared 

to wild type siblings indicates the presence of fundamental perturbations in stimulus-response 

and excitation-transcription coupling. A recent study has linked lysosomal disruption to 

impaired synaptic activity in a mouse model of MPS IIIA 45, but ascribed this to presynaptic 

accumulation of alpha-synuclein and the DNA J-protein CSPα. However, these features do not 

explain the strongly conserved synaptic phenotype between the MPS IIIA mouse model and 

our sgsh zebrafish, as zebrafish lack an orthologue for alpha-synuclein 49 and the zebrafish 

orthologues for mouse CSPα (dnajc5aa, dnajc5ab) were neither differentially expressed at the 

transcript level nor differentially abundant at the protein level in the sgsh zebrafish brain. 

Though this may be explained by variability in neurobiology between the two species, it is 

unlikely that divergent pathological mechanisms would lead to the same resulting phenotype. 

This suggests that alternative mechanisms, such as the endolysosomal impairment of SV 

trafficking, are more likely conserved pathways involved in driving MPS IIIA progression in 

both model systems as well as in patients.  

Given the lack of a concrete explanation underpinning the pathobiology of MPS IIIA 

progression in the CNS, we sought an unbiased manner by which to determine putative key 
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features from our ‘omics data that drive the disease state. To this end, we developed a novel 

bioinformatic tool, ExIR (Experimental data-based Integrate Ranking); ExIR is a versatile 

model that simultaneously extracts, classifies, and prioritizes candidate features (e.g. genes, 

proteins) from high-throughput experimental data independent of external, curated knowledge 

sources. ExIR initially performs several filtrations of input normalised data to derive several 

different ranking scores, which are then used in multiple combinations to generate summary 

scores for feature classification and ranking as drivers, biomarkers and mediators of biological 

processes. From a biological perspective, manipulation of driver features prioritized by ExIR 

(potentially alongside co-manipulation of associated mediators) could have the most prominent 

impact on the progression of a biological process/disease as well as phenotype manifestation. 

While highly-ranked ExIR biomarkers are anticipated to have the highest sensitivity to a 

biological condition and the severity of the phenotype, their manipulation may not necessarily 

affect the progression of the process in the way highly-ranked driver features might. 

Our comparative analyses show that ExIR robustly outperforms current tools and algorithms 

in the unbiased prioritisation of ground truth driver, biomarker, and mediator features. The 

underpinning reasons for the superior accuracy and robustness of our model include (1) co-

implementation of both supervised and unsupervised ML techniques; (2) integration of both 

ML and network-based models; (3) optimisation of mathematical operations for score 

integration; and (4) independence from potentially-confounding external sources of 

information. Overall, ExIR has the potential to provide significant momentum to biological 

discoveries through streamlining classification and prioritisation of features in high-throughput 

data and allowing for rapid generation of hypothesis from refined and more interpretable data. 

As it is a standalone computational model, we expect ExIR to be of broad and multidisciplinary 

utility, for example as an efficient tool for in guiding precision medicine as well as for the 

expedition of diagnosis and treatment of rare diseases through specific and sensitive ranking 

of biomarkers and drug targets.  

Taken together, our work utilises a cross-disciplinary approach to develop from multiple 

sources of high-throughput data a unified hypothesis integrating the diverse features underlying 

the origins and progression of neurological decline in MPS IIIA. As the mechanism for MPS 

IIIA disease progression we hypothesise does not exhibit any features unique to this particular 

disease beyond the requirement for massive endolysosomal storage of heparan sulfate, this 

mechanism may be generalisable to a broad range of neuronopathic/synaptopathic storage 

disorders and thus may have far-reaching implications for the development of much-needed 

therapies for this class of disease. 
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Methods 

Development of the ExIR model 

ExIR is comprised of two major components. The first is the multi-level filtration and scoring 

which calculates several scores directly from the supplied experimental data. Normalised 

experimental data is filtered, and both supervised and unsupervised machine-learning (ML) 

algorithms are employed to extract and assign weight to the prominent biological features of 

the supplied dataset (e.g. transcriptomics, proteomics). Additionally, network techniques are 

employed for assessing the importance of association between genes within the constructed 

network. The second component is the classification and integrative ranking, where biological 

features are classified according to the integration of different combinations of scores 

calculated in the first part of the model. 

 Mathematical basis of score integration 

As demonstrated previously 50, basic arithmetic operators can be employed for the integration 

of different scores. Addition is appropriate for the combination of two co-essential (i.e. 

associated) measurements with the purpose of compensating for deficiencies in individual 

scores. Multiplication is appropriate for the integration of two scores provided that the 

objective is to synergise their effects 50, and has been used by other gene prioritisation methods 

such as MetaRanker 51 to compute the final rank for each gene in a list. Accordingly, we 

employed these operators for the integration of different scores. All scores were range-

normalised while maintaining their relative weight ratio using the Min-Max gene scaling 

algorithm 52. 

 Differential/regression data scoring 

The differential score in calculated by applying the addition function to the absolute of all 

differentiation values: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑐𝑜𝑟𝑒 =  ∑|𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑣𝑎𝑙𝑢𝑒| 

The 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑣𝑎𝑙𝑢𝑒 is the user-calculated differential expression/abundance of 

genes/proteins. For example, 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑣𝑎𝑙𝑢𝑒 may be log2FC corresponding to DEGs in a 

transcriptomic assay. If the study is a time-course experiment, or includes >2 step-wise 

conditions, it is possible to include all sets of differential values corresponding to different 
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pairwise differential analyses. Similarly, the regression score is calculated as the sum of all 

regression values: 

𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒 

where 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒 is the previously user-calculated R2 value of genes. Importantly, the 

R2 value is calculated in regression analyses in terms of the target variable, which in biological 

contexts corresponds to the expression/abundance level of the gene/protein in question. The 

explanatory variable must be determined according to the specific biological context of the 

data in question. In a time-course study, for example examination of developmental 

progression in an organism, time is considered the explanatory variable used for prediction of 

the amount of the dependent variable (e.g. gene expression level). However, this score applies 

only to time-course and multi-condition datasets and is thus optional for the development and 

execution of ExIR. 

The significance score is calculated by combining the log-transformed statistical significance 

(e.g. P-value, adjusted P-value, false discovery rate) of differential (and/or regression) values 

as follows: 

𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒 = ∑ − log10(𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑣𝑎𝑙𝑢𝑒)  

where 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑣𝑎𝑙𝑢𝑒 refers to statistical significance values prior calculated by the user 

corresponding to the assay type in question. 

 Normalisation and filtration of experimental data 

Experimental data input into ExIR should first be normalised according to the nature of the 

experiment, to account for probable biological and technical sources of experimental variation. 

Unless otherwise specified, no further normalisation is performed in the ExIR workflow. If 

input experimental data is non-normalised, ExIR will optionally perform a log-transformation 

to normalise said data. However, as not all data would benefit from a log-transformation, we 

recommend prior normalisation of the data before implementation of the ExIR workflow. 

Following this, experimental data is filtered by either DEGs or, if provided, a list of desired 

genes. 

 Supervised ML 
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The random forest algorithm 53 was selected for implementation in the ExIR workflow due to 

its appropriateness for problems of large p (i.e. number of genes) and small n (i.e. number of 

variables/samples), as well as its variable importance measures which are useful for gene 

ranking 54. ExIR builds a random forest model from supplied experimental data using the ranger 

R package 55, with (by default) the number of trees set to 10,000 and the mtry parameter (i.e. the 

number of variables to possibly split at each node) set to the square root of the number of genes 

in the filtered experimental data. To calculate the importance of gene scores, we applied the 

impurity-corrected mode; an unbiased, fast and memory-efficient method for the evaluation of 

the importance of genes in a random forest classification model 56. In combination with other 

methods, impurity correction can be used to estimate statistical significance of ExIR-derived 

importance scores. Accordingly, P-values of importance scores are computed using the 

permutation-based method proposed by Altmann et al. 57, with the number of permutations by 

default set to n=100. Finally, experimental data is further filtered according to the significant 

genes output from the random forest classification. All parameters described above are user-

adjustable as required. 

 Unsupervised ML 

In parallel to the supervised ML, a correlation analysis is performed on the unfiltered 

experimental data using the Spearman algorithm in order to investigate the association of genes 

with each other in a systematic manner. In ExIR, genes are first ranked using base R functions. 

Subsequently, the correlations between all pairs of genes are calculated using the coop R 

package (https://cran.r_project.org/package=coop), which enables the vectorisation of 

operations and usage of multiple cores whenever possible. This consequently increases the 

speed of correlation analyses by several orders of magnitude. Correlation data is assembled in 

an adjacency matrix, which is then refined against the genes provided in the filtered 

experimental data to extract only positive correlations between these genes and all other genes 

within the dataset. From this, a list of correlated genes is thus obtained. Similarly, the initial 

unfiltered adjacency matrix is filtered against the list of correlated genes, and an ultimate 

adjacency matrix is generated comprising first- and second-order correlated genes from the 

filtered experimental data. Such a step-wise assessment of correlation is employed to increase 

the accuracy and speed, while reducing the computational intensity, of subsequent network 

reconstruction and analyses. 

 Network reconstruction and calculation of Integrated Values of Influence (IVIs) 
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The igraph R package 58 was used to reconstruct the association network from the ultimate 

adjacency matrix derived by correlation analysis. IVIs of all nodes (e.g. genes, proteins) within 

the network were computed using the influential R package (https://cran.r-

project.org/package=influential) 50. 

 Calculation of primitive and neighbourhood driver scores 

The primitive driver score is calculated by synergising the effects of IVI and the significance 

score of consistently-altered genes using the multiplication operator: 

𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒
′ = (𝐼𝑉𝐼𝑣𝑎𝑙𝑢𝑒)(𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒

𝑐𝑎 ) 

where 𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒
′  represents the primitive driver score and 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒

𝑐𝑎  represents the 

consistently altered significance score. Subsequently, the primitive driver scores are mapped 

onto the network nodes. Accordingly, the neighbourhood driver score of a given node i is 

calculated by computing the additive product of primitive driver scores of all first-order 

connectors to that node: 

𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒
𝑛𝑏ℎ (𝑖) = ∑ 𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒

′ (𝑗)
𝑗∈𝛿𝐵(𝑖,1)

 

The 𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒
𝑛𝑏ℎ (𝑖) represents the neighbourhood driver score of node i; while 𝛿𝐵(𝑖, 1) is the 

set of nodes with distance 1 from node i. 𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒
′ (𝑗) is the primitive driver score of node j, 

a first-order connector node to node i. 

 Gene classification and scoring 

From the scores calculated in the first part of the ExIR workflow, four separate classes of genes 

are defined based on variable integration of different score combinations. The final driver score 

is calculated by synergising the effects of primitive and neighbourhood driver scores under the 

assumption that the top candidates would be surrounded in the network by high-ranked 

neighbours 59: 

𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒 = (𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒
′ )(𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒

𝑛𝑏ℎ ) 

Driver genes are themselves divided into two subtypes based on the directionality of their 

effects; accelerator drivers are up-regulated in a biological process, while decelerator drivers 

are down-regulated. 
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The biomarker score is achieved by applying the multiplication operator on the differential, 

regression, statistical significance and ML-derived scores: 

𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝑠𝑐𝑜𝑟𝑒

= (𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒) × (𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑐𝑜𝑟𝑒
𝑐𝑎 ) × (𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒

𝑐𝑎 )

× (𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒
𝑠𝑚𝑙 ) × (𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒

𝑠𝑚𝑙 ) × (𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒) 

Here: 

• 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑐𝑜𝑟𝑒
𝑐𝑎  is the 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑐𝑜𝑟𝑒 of consistently altered differentially 

expressed/abundant features; 

• 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒
𝑠𝑚𝑙  and 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒

𝑠𝑚𝑙  refer to supervised ML-derived 

importance and significance scores, respectively; 

• 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒  represents the rotation value derived from unsupervised ML. 

Similar to drivers, biomarkers are separately classified as up- or down-regulated. 

Mediators are classified as either DE or non-DE. DE mediators are those that are DE but in an 

inconsistent manner; accordingly, the DE mediator score is calculated by integrating the 

significance scores of inconsistently altered DE features with their IVIs and neighbourhood 

driver scores: 

𝑀𝑒𝑑𝑖𝑎𝑡𝑜𝑟𝑠𝑐𝑜𝑟𝑒
𝐷𝐸 = (𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒

𝑖𝑛𝑐𝑎 )(𝐼𝑉𝐼𝑣𝑎𝑙𝑢𝑒)(𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒
𝑛𝑏ℎ ) 

where the 𝑀𝑒𝑑𝑖𝑎𝑡𝑜𝑟𝑠𝑐𝑜𝑟𝑒
𝐷𝐸  represents the DE mediator score and 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑠𝑐𝑜𝑟𝑒

𝑖𝑛𝑐𝑎  represents 

the significance score of inconsistently altered DE features. In contrast, non-DE mediator are 

those that are not DE at all (i.e. in any experimental group), and thus this score is calculated by 

synergising the effects of the IVI and neighbourhood driver score: 

𝑀𝑒𝑑𝑖𝑎𝑡𝑜𝑟𝑠𝑐𝑜𝑟𝑒
𝑛𝑜𝑛𝐷𝐸 = (𝐼𝑉𝐼𝑣𝑎𝑙𝑢𝑒)(𝐷𝑟𝑖𝑣𝑒𝑟𝑠𝑐𝑜𝑟𝑒

𝑛𝑏ℎ ) 

 Calculation of the statistical significance of prioritised genes 

Scaling and normalisation of scores was achieved by standardisation using the Z-score 

transformation method 60 through base R functions. Next, P-values are calculated based on the 

computation of Z-score probability distributions, and adjusted using the Benjamini and 

Hochberg algorithm via the stats R package. 

Data preparation for ExIR evaluation and benchmarking 
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For evaluation and benchmarking of ExIR, the following criteria were required for selection of 

datasets: 

1. The dataset should correspond to a disease/biological process with >40 curated 

driver genes in the DisGeNET database or Gene Ontology resource; 

2. The dataset should have >100 samples/cells; 

3. The dataset should include at least 2 conditions (e.g. diseased vs. unaffected, 

different time points); 

4. The dataset should have a comparable number of samples/cells within each 

condition. 

Accordingly, the following datasets were used to evaluate ExIR and demonstrate its 

applicability in the extraction, classification and prioritisation of genes from microarray, bulk 

and single-cell RNA-seq (scRNA-seq) data. 

 Glioblastoma (GBM) dataset 

This is a scRNA-seq dataset generated using plate-based protocols from four patients with 

confirmed cases of primary GBM and comprises 3,589 cells 20. Tissue samples for this dataset 

originated from either the tumour core or the peritumoural cortical space. Major classes of 

cells, including neoplastic and non-neoplastic cells, were identified using immunopanning 61 

and further confirmed by comparison with other single-cell and bulk RNA-seq data. The 

dataset was originally normalised based on the read counts generated by HTSeq 62 and filtration 

of genes with very low counts. Amongst all cell types previously identified, we selected two 

major subsets of cells including periphery regular (non-neoplastic) cells (n=1,184 cells) as the 

‘normal’ set and tumour neoplastic cells (n=1,029 cells) as the cancer set, and filtered out genes 

with zero counts across all selected cells for downstream analysis. 

 Oogenesis dataset 

This is a scRNA-seq dataset generated using plate-based protocols from fetal mouse ovaries at 

three developmental stages (E12.5, E14.5 and E16.5), together encompassing 19,144 FACS-

sorted high-quality murine female germ cells 25. The dataset was originally normalised in 

Seurat 63, as was DEG detection between all time-points. 

 TCGA BRCA 
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This is a bulk RNA-seq of breast cancer generated by the TCGA project. Here, only primary 

tumour (#1,095) and solid tissue normal (#113) samples were retrieved using the 

TCGAbiolinks R package 64. The raw RNA-seq data were pre-processed based on the Array-

Array Intensity Correlation (AAIC) method in TCGAbiolinks with default parameters (r>0.6). 

Processed data underwent quantile normalisation using the default parameters of 

TCGAbiolinks function for downstream analyses. All other TCGA datasets used in this work 

were pre-processed and normalised according to the same methods and parameters applied to 

this dataset. 

 TCGA THCA 

This is a bulk RNA-seq dataset of thyroid carcinoma generated by the TCGA project. Samples 

retrieved were primary tumour (#505) and solid tissue normal (#59). 

 TCGA LUAD 

This is a bulk RNA-seq dataset of lung adenocarcinoma generated by the TCGA project. 

Samples retrieved were primary tumour (#515) and solid tissue normal (#59). 

 TCGA LIHC 

This is a bulk RNA-seq dataset of liver hepatocellular carcinoma generated by the TCGA 

project. Samples retrieved were primary tumour (#371) and solid tissue normal (#50). 

 Schizophrenia dataset 

This is a total RNA microarray dataset generated from dysfunctional dorsolateral prefrontal 

cortex layer 3 parvalbumin neurons in 36 matched pairs of schizophrenia and unaffected cases 

using the Affymetrix Human Genome U219 array 21. This dataset contains 141 samples 

including 71 healthy and 70 schizophrenia samples. The raw microarray data were retrieved 

from the GEO database (GSE93577) utilising the GEOquery R package 65 and log-transformed 

prior to downstream analyses. 

LUAD proteomics dataset 

This is a proteomics dataset generated from primary LUAD samples with paired non-cancerous 

adjacent tissues from treatment-naive patients by means of high-performance liquid 

chromatography-mass spectrometry (HPLC-MS) and label-free quantification 24. This dataset 

contains 206 samples including 103 normal and 103 LUAD samples. The MaxQuant-based 

pre-processed data was retrieved from the Integrated Proteome Resources (IPX0001804001). 
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BRCA proteomics dataset 

This is a proteomics dataset (PXD002057) generated from human breast cancer cell lines 

SKBR3 and BT474 and their lapatinib-resistant derivative cells by means of nano-scale HPLC-

MS and label-free quantification 23. This dataset contains 20 samples including 10 benign and 

10 malignant samples. The MaxQuant-based pre-processed data of this dataset was retrieved 

from the LFQ-Analyst website (https://bioinformatics.erc.monash.edu/apps/LFQ-Analyst/). 

Differential expression/abundance analyses in ExIR benchmarking 

 GBM dataset 

Differential expression analysis (DEA) was performed using the DEsingle R package 66. 

DEsingle uses a zero-inflated negative binomial model to estimate the proportion of dropout 

and real zeroes in order to accurately identify DEGs. Subsequently, the normalised fold change 

values were log2-transformed to identify up- and down-regulated genes. DEGs with Padj > 0.05 

were filtered out. 

 TCGA datasets 

All TCGA datasets used in this work underwent DEA using the TCGAbiolinks R package, 

which implements functions of edgeR 67. Specifically, a common negative binomial dispersion 

was first estimated across all genes, and a negative binomial log-linear model was fit to the 

read counts for each gene. Then, pair-wise tests for differential expression between the two 

groups were performed. All P-values were adjusted, and DEGs with Padj > 0.05 were filtered 

out. 

 Schizophrenia dataset 

Microarray DEA was performed using the limma R package 68, where a linear model was first 

fit to the expression data of each probe, followed by computing the contrasts of the fitted 

models with moderated empirical Bayes statistics. DEGs with Padj > 0.1 were filtered out. 

Proteomics datasets 

The proteomics data were analysed using the R package DEP 69. More precisely, initially each 

dataset was filtered for proteins that had a maximum of 20 percent missing values in at least 

one condition within each dataset. Next, the variance of each dataset was normalized followed 

by a missing value imputation using the “man” algorithm. Lastly, the differential abundance of 

proteins was calculated using the limma method, P-values were adjusted using the Benjamini 
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and Hochberg algorithm. All P-values were adjusted, and differentially abundant proteins with 

Padj > 0.05 were filtered out. In the case of LUAD proteomics dataset the differentially 

abundant proteins with |log2FC| < 1 were filtered out to maintain the most prominent 

characteristics of the disease for downstream analyses and benchmarking.  

Evaluation of driver prioritisation in ExIR 

To assess the performance of ExIR in driver gene prioritisation, the sets of curated driver genes 

of the above datasets were retrieved from either DisGeNET v7 70 or the Gene Ontology 

resource 71 and considered as the ground truth (Extended Data Table 3). Additionally, the 

ground truth drivers of the TCGA datasets were complemented with the driver genes proposed 

by the MutPanning web server (http://www.cancer-genes.org/) 72. Next, an intersection 

analysis was performed to identify common genes between the sets of ground truth driver genes 

and the sets of significantly up-regulated genes in the selected datasets. As genes with the most 

statistically significant differential expression are more likely to be driver genes 73, a set of 

DEGs with the least significant Padj and with the same length as their respective true positive 

set were selected as true negatives. Then, these sets of true positive and negative genes were 

combined an input into ExIR as the desired lists of genes. The outputs were compared with 

four commonly used driver gene prioritisation methods; log2 fold change (log2FC), 

GeneMANIA 26, Endeavour 18 and ToppGene 19. The evaluation and comparison of driver gene 

prioritisation methods were performed based on the receiver operating characteristic (ROC) 

analyses using the plotROC R package 74. The varied threshold in all ROC analyses in this 

study is the threshold of prioritisation rankings used for defining true positive and negative 

features via the variation of which a ROC plot is generated for each benchmarked method. This 

threshold is calculated by default according to the ROC algorithm. To obtain the prioritised 

driver genes, the default parameters were used to run the GeneMANIA and ToppGene models. 

For Endeavour, the gene ontologies, Reactome pathways 75 and STRING PPIs 15 were selected 

for building the models. Moreover, the training sets required to run the Endeavour and 

ToppGene models included all genes previously retrieved from the DisGeNET, MutPanning 

and Gene Ontology databases, except for those genes selected for testing the models (Figure 

2a-b). 

Evaluation of biomarker prioritisation 

To evaluate the performance of ExIR in the sensitive and specific identification of biomarkers, 

lists of biomarkers for cancer and non-cancer diseases were obtained from the NCI EDRN 
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(https://edrn.nci.nih.gov/biomarkers) and a knowledge-based database of disease-related 

biomarkers 76 (accessed August 19, 2020), respectively. The EDRN has proposed >20 

biomarkers for two out of the five cancer types corresponding to the above TCGA datasets – 

specifically, lung and breast cancer. The lists of protein/proteomic biomarkers were retrieved 

from the EDRN (Extended Data Table 4). Additionally, a list of schizophrenia biomarkers 

was derived from the database of disease-related biomarkers 76 (Extended Data Table 4), 

which employs a knowledge-driven text-mining approach to extract the biomarkers of a wide 

variety of diseases. The common features between these sets and the previously obtained lists 

of significantly up-regulated genes/proteins were considered as true positive biomarkers; 

similarly, the same number of DEGs with the lowest fold changes were selected as true negative 

biomarkers (Figure 2c-d). The combined true positive and negative lists were input into ExIR 

as the desired lists of genes, and the outputs were compared with four commonly used 

biomarker prioritisation methods: mutual information (MI) 27, Student’s t-test, the point-

biserial correlation coefficient, and the Spearman correlation coefficient. The evaluation and 

comparison of biomarker prioritisation methods were performed based on ROC analyses. MI 

was calculated between the expression profile of each gene and the binary (0,1) sample labels 

using the mpmi R package (https://cran.r-project.org/package=mpmi) 77. Similarly, point-

biserial and Spearman correlation coefficients, as well as the Student’s t-test, were computed 

between gene expression profiles and binary sample labels using the stats R package. 

Additionally, immunohistochemical data deposited in the Human Protein Atlas was present for 

the exact lung adenocarcinoma (LUAD) subtype used for biomarker evaluation; thus, the 

expression of the top five ExIR-prioritised LUAD biomarkers in unaffected and LUAD tissue 

was examined using this resource 28 (http://www.proteinatlas.org). To further evaluate the 

potential of ExIR in identification and prioritisation of candidate biomarkers, the model was 

applied to the whole LUAD dataset without prior provision of a true positive or negative gene 

set and the immunohistochemical data of the Human Protein Atlas corresponding to the top 

five inferred biomarkers was examined in unaffected and LUAD samples. 

Evaluation of mediator prioritisation 

As there exists no centralised resource containing validated sets of mediators of biological 

processes or diseases, the performance of ExIR in identifying and prioritising mediators was 

evaluated based on functional annotation of ExIR outputs. Initially, the performance of ExIR 

was assessed in comparison to the mediator genes inferred by the MALANI algorithm 29. In 

the context of cancer datasets, MALANI proposes two classes of genes; one being genes 
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frequently differentially expressed or mutated, and another being those that are not 

differentially expressed but may mediate the coordination of oncogenic signals between 

DE/mutated genes 29. A set of breast cancer mediator genes has been proposed based on 

application of MALANI to the TCGA BRCA dataset; thus, to compare the performance of 

ExIR against MALANI for mediator detection, the entire TCGA BRCA dataset was input to 

ExIR without prior provision of any desired gene list. Next, an overrepresentation analysis 

(ORA) of all ExIR- and MALANI-derived mediators for biological processes and KEGG 

pathways was performed using the enrichR R package 78, and statistically non-significant terms 

were filtered out. The association of significant biological processes and KEGG pathways 

corresponding to ExIR- and MALANI-derived mediators in breast cancer were then separately 

interrogated using the Comparative Toxicogenomics Database (CTD, accessed October 19, 

2021) 79, a manually-curated repository for literature-based and computationally inferred 

associations between genes, phenotypes, diseases, etc. Additionally, this benchmarking 

workflow was then applied beyond breast cancer to all other examined datasets. 

Animal husbandry 

All protocols and procedures using zebrafish greater than 7 dpf were approved by the Monash 

University Animal Ethics Committee (ERM14481, ERM22161 and ERM17993). Zebrafish 

were maintained under standard housing and breeding conditions 80 in the AquaCore facility, 

Monash University. Embryos and larvae were maintained in E3 medium, while adult zebrafish 

were maintained in system water. Mutant strains used in this study were sgshmnu301 (referred to 

as sgsh) 8; transgenic lines used were Tg(-8.7elavl3:Hsa.H2B-GCaMP6s)jf5;mitfaw2/w2 81. 

RNA sequencing 

For each experimental replicate, total RNA was extracted from freshly-dissected n=3 young 

(3-month-old) or n=3 aged (18-month-old) zebrafish brain in TRIzol (Invitrogen, 15596). 

Three independent experimental replicates were used for bulk RNA sequencing, and all 

samples were assayed for RNA integrity on an Agilent 2100 Bioanalyzer using the Agilent 

RNA 6000 Nano Kit. 150 bp paired-end sequencing was performed by BGI (Hong Kong) using 

the DNBseq platform. SOAPnuke 82 was used for adaptor removal and low-quality read 

filtration, and genome mapping was performed with HISAT2 83 for SNP analysis and novel 

transcript detection. Clean reads were mapped to the reference genome using Bowtie2 84, and 

gene expression levels were calculated with RSEM 85. DESeq2 was used for differential gene 

expression analysis 86. Downstream visualisations for RNA-seq data were generated in R using 

EnhancedVolcano 87, GOplot 88 and ExIR (this paper), clusterProfiler 89, and in CytoScape 90 
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with the StringApp plugin91. DESeq2 differential expression analyses are provided in 

Extended Data Tables 7-8, and GO enrichment analyses of RNA datasets are listed in 

Extended Data Table 9. 

Proteomics 

Label-based quantitation by tandem mass tagging (TMTpro 16plex, Thermo Scientific, 

A44520) of proteins was performed using nanoLC ESI MS/MS. n=5 samples were used per 

group. Total protein was purified from brains in 5% SDS with 100 mM HEPES at 95 °C for 10 

minutes, then sonicated. Protein concentration was determined by BCA assay. Reduction and 

alkylation were performed using TCEP/CAA at 55 °C for 15 minutes, then protein was 

acidified using 1.2% phosphoric acid and captured with S-Trap spin columns (Protifi). Peptides 

were derived on-column using trypsin and Lys-C protease digestion. Following elution of 

peptides with 50 mM TEAB, columns were washed with 0.2% formic acid and then with 50% 

ACN with 0.2% formic acid to aid in recovery of hydrophobic peptide fragments. NanoLC ESI 

MS/MS was performed using a Dionex UltiMate 3000 RSLCnano (Thermo Scientific) and an 

Orbitrap Eclipse Tribrid mass spectrometer (Thermo Scientific). Analytical columns used were 

Acclaim PepMap RSLC (75 μm x 50 cm, nanoViper, C18, 2 μm, 100 Å, Thermo Scientific), 

and the trap column used was Acclaim PepMap 100 (100 μm x 2 cm, nanoViper, C18, 5 μm, 

100 Å, Thermo Scientific). Initial data analysis was performed using Proteome Discoverer 

(Thermo Scientific) and SEQUEST with MS3 quantitation. The protein FDR cut-off was set at 

1%, with fixed modifications of C-terminal carbamidomethylation and N-terminal TMTpro 

and variable modification of M oxidation and N-terminal acetylation. Subsequent data analysis 

was performed in R; data were filtered for high-confidence and contaminant proteins, and those 

proteins with a high proportion of missing values between samples were excluded. Protein 

intensity data was converted to a log2 scale, then samples were grouped by condition and 

missing values were imputed using the Missing Not At Random (MNAR) method which uses 

random draws from a left-shifted Gaussian distribution of 1.8 standard deviations apart with a 

width of 0.3. Data were normalised using the variance stabilising normalisation (vsn) method. 

Protein-wise linear models combined with empirical Bayes statistics were used for differential 

abundance analyses. limma 68 was used to generate a list of differentially abundant proteins for 

each pairwise comparison. A cut-off of the Benjamini-Hochberg adjusted p-value of 0.05 was 

applied, alongside a log2 fold-change cut-off of 1 to determine significantly differentially 

abundant proteins to account for the ratio compression of TMT-MS3 reporter usage. 

Downstream visualisations for proteomics data were generated in R using EnhancedVolcano 
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87, pathfindR 92 and ExIR (this paper), clusterProfiler 89, and CytoScape 90 with the StringApp 

plugin 91. Differential protein abundance analyses are provided in Extended Data Table 11, 

and GO enrichment analyses of proteomics datasets are listed in Extended Data Table 10. 

Real-time quantitative PCR (RT-qPCR) 

Total RNA was extracted from samples using the TRIzol method and approximate 

concentration determined on a NanoDrop 1000 (Thermo Fisher Scientific). 1 μg total RNA 

was used for reverse transcription to cDNA using SuperScript IV reverse transcriptase 

(Invitrogen, 18090010) and a 1:1 mix of random hexamers and Oligo-dT(12-18). RT-qPCR 

was performed on a LightCycler 480 II (Roche) using LightCycler 480 SYBR Green I Master 

mix (Roche, 04707516001) using 1:20 cDNA dilution from stock. All primer pairs were tested 

for amplification efficiency between 90-110%. Relative gene expression was calculated in 

Excel (Microsoft) using the 2-ΔΔCt method, with error propagation calculated as previously 

described 93. Primer sequences are listed in Extended Data Table 5. 

Immunohistochemistry and in situ hybridisation 

Riboprobes for in situ hybridisation were generated by cloning transcript-specific PCR 

products into pGEM-T-Easy (Promega, A1360) using the TA-cloning method. Insert 

directionality was confirmed by Sanger sequencing, and plasmids were linearised to facilitate 

in vitro transcription of antisense riboprobes using either SP6 or T7 RNA polymerase and DIG-

RNA labelling mix (Roche, 11277073910). All primers used to clone riboprobe sequences are 

listed in Extended Data Table 5. 

Adult zebrafish were rapidly euthanised in an ice-water slurry, and exsanguinated on ice via a 

tail snip. Whole brains were dissected from the neurocranium in 1x phosphate-buffered saline 

(PBS) pH 7.4, and immediately transferred to 4% paraformaldehyde (PFA, Sigma, 158127) in 

PBS for overnight fixation at 4 °C with gentle rocking. After fixation, brains were 

cryoprotected in a sucrose-EDTA solution (20% sucrose, 20% 0.5 M EDTA pH 8 in 1x PBS) 

overnight at 4 °C, then cryo-embedded in a mixture of sucrose and fish gelatin as previously 

described 94. Brains were serially cryosectioned at 16 μm thickness using a Leica CS3050S 

cryostat. 

For immunohistochemistry, samples were dried for >1 hour at room temperature (RT), then 

rehydrated with 1x PBS for 15 minutes. Sections were permeabilised 2x 15 minutes with 1x 

PBS + 0.3% Triton X-100 (PBS-Tx 0.3%) at RT, and incubated flat in a humified chamber 
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with primary antibodies overnight at 4 °C. Sections were then washed 3x 20 minutes with PBS-

Tx 0.3% at RT, then secondary antibodies were applied for one hour at RT at indicated 

concentrations with 5 mg/mL DAPI (Sigma, D9542) applied at 1:5000 concentration as nuclear 

counterstain. A single 10-minute PBS-Tx 0.3% wash was then performed followed by 2x 20-

minute washes with 1x PBS, mounted with 50% glycerol and coverslipped prior to imaging. 

Sections were imaged on a Leica TCS SP8 confocal microscope equipped with a HyD detector. 

All antibodies used and the concentrations used are listed in Extended Data Table 6. 

For in situ hybridisation, sections were pre-fixed with 4% PFA in PBS pH 7.4 for one hour, 

then washed twice with PBS-Tx 0.3% for 20 minutes. 10 mg/mL Proteinase K (Roche, 

3115879001) was diluted 1:500 in PBS-Tx 0.3%, and sections were digested at RT for five 

minutes. Sections were then quickly washed with PBS-Tx, and Proteinase K digestion was 

stopped by incubating sections with 4% PFA at RT for 10 minutes, followed by 2x 10-minute 

washes with PBS-Tx 0.3%. A hybridisation chamber was assembled using a slide box, 

containing filter paper saturated with a hybridisation chamber solution (5 mL 10x Salt solution 

[1.95 M NaCl, 89 mM Tris-HCl, 11 mM Tris base, 50 mM NaH2PO4·2H2O, 50 mM Na2HPO4 

and 63.68 mM EDTA], 25 mL formamide and 20 mL ddH2O, and the hybridisation chamber 

was preheated to 60 °C in an incubator. Antisense riboprobes were diluted 1:200 in 

hybridisation buffer (1 mg/mL Torula RNA, 50% formamide, 1x Salt solution, 10% dextran 

sulfate, 1x Denhardt’s buffer, in ddH2O), vortexed and denatured at 70 °C for 10 minutes prior 

to addition to sections. Parafilm was used to mitigate probe evaporation during hybridisation. 

Probes were hybridised overnight at 60 °C. Unbound probe was then removed by washing with 

1x SSC buffer and 50% formamide in ddH2O 1x 15 minutes, then 2x 30 minutes at 62 °C, 

followed by 2x 30-minute washes at RT in MABT. Sections were blocked in 2% DIG blocking 

reagent (Roche, 11096176001) in MABT for two hours at RT, then incubated for four hours at 

RT in AP-conjugated anti-DIG Fab fragments (Roche, 11093274910) diluted 1:2000 in 2% 

DIG blocking reagent. Sections were then washed 4x 20 minutes in MABT at RT, and 

equilibrated in staining buffer (0.1 M NaCl, 0.05 M MgCl2, 0.1 M Tris pH 9.5, Tween-20 at 

1:1000, all in ddH2O) for 5 minutes. Chromogenic detection was then performed using NBT-

BCIP stock solution (Roche, 11681451001) diluted 1:50 in staining buffer until sufficient 

signal was observed. Development was terminated by incubating sections in 4% PFA for 30 

minutes, then washed 3x 10 minutes in PBS. Sections were mounted with 50% glycerol prior 

to imaging on an Olympus IX-81 inverted microscope.  

Transmission electron microscopy 
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Adult zebrafish were euthanised and brains extracted from the neurocranium as above, then 

sub-dissected into separate forebrain, midbrain and hindbrain components. Brain regions were 

immediately transferred into Karnovsky fixative (2.5% glutaraldehyde and 2% PFA, with 

0.25% CaCl2 and 0.25% MgCl2 in 0.1 M sodium cacodylate, pH 7.4) and fixed at RT for 2 

hours, then post-fixed in 1% osmium tetroxide/1.5% potassium ferricyanide followed by 5x 

10-minute washes in distilled water. Tissue was then incubated in 70% ethanol overnight, then 

dehydrated in a stepwise, increasing ethanol gradient (2x 10-minute washes in 80%, 90% and 

95% ethanol, followed by 4x 10-minute washes in 100% ethanol). Samples were embedded in 

Epon EMbed 812 resin (Electron Microscopy Sciences, 14120). Ultrathin (70 nm) sections 

were obtained using a Leica UltraCut UC7 and stained with uranyl acetate and lead citrate. 

Sections were imaged at 80 kV on a Jeol 1400+ transmission electron microscope. 

In vivo neuronal calcium imaging in zebrafish 

In vivo calcium imaging was performed as previously described 95. Briefly, transgenic 

Tg(elavl3:Hsa.H2B-GCaMP6s)jf5;mitfaw2/w2;sgshmnu301/mnu301 or Tg(elavl3:Hsa.H2B-

GCaMP6s)jf5;mitfaw2/w2;sgshWT/WT larvae at 7 dpf were anaesthetised using 0.03% tricaine 

methanesulfonate and mounted in a droplet of 0.5% low-melting temperature agarose (Sigma, 

A9414) in Ringer’s solution pH 7 (116 mM NaCl, 2.9 mM KCl, 1.8 mM CaCl2, 5 mM HEPES 

in ddH2O) on a glass slide. When the agarose droplet solidified, a plastic ring was sealed to the 

slide around the droplet with a thin application of petroleum jelly to form a water-tight 

immersion chamber. 1 mL of Ringer’s solution was applied to the immersion chamber and 

larvae were monitored for recovery of spontaneous motor function. Larvae were then imaged 

for 5 minutes on a Zeiss Axio Imager Z1 with a Zeiss EC Plan-NEOFLUAR 5x 0.16 NA 

objective, with images captured every 0.5 seconds to establish baseline GCaMP6s activity. 

Following this, pentylenetetrazole (PTZ, Sigma, P6500) was added to the immersion chamber 

to a final concentration of 20 mM 96, and larvae were incubated in darkness for three minutes 

then imaged for a further two five minute intervals. Time-lapse acquisitions were exported to 

ImageJ2 97, and the ‘Set Measurements’ option was employed to derive the mean grey value 

from image data. Using the polygon selection tool, an ROI was drawn around the whole brain, 

and stored in the ROI manager. The ‘Multi Measure’ functionality was then used to measure 

the mean grey value of the ROI in all slices in the time-lapse. These data were exported to 

GraphPad Prism 9 (GraphPad Software) for downstream analysis. 
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Data and code availability 

All analyses used for the evaluation and benchmarking of ExIR were performed on publicly 

available data. The TCGA datasets are available at https://gdac.broadinstitute.org. Raw and 

normalised GBM scRNA-seq data were downloaded from http://www.gbmseq.org, which is 

also available from the GEO database under the accession number GSE84465. Raw and 

normalised oogenesis scRNA-seq data 25 were retrieved from GEO accession GSE130212. 

Schizophrenia microarray data 21 were retrieved from GEO accession GSE93577. The software 

and source code for the ExIR model is available as a function in the influential R package, 

accessible at https://github.com/asalavaty/influential or from the CRAN repository 

(https://cran.r-project.org/package=influential). Instructions on how to prepare input data for 

ExIR and how to execute functions, as well as some examples based on simulated data are 

available at https://cran.r-project.org/web/packages/influential/vignettes/Vignettes.html. Any 

requests for additional information will be fulfilled by the lead contacts. All transcriptomic and 

proteomic datasets generated in this study will be uploaded to the NCBI Gene Expression 

Omnibus and the Proteomics Identification Database (PRIDE), respectively, prior to 

publication. 
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Figure legends 

Fig. 1 | Transcriptomic analyses of young and aged sgsh zebrafish brain identifies 

profound downregulation of immediate early genes (IEGs). a, Volcano plot of 

differentially-expressed genes between young (3-month-old) wild type and sgsh brain by RNA 

sequencing. b, Chord plot of relationship between top 10 GO-BPs enriched in the young cohort, 

and their association to young brain DEGs; term fold enrichment given in each chord. c, 

Protein-protein interaction (PPI) network of young DEGs. Nodes coloured by log2(FC). d-d`, 

Expression of baiap2b in wild type telencephalon detected by in situ hybridisation (ISH). Scale 

bar 200 μm in d and 40 μm in d`. e-e` Expression of baiap2b in sgsh homozygous 
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telencephalon detected by ISH. Scale bar 200 μm in e and 40 μm in e`. f-f`, egr1 expression by 

ISH in wild type optic tectum. Scale bar 300 μm in f and 50 μm in f`. g-g`, egr1 expression by 

ISH in wild type cerebellum. Scale bar 300 μm in g and 50 μm in g`.  h-h`, egr1 expression by 

ISH in sgsh homozygous optic tectum. Scale bar 300 μm in h and 50 μm in h`.  i-i`, egr1 

expression by ISH in sgsh homozygous cerebellum. Scale bar 300 μm in i and 50 μm in i`.  j, 

Volcano plot of DEGs between aged (18-month-old) wild type and sgsh brain by RNA 

sequencing. k, Chord plot of relationship between top 10 GO-BPs enriched in the aged cohort, 

and their association to aged brain DEGs; term fold enrichment given in each chord. l, PPI 

network of aged DEGs. Nodes coloured by log2(FC). 

Fig. 2 | Quantitative protein analyses of young and aged sgsh zebrafish brain highlights 

compensatory lysosomal accumulation associated with primary and secondary substrate 

degradation. a, Volcano plot of differentially-abundant proteins (DAPs) between young (3-

month-old) wild type and sgsh brain by quantitative (TMT label-based) mass spectrometry. b, 

STRING PPI network of young brain DAPs. Edge weight represents confidence of protein-

protein association. c, Term-feature graph of young brain DAPs and associated KEGG 

pathways. Red protein nodes enriched in WT brain; green protein nodes enriched in sgsh brain. 

Grey KEGG pathway node size reflects degree of statistical significance of enrichment. d, 

Volcano plot of differentially-abundant proteins (DAPs) between aged (18-month-old) wild 

type and sgsh brain by quantitative (TMT label-based) mass spectrometry. e, STRING PPI 

network of aged brain DAPs. Edge weight represents confidence of protein-protein association. 

f, Term-feature graph of aged brain DAPs and associated KEGG pathways. Red protein nodes 

enriched in WT brain; green protein nodes enriched in sgsh brain. Grey KEGG pathway node 

size reflects degree of statistical significance of enrichment. g, LAMP1 immunoreactivity and 

LipidSpot 610 lipid droplet staining in wild type optic tectum; scale bar 50 μm. Boxed region 

displayed in panels, scale bar 10 μm. h, LAMP1 immunoreactivity and LipidSpot 610 lipid 

droplet staining in sgsh optic tectum; scale bar 50 μm. Boxed region displayed in panels, scale 

bar 10 μm. i, LAMP1 immunoreactivity and LipidSpot 610 lipid droplet staining in wild type 

cerebellum; scale bar 50 μm. Boxed region displayed in panels, scale bar 10 μm. j, LAMP1 

immunoreactivity and LipidSpot 610 lipid droplet staining in sgsh cerebellum; scale bar 50 

μm. Boxed region displayed in panels, scale bar 10 μm. k-l`, TEM of wild type brain; scale bar 

1 μm in k-l. l` is boxed region in l. m-n`, TEM of sgsh brain; scale bar 1 μm in m-n. n` is 

boxed region in n. Red arrowheads in m are enlarged lipid droplets. o, LAMP1 

immunoreactivity in wild type 7 dpf brain. LAMP1 expression is generally weakly ubiquitous, 
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with concentrated expression in the choroid plexus and habenula. Scale bar 50 μm. p, LAMP1 

immunoreactivity in sgsh 7 dpf brain. Note strong, dispersed LAMP1 expression throughout 

the brain parenchyma. Scale bar 50 μm. 

Fig. 3 | The ExIR model workflow. a, ExIR first performs multi-level filtration and scoring 

of input data (differential/regression data, normalised high-throughput data, and optionally a 

list of desired features). Differential/regression data are used for generation of multiple scores 

on the basis of their consistency of alteration between experimental groups to determine 

primitive and neighbourhood driver scores. Filtered data (I) is subject to supervised ML 

through the Random Forest algorithm to derive reliability and importance scores, from which 

additional data filtration is performed (filtered data II). PCA-based unsupervised ML is then 

performed on this further filtered data to determine a rotation value. Simultaneously, an 

adjacency matrix is derived from the input normalised data by way of correlation analysis, and 

a tabulated set of correlated features is derived from intersection analysis of filtered data II. A 

final association matrix is generated by extending the adjacency matrix by one order using the 

set of correlated features. A connectivity network is then reconstructed from the final 

association matrix, which is used to calculate Integrated Values of Influence (IVIs) 50 for each 

feature within the network. IVIs and primitive driver scores are subsequently used to determine 

final neighbourhood driver scores. b, Combinations of scores derived from ExIR’s multi-level 

filtration and scoring pipeline define feature classifications and ranks. Drivers are classified 

based on their combined primitive and neighbourhood driver scores; DE mediators (in datasets 

with >2 groups) are classified based on their IVIs and neighbourhood driver scores and meeting 

the criteria of having an inconsistently altered significance score; non-DE mediators (not 

requiring experimental data with >2 groups) do not factor significance scores; and biomarkers 

are defined by regression scores, consistently altered differential and significance scores, 

supervised ML-derived reliability and importance scores, and unsupervised ML-derived 

rotation values. 

Fig. 4 | Structural and functional aberrations in sgsh synapses result from impaired 

synaptic vesicle localisation to the synapse and maintenance of the synaptic vesicle reserve 

pool. a, TEM of axon terminal (red asterisk) and synapses (red arrows) in wild type brain. 

Scale bar 500 nm. b, TEM of axon terminal (red asterisk) and synapses (red arrows) in sgsh 

brain. Scale bar 200 nm. c, Quantification of synaptic vesicles in the synaptic active zone (AZ) 

and reserve pool (RP) of wild type and sgsh axon terminals. ns = not significant, * P = 0.0325; 

Kruskal-Wallis test with Dunn’s multiple comparisons test. d, Synapsin-1/2 immunoreactivity 
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in the wild type cerebellar granule cell layer; scale bar 100 μm. Panels are high-magnification 

images of boxed region showing Syn-1/2+ cerebellar glomeruli; scale bars 10 μm. e, Synapsin-

1/2 immunoreactivity in the sgsh cerebellar granule cell layer; scale bar 100 μm. Panels are 

high-magnification images of boxed region showing Syn1/2+ cerebellar glomeruli; scale bars 

10 μm. f, Quantification of Syn1/2+ glomeruli in 100 μm2 of wild type and sgsh granule cell 

layer. Each data point represents one animal; **** P < 0.0001, Student’s T-test. g, GCaMP6s 

fluorescence in 7 dpf Tg(-8.7elavl3:H2B-GCaMP6s) brain at baseline and after 20 mM PTZ 

administration in wild type (top) and sgsh homozygotes (bottom). Scale bars 100 μm. h, 

Representative whole-brain GCaMP6s fluorescence trace in a wild type 7 dpf larva at baseline 

and following 20 mM PTZ administration. Red (i) and (ii) are seizure peaks in g, top panels. i, 

Representative whole-brain GCaMP6s fluorescence trace in a homozygous sgsh 7 dpf larva at 

baseline and following 20 mM PTZ administration. Green (i) and (ii) are seizure peaks in g, 

bottom panels. j, Quantification of seizures in wild type and sgsh homozygous larvae after PTZ 

administration. ns = not significant; **** P < 0.0001; Ordinary one-way ANOVA and Šídák’s 

multiple comparisons test with a single pooled variance. 

Extended Data Fig. 1 | Non-telencephalic baiap2b expression and choroid plexus pmela 

expression in adult wild type and sgsh zebrafish brain. a-b`, baiap2b expression in midbrain 

was detected at comparable levels between wild type and sgsh mutants in the dorsal tegmental 

nucleus. c-d`, baiap2b expression in hindbrain was detected at comparable levels between wild 

type and sgsh mutants in neurons in cells in the Purkinje layer, presumably Purkinje or 

eurydendroid cells. e, pmela expression was not detected in wild type adult brain. f, pmela 

expression was detected in, and highly restricted to, the choroid plexus dorsal to the 

thalamus/preoptic region. Scale bars 100 μm in a, b, c, d, e, f; 40 μm in a`, b`, c`, d`. 

Extended Data Fig. 2 | ExIR outperforms other common feature prioritisation methods. 

a-b, Criteria used to define ground truth true positive and negative driver gene sets for 

benchmarking in homeostatic (a) and disease datasets (b). Note the requirement for a training 

set required for execution of Endeavour and ToppGene, which is not required for driver gene 

determination using ExIR. c-d, Criteria used to define true positive and negative biomarkers 

from cancer datasets (c) and those of other diseases (d). e, Raincloud plot summaries of ROC 

plot AUCs for comparison of performance of driver gene prioritisation methods. f, Raincloud 

plot summaries of ROC plot AUCs for comparison of performance of biomarker gene 

prioritisation methods. g, ROC plots (true positive vs. false positive rates) of driver 

prioritisation performance in TCGA BRCA, LIHC, LUAD, THCA, and GBM (GSE130212), 
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Schizophrenia (GSE93577), BRCA (PXD002057) and LUAD (IPX0001804000) datasets. h, 

ROC plots (true positive vs. false positive rates) of biomarker prioritisation performance in 

TCGA BRCA and LUAD, and Schizophrenia (GSE93577) datasets. i, Quantification of TCGA 

BRCA GO-BPs and KEGG pathways corresponding to ExIR- and MALANI-derived 

mediators. j, Quantification of ExIR- and MALANI-derived mediators enriched in TCGA 

BRCA GO-BPs and KEGG pathways. k, Number of associated GO-BP or KEGG pathway 

annotations associated with ExIR-derived mediators across different disease datasets. l, 

Percentage of ExIR-derived mediators enriched in disease-associated GO-BPs and KEGG 

pathways. TCGA, The Cancer Genome Atlas; GBM, glioblastoma multiforme; BRCA, breast 

cancer; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; THCA, thyroid 

cancer. 

Extended Data Fig. 3 | Comparison of top five known and ExIR-predicted LUAD 

biomarkers. a-e, Immunohistochemical (IHC) data from the Human Protein Atlas 28 database 

in LUAD and normal lung tissue for top five known LUAD biomarkers. a, SFTPC - ExIR rank 

#1, LUAD (negative intensity; patient id: 1847) and normal pneumocytes (quantity:75%-25%; 

strong intensity; patient id: 2268). b, SPP1 – ExIR rank #117, LUAD (quantity:>75%; 

moderate intensity; patient id: 537) and normal pneumocytes (not detected; patient id: 2268). 

c, CBLC – ExIR rank #140, LUAD (quantity:>75%; moderate intensity; patient id: 1847) and 

normal pneumocytes (not detected; patient id: 2417). d, MDK – ExIR rank #247, LUAD 

(quantity:75%-25%; strong intensity; patient id: 1847) and normal pneumocytes (not detected; 

patient id: 2222). e, MRC1 – ExIR rank #471, LUAD (negative intensity; patient id: 1932) and 

normal macrophages (quantity:75%-25%; strong intensity; patient id: 2208). f-i, IHC data of 

top five ExIR-predicted LUAD biomarkers (excluding SFTPC rank #1 already in a). f, AGER 

– ExIR rank #2, LUAD (not detected; patient id: 3144) and normal pneumocytes 

(quantity:>75%; strong intensity; patient id: 4840). g, EMP2 – ExIR rank #3, LUAD (not 

detected; patient id: 1847) and normal pneumocytes (quantity:>75%; strong intensity; patient 

id: 2101). h, CAV1 – ExIR rank #4, LUAD (not detected; patient id: 1249) and normal 

pneumocytes (quantity:>75%; strong intensity; patient id: 2208). i, RTKN2 – ExIR rank 5, 

LUAD (not detected; patient id: 3003) and normal pneumocytes (quantity: <25%; moderate 

intensity; patient id: 2268). As requested by The Human Protein Atlas database, the link to the 

immunostaining images of all of the selected proteins in normal pneumocytes and LUAD 

samples are included as hyperlinks within the figure legend. Ab, antibody; LUAD, lung 

adenocarcinoma. 
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Extended Data Fig. 4 | Top-ranked driver and biomarker genes and proteins in sgsh 

mutant RNA-sequencing and quantitative proteomics datasets. a, ExIR prioritisation of 

upregulated (accelerating) driver and biomarker genes amongst young brain differentially 

abundant genes (DEGs). b, ExIR prioritisation of downregulated (decelerating) driver and 

biomarker genes amongst young brain DEGs. c, ExIR prioritisation of upregulated 

(accelerating) driver and biomarker proteins amongst young brain differentially abundant 

proteins (DAPs). d, ExIR prioritisation of downregulated (decelerating) driver and biomarker 

proteins amongst young brain differentially abundant proteins (DAPs). e, ExIR prioritisation 

of upregulated (accelerating) driver and biomarker genes amongst aged brain DEGs. f, ExIR 

prioritisation of downregulated (decelerating) driver and biomarker genes amongst aged brain 

DEGs. g, ExIR prioritisation of upregulated (accelerating) driver and biomarker proteins 

amongst aged brain DAPs. h, ExIR prioritisation of downregulated (decelerating) driver and 

biomarker proteins amongst aged brain DAPs. 

Extended Data Fig. 5 | Functional enrichment analyses of cross-timepoint conserved 

transcriptomic and proteomic mediators. a, STRING PPI network (interaction confidence 

cut-off 0.9, singletons not displayed) of ExIR-derived mediators present in both young and 

aged RNA-seq datasets. b, Tree plot of Gene Ontology (GO) functional enrichment analysis 

(biological process, molecular function and cell component) of conserved transcriptomic 

mediators. Node size is number of genes per GO term. Node colour is adjusted P-value (Padj). 

c, STRING PPI network (interaction confidence cut-off 0.9, singletons not displayed) of ExIR-

derived mediators present in both young and aged proteomics datasets. d, Top 10 protein 

mediators in young sgsh brain. e, Top 10 protein mediators in aged sgsh brain. f, Tree plot of 

Gene Ontology (GO) functional enrichment analysis (biological process, molecular function 

and cell component) of conserved proteomic mediators. Node size is number of genes per GO 

term. Node colour is adjusted P-value (Padj). 

Extended Data Fig. 6 | Basal IEG expression is not different between wild type and sgsh 

mutants at 7 dpf. a, RT-qPCR analysis of egr1, egr4, and npas4a expression (normalised to 

eef1a1l1 expression) in dissected brains of wild type or sgsh 7 dpf larvae. Each group is RNA 

from n=20 pooled brains. n.s., not significant. b-c, egr1 expression detected by in situ 

hybridisation in 7 dpf larval brain in wild type and sgsh homozygotes. d-e, egr4 expression 

detected by in situ hybridisation in 7 dpf larval brain in wild type and sgsh homozygotes. f, 

Experimental schematic for PTZ exposure and npas4a detection in 7 dpf larvae of either 

genotype. g, npas4a expression in wild type 7 dpf telencephalon (n=20) following 30 minutes 
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of 20 mM PTZ exposure. Scale bar 50 μm. h, npas4a expression in sgsh 7 dpf telencephalon 

(n=20) following 30 minutes of 20 mM PTZ exposure. n=2 samples showed no expression, 

presumably due to failed hybridisation. Scale bar 50 μm. i-k, GCaMP6s fluorescence (whole 

brain) at baseline and after PTZ administration in n=3 sgshWT 7 dpf larvae. l-n, GCaMP6s 

fluorescence (whole brain) at baseline and after PTZ administration in n=3 sgsh 7 dpf larvae. 

Extended Data Table 1 | Biological processes significantly associated with mediators of 

investigated diseases from ExIR and MALANI models. 

Extended Data Table 2 | Disease-associated biological processes corresponding to ExIR- 

or MALANI-derived mediators. 

Extended Data Table 3 | Curated ground-truth driver gene sets used for benchmarking. 

Extended Data Table 4 | Curated ground-truth biomarker gene sets used for 

benchmarking. 

Extended Data Table 5 | Primer sequences used for RT-qPCR and riboprobe cloning. 

Extended Data Table 6 | Antibodies and dyes used for immunohistochemistry. 

Extended Data Table 7 | DEseq2 differential expression analysis of young wild type and 

sgsh brain. 

Extended Data Table 8 | DEseq2 differential expression analysis of aged wild type and 

sgsh brain. 

Extended Data Table 9 | GO analyses of transcriptomic mediators conserved across ExIR 

analyses of young and aged timepoints. 

Extended Data Table 10 | GO analyses of proteomic mediators conserved across ExIR 

analyses of young and aged timepoints. 

Extended Data Table 11 | Differential abundance analyses of young and aged wild type 

and sgsh brain proteomics. 
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