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Humans exhibit sex differences in the prevalence of
many neurodevelopmental and neurodegenerative
conditions. To better understand the translatability
of a critical nonhuman primate model, the rhesus
macaque, we generated one of the largest multi-
brain region bulk transcriptional datasets for this
species and characterized sex-biased gene expres-
sion patterns. We demonstrate that these patterns
are similar to those in humans and are associated
with overlapping regulatory mechanisms, biologi-
cal processes, and genes implicated in sex-biased
human disorders, including autism. We also show
that sex-biased genes exhibit greater genetic vari-
ance for expression and more tissue-specific ex-
pression patterns, which may facilitate the rapid
evolution of sex-biased genes. Our findings pro-
vide insights into the biological mechanisms un-
derlying sex-biased disease and validate the rhesus
macaque model for the study of these conditions.
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Introduction

Humans exhibit sex™ differences in prevalence, presen-
tation, and progression of many psychiatric, neurode-
velopmental, and neurodegenerative conditions (*see
Note 1). For example, depression (1), anxiety (2)
and Alzheimer’s disease (AD) (3) are more prevalent
in females, whereas attention deficit hyperactivity dis-
order (ADHD) (4), autism spectrum disorders (ASD)
(5), schizophrenia (6), and Parkinson’s disease (7) oc-
cur more often in males. Although gender-biases in
the applicability of diagnostic criteria certainly contribute
to these differences (e.g., 8), neurobiological sex dif-
ferences are likely to play a critical role, as multiple
diagnostically-distinct disorders show the same sex bias

during the same developmental window (e.g., male-
biased early-onset neurodevelopmental disorders) and
sex-biased disorders tend to emerge during particu-
larly dynamic neurodevelopmental periods that involve
changes to sex hormone concentrations (e.g., adoles-
cence, menopause) (9, 10). Studies of post-mortem
human brains have highlighted a molecular mechanism
that may underlie such differences: many genes asso-
ciated with these conditions are also expressed at dif-
ferent levels in healthy male and female brains (11-19).
However, our understanding of the proximate and evo-
lutionary sources of normative transcriptomic sex differ-
ences in the human brain is currently limited due to: i) a
dearth of post-mortem human tissues, which tend to be
very heterogeneous in terms of co-occurring diseases
and processing methods; and ii) the fact that most work
on neurobiological sex differences has been conducted
on laboratory rodents, which are distantly related to and
neuroanatomically distinct from humans.

Among existing animal models, rhesus macaques ar-
guably have the greatest translatability to humans due
to their close evolutionary relatedness, overall simi-
lar biology, wide availability, and deep knowledge ac-
quired through over a century of cumulative biological
and behavioral study. Like humans, macaques have
primate-specific prefrontal cortical areas implicated in
multiple neurological disorders (20), exhibit complex so-
cial behaviors that are mediated by similar neural cir-
cuits (21), and undergo extended brain development
(relative to smaller model species such as rodents and
marmosets, which are highly altricial) (22). Given that
species-specific evolutionary mechanisms (e.g., mate
choice, mate competition, parental care) (23) can pro-
duce species-specific sex differences in behavior and
neurobiology, it is critical to explicitly test whether model
organisms also exhibit human-like brain sex differences.
This may be particularly relevant to the brain transcrip-
tome, as sex-biased gene expression patterns tend to
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Figure 1. Experimental design and global expression patterns.

(A) 15 brain regions sampled in the current study. Top = lateral view. Bottom = medial view. Some structures are internal and cannot be viewed from the planes
depicted. (B) Uniform Manifold Approximation and Projection (UMAP) plot of expression data. Each point represents one sample (N=527). Colors indicate region
and shape indicates sex (see legend). (C) Violin plots with overlaid boxplots of variance proportions for each gene and variable from variance partitioning analysis.
Boxplots indicate the median (black horizontal line), first and third quartiles (i.e., interquartile range, IQR; lower and upper hinges), and ranges extending from each
to 1.5 x IQR beyond each hinge (whiskers). Points represent individual genes that are outliers (i.e., beyond whiskers), and their shape indicates the chromosomal

location (autosome = ¢, X chromosome = x, Y chromosome = =).

be species-specific (24), and sex-biased genes evolve
faster than non-sex-biased genes in terms of changes
to both coding sequence and gene expression (25-31).
In cases where model species do exhibit human-like
sex-biased associations with molecular signatures of
disease, these conserved mechanisms may inform our
understanding of sex-linked biological versus cultural
drivers of sex-biased human diseases. Previous tran-
scriptomic studies of the rhesus macaque brain (32—36)
did not focus on sex differences and/or had restricted
sampling of individuals, limiting our understanding of the
extent to which humans and rhesus macaques share
sex differences in brain gene expression, or of the evo-
lutionary mechanisms that may have contributed to any
differences. Filling in these gaps regarding the critically
important rhesus macaque model could greatly aid in
the development of potential therapies for sex-biased
brain disorders in humans.

To address this, we generated one of the largest nonhu-
man primate brain transcriptional datasets (n=527 sam-
ples), and quantified sex differences in gene expression
across 15 brain regions (Figure 1; Supplementary Table
1) from 36 free-ranging adults (20 females, 16 males;
identified using chromosomal and phenotypic sex; Sup-
plementary Figure 1; Supplementary Table 2). This
substantial sample size allowed us to characterize, for
the first time, patterns of sex-biased gene expression
across the rhesus macaque brain, to link these patterns
to human sex differences in the brain and disease, and
to illuminate some of the evolutionary mechanisms un-
derlying these patterns.

Results

Sex-biased gene expression is largely shared
across brain regions

We first quantified the drivers of global gene expression
variation across all 527 samples for 12,672 detectably
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expressed genes in 15 regions (8 cortical regions, 2
hippocampal subregions, 2 striatal subregions, amyg-
dala, hypothalamus, thalamus; Methods; Figure 1; Sup-
plementary Table 1). As expected, the primary driver
of variance in brain gene expression was the sampled
brain region (mean = 36.12%; Figure 1; Supplementary
Table 3), likely due to regional differences in cell com-
position and function. Indeed, regions in topographi-
cal proximity and with functional overlap exhibited more
similar transcriptional profiles (Figure 1, Supplementary
Figures 2-3). Although demographic and behavioral fac-
tors explained much less variation in the expression of
individual genes across the whole brain (means: sex
= 0.50%, dominance rank = 0.41%, age = 0.49%; Fig-
ure 1; Supplementary Table 3), their explanatory power
was slightly higher within regions, particularly for age
(means: sex = 0.78%, dominance rank = 1.46%, age
= 3.66%; Supplementary Table 4). Sex explained sig-
nificantly more variance for genes located on sex chro-
mosomes compared to autosomal genes (overall brain
means: Y chromosome = 92.74%, X chromosome =
1.16%, autosomes = 0.41%; Tukey’s HSD p,q; < 0.001;
Figure 1; Supplementary Table 3).

Next, we estimated sex biases in gene expression within
each brain region using linear mixed models controlling
for age, dominance rank, technical covariates, and ge-
netic relatedness (37). Sex effects were similar across
regions, such that genes more highly expressed in fe-
males in one region tended to also be more highly
expressed in females in all other regions (Figure 2;
Supplementary Figure 4). This is consistent with ob-
servations of shared sex effects across other tissues
in multiple species and suggests shared gene regu-
lation across functionally and cellularly distinct tissues
(24). We then implemented multivariate shrinkage (38)
across regions to increase power, improve precision of
our sex effect estimates, and estimate local false sign
rates (LFSRs) (39). LFSRs quantify our confidence
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Figure 2. Regional, chromosomal, and cell-type distributions of sex-biased genes.

(A) Correlation plot for pre-mashr sex effect sizes (from EMMREML) across regions (Spearman’s p). Teal =

positive correlation, brown = negative correlation, size

of square indicates strength of correlation. Of these inter-regional correlations, 77 are significantly positive, 23 are significantly negative, and are 5 not significant

(p > 0.05).

(B) Bar chart of the number of sex-biased genes (LFSR < 0.05) shared across different numbers of regions identified by our primary mashr analyses.

(C) Counts of sex-biased genes identified by mashr (LFSR < 0.05) using un-adjusted (top) and cell type-corrected (bottom) expression data. M = male-biased, F =
female-biased. (D) Proportions of genes on each chromosome that are not biased in any region (grey), female-biased in at least 1 region (purple), or male-biased
in at least 1 region (yellow). The sex chromosomes are significantly enriched for sex-biased genes. (E) Violin plots of sex effect sizes (mashr betas) for sex-biased
autosomal versus X chromosome genes. (F) Stacked bar plots of the number of male- and female-biased genes identified per region in our primary and/or cell-type

corrected analyses.

in the direction of effect estimates and are more con-
servative than the local false discovery rates (LFDRs),
which instead measure the confidence that the effect is
non-zero (39). In total, 4.4% (561/12,672) of genes ex-
pressed in the brain were differentially expressed be-
tween males and females (LFSR < 0.05) in at least
one region (Figure 2; Supplementary Table 5), similar
to human studies (average across 8 overlapping brain
tissues = 6.5%) (12). Most sex-biased genes exhib-
ited significant sex differences in the same direction in
a majority of regions (66.8% were biased in at least
8/15 tissues; Figure 2), consistent with shared regula-
tory mechanisms. Of the identified sex-biased genes,
7.1% were located on the X chromosome, 1.6% on
the Y chromosome, and 91.3% on autosomes (Fig-
ure 2). For all regions, the number of male-biased
genes (i.e., genes more highly expressed in males rela-
tive to females) was higher than the number of female-
biased genes (across all sex-bias genes: male-biased =
57%, female-biased = 43%; Figure 2); however, female-
biased genes exhibited significantly stronger sex effects
(mean |B| = 0.16) than male-biased genes (mean |B| =
0.12; t-test: p < 5.2e-36; excluding N =9 'Y chromosome
genes, which are not expressed in females). In particu-
lar, female-biased X chromosome genes exhibited sig-
nificantly larger sex effects (N = 22 genes; mean |B| =
0.32) than either male-biased X chromosome genes (N
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= 18; mean |B| = 0.15; Tukey’s HSD pag; < 0.001) or
sex-biased autosomal genes (female: N = 218, mean
IB] = 0.14, pagj < 0.001; male: N = 294: mean [B| =
0.11, pagj < 0.001) (Figure 2), which is likely to reflect
genes that escape X chromosome inactivation (XCI).
Notably, all female-biased X-linked genes that we iden-
tified in macaques are known XCI escapees in humans
(12), which may suggest conserved patterns of XCl es-
cape across species. Other model organisms, including
mice, do not exhibit these patterns due to a relatively
low rate of XCl escape (40), which may further limit their
translatability for sex-linked human conditions.

Sex-biased brain gene expression is similar in rhe-
sus macaques and humans

To investigate whether humans and rhesus macaques
exhibit similar sex differences in brain gene expression,
we compared estimated sex effects from this study (de-
scribed above) to those from an analysis of the human
GTEXx data (V8) for 8 overlapping brain regions (control-
ling for age and technical effects; see Methods). Simi-
lar to our findings in macaques, sex explained a mean
0.49% of the variation in gene expression across the
human GTEx brain samples. We also found that sex
effects were similar across species (for all non-Y chro-
mosome genes across all 8 regions: median Spear-
man’s correlation (p) = 0.16 [0.14-0.21]; pagj < 0.05)
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(Figure 3; Supplementary Figure 5; Supplementary Ta-
ble 6). Together, these observations suggest that global
transcriptomic sex differences in macaque and human
brains largely mirror one another across both cortical
and subcortical brain regions.

Sex-biased brain gene expression partially reflects
sex differences in microglial proportions

Observed sex differences in gene expression could re-
flect differences in cell composition and/or the expres-
sion of specific genes within cell types. To test the con-
tribution of sex differences in cell type proportions to
sex-biased gene expression in the macaque brain tran-
scriptome, we drew on a recent meta-analysis of hu-
man brain cell type markers (41). We found that female-
biased genes (LFSR < 0.05 in any region; n=270) were
enriched for microglial marker genes (odds ratio [OR] =
2.51; pagj = 0.003; Figure 3; Supplementary Table 7).
Similarly, the largest sex differences in estimated cell
type proportions (surrogate proportion variables, SPVs)
were for microglia, with females exhibiting higher mean
SPVs across regions (microglia: pag; = 0.003; all other
cell types: pagj > 0.05) (Supplementary Figure 6, Sup-
plementary Table 8). Female-biased genes identified in
our analysis of the human GTEx data (Methods) were
also enriched for microglial markers (OR = 4.607, pagj
= 0.003) (Figure 3; Supplementary Table 7). These re-
sults are consistent with previous reports of higher mi-
croglial proportions in the neocortices of adult female
humans (42) and in multiple brain areas of adult female
rats (43), in addition to a neurodevelopmental gene co-
expression module in the human brain (ME3) that is
enriched for both microglial markers and female-biased
genes in the postnatal period (44). Differences in mi-
croglial number and maturation during development not
only drive sexual differentiation in the brain, but are
also likely to contribute to sex differences in AD and
ASD (45, 46). Accordingly, we also estimated sex ef-
fects after performing cell type deconvolution analysis
on the expression data (Methods; Supplementary Ta-
ble 9). This analysis allowed us to identify sex-biased
gene expression patterns that are not driven by sex dif-
ferences in cell type abundances. Estimated sex effects
tended to be in the same direction (i.e., male- or female-
biased) whether or not cell type proportions were con-
sidered (74% concordance across all estimated effects;
99% concordance across effects that are significant in
at least one analysis; p = 0.635, p < 2.20e-16; Sup-
plementary Figure 7). As expected, fewer sex-biased
genes pass our LFSR threshold in this analysis (25%
fewer; N = 422 genes exhibited sex bias in at least
one region) (Figure 2; Supplementary Results), 59% of
which were also detected in at least one region in our
primary analysis (Figure 2). Accordingly, we repeated
all enrichment analyses described below using cell-type
corrected data. The results were largely similar (Sup-
plementary Results; Supplementary Figures 8-9; Sup-
plementary Tables 16-18), so below we report only the
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results from our primary analyses.

Sex-biased genes are involved in metabolic and
immune-related pathways

Genes that exhibited female-biased expression in the
macaque brain (LFSR < 0.05 in any region) were in-
volved in pathways related to hormone receptor sig-
naling, lipid catabolism, protein localization, transla-
tion, gliogenesis, apoptosis, inflammation (e.g., NF-xB
signaling), and the immune response (e.g., monocyte
differentiation, B cell production) (Fisher’s exact tests
for these GO terms: p < 0.05) (Supplementary Table
10). These findings parallel those found in humans,
where many genes that are more highly expressed in
females are involved in immunity (14, 16, 47). This
conserved pattern is likely to reflect evolved sex differ-
ences in immune surveillance and response due to the
need for mothers to tolerate an internal, immunologi-
cally challenging pregnancy (48). Genes that exhibited
male-biased expression in the macaque brain (LFSR
< 0.05 in any region) were associated with pathways
involved in lipid biosynthesis, vesicular transport, RNA
localization, microtubule-based processes, immune ef-
fector processes, and cell cycle regulation (Supplemen-
tary Table 10). Sex differences in the expression of
genes associated with the cell cycle and metabolism
are consistent with findings in humans (14, 15, 47) and
may reflect sex differences in brain size (49). The only
pathway that was enriched in both male- and female-
biased (non-overlapping) gene sets in macaques in-
volves multivesicular bodies (underlying genes: male-
biased = TSPAN6, DENND10, VPS4B, TMEMS50A;
female-biased = CHMP4B, LAPTM4B), which are crit-
ical for sorting and degradation of cellular proteins and
play a role in neurodegenerative diseases, including AD
(50).

Sex-biased genes are implicated in sex-biased neu-
rological disorders

Given that sex-biased genes in the human brain are
linked to sex-biased neurological conditions (11-19),
we investigated whether genes exhibiting normative
sex differences in expression in the rhesus macaque
brain also showed similar disease associations. Indeed,
male-biased gene expression was linked to risk genes
for ASD (KS tests on mean standardized 3 across re-
gions: D = 0.148, pagj = 2.14e-08), intellectual disabil-
ity (D = 0.107, pagj = 2.54e-07), schizophrenia (D =
0.098, pagy = 1.31e-04), bipolar disorder (D = 0.162,
Padj = 9.15e-04), and ADHD (D = 0.146, pagj = 0.003)
(Figure 3; Supplementary Table 11). Within regions,
these associations were the strongest in the anterior
cingulate, dorsomedial prefrontal, primary visual, and
superior temporal cortices, as well as the dentate gyrus
(Supplementary Table 12). The cingulate cortex, su-
perior temporal cortex, and hippocampus are critical
for social valuation and interaction, and are among the
most disrupted brain areas in schizophrenia (51). In ad-
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Figure 3. Sex-biased gene expression in macaque and human brains is associated with specific cell types and sex biased diseases.

(A) Scatterplots of estimated sex effects for genes that are significantly sex-biased (LFSR < 0.05) in either humans (GTEX) or rhesus macaques (this study). Both
autosomal genes (circles) and X chromosome genes (triangles) are included. Green points represent genes with concordant sex-bias across species, while red points
represent discordance. Significant correlations (p < 0.05) are in bold. (B) Proportions of female-biased or male-biased genes that are also marker genes for specific
cell types (see legend). Humans: female-biased genes (N = 36) are enriched for microglia (pag; = 0.003) and endothelial cells (pagj < 0.001) and male-biased genes
(N = 73) are enriched for neurons (pag; < 0.001). Macaques: female-biased genes (N = 47) are enriched for microglia (pagy = 0.010) and male-biased genes (N = 51)
are not enriched for any cell types. (C) Bar charts depicting adjusted p-values (-log10) from KS tests of male-biased disease risk gene enrichment for humans and
macaques. SCZ = schizophrenia, ASD = autism spectrum disorders, ADHD = attention deficit hyperactivity disorder, ID = intellectual disability, BPD = bipolar disorder.
(D) Boxplots of prediction probabilities of the known sex per individual (from models of all non-Y chromosome genes). Dots indicate values for individual samples.
Purple boxes = female, yellow boxes = male, black dots = correctly classified samples, red dots = incorrectly classified sample (prediction probability of correct sex <
0.5). Boxplots indicate the median (black horizontal line), first and third quartiles (i.e., interquartile range, IQR; lower and upper hinges), and ranges extending from
each to 1.5 x IQR beyond each hinge (whiskers). (E) Prediction probability (averaged across regions) of known sex per individual as a function of age (years) for
females (purple) and males (yellow) from models of autosomal genes only (p (all) = 0.016). (F) Relative importance of X chromosome genes for sex prediction in X
chromosome gene models (summed across regions) in the current study and Oliva et al. (2020) (p= 0.222, p = 0.006).

dition, male-biased genes were associated with genes
linked to AD in the anterior cingulate cortex only (Sup-
plementary Table 12), a region that is commonly dam-
aged across all neuropsychiatric AD symptoms (52). Al-
though some male-biased genes are shared across all
these conditions, many genes are unique to individual
conditions or combinations of conditions (Supplemen-
tary Figure 10). Female-biased gene expression was
not associated with any neurological conditions (Sup-
plementary Table 11). These results are similar to stud-
ies of human brains, which have found that male-biased
genes are associated with schizophrenia, bipolar disor-
der, AD, and ASD risk genes (15, 14, 16) (c.f. 11) and
suggest that sex differences present in typically devel-
oping individuals modulate the impact of risk variants
and contribute to the sex differences in disease preva-
lence. Consistent with this, we also found that male-
biased gene expression in the human GTEx data was
associated with risk genes for schizophrenia, bipolar
disorder, ASD, ADHD, and intellectual disability (Figure
3; Supplementary Table 13). These results suggest that
greater male susceptibility to certain conditions may be
linked to male-biased expression of the risk genes for
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those conditions, and as a result, disruptive mutations
in these genes have a larger impact in males (11).

To further investigate links between sex differences in
brain gene expression and human disorders, we tested
whether sex-biased genes in the macaque brain (LFSR
< 0.05 in any region) were enriched for genes that
exhibit altered expression levels in the brains of peo-
ple with ASD (rather than ASD-risk genes identified in
GWAS or twin studies). Female-biased genes were
associated with cortex-wide ASD-upregulated genes
that were recently identified in the largest ASD case-
control study to date (53) (OR = 2.090, p = 0.0002),
while male-biased genes were associated with ASD-
downregulated genes (OR = 1.337, p = 0.035). This
was also the case for sex-biased genes identified in
our analysis of human GTEx data, which as expected,
showed even stronger enrichments (female-biased and
ASD-upregulated: OR = 14.906, p = 4.9e-21; male-
biased and ASD-downregulated: OR = 4.719, p = 5.4e-
15). These results are consistent with converging ev-
idence of complex interactions between ASD, sex, mi-
croglia, and the immune system. In particular, previ-
ous studies have linked ASD-upregulated genes to mi-
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croglial markers and immune genes (53-57) and sug-
gest higher microglial proportions in ASD patients (53).
These findings also parallel female-biased characteris-
tics of macaque and human brains reported here and
elsewhere (Supplementary Table 7) (14, 16, 42—44, 47),
suggesting that ASD and female brains independently
exhibit greater activation of the neuroimmune system.
In fact, many female-biased, ASD-upregulated genes in
both species were also microglial markers, and among
genes identified as female-biased in either species (N
= 249), genes that were also upregulated in ASD (N =
66) were enriched for numerous cytokine- and immune-
related pathways (p < 0.05) (Supplementary Table 14).
This bolsters previous work on rhesus macaque models
of maternal immune activation-associated neurodevel-
opmental disorders (which include ASD) (58, 59).

Although these results appear to contrast with previ-
ous work linking male-biased genes in the typically de-
veloping human brain to microglial markers and ASD-
upregulated genes (11, 60), differences in sample size
and developmental period may explain the apparent dis-
crepancy. For example, although our analyses include
relatively more samples for both the ASD and normative
sex datasets, these data represent different develop-
mental periods (the ASD expression dataset analyzed
here includes children and adults (53); the macaque
and human GTEx datasets include adults only). This
may impact results since ASD and sex both represent
“developmentally moving targets” (60). Finally, more
recent analyses (incorporating data from more individ-
uals) report that ASD-upregulated microglial/immune
gene modules are male-biased prenatally but are then
female-biased during certain postnatal periods (60).
This is consistent with prenatal male-biased and post-
natal female-biased expression of a microglia-enriched
neurodevelopmental gene module in the human brain
(ME3) (44), in addition to reversal of sex differences
in microglial colonization and activation prior to adoles-
cence in rats (43). This suggests that ASD-upregulated
microglial/immune genes that are expressed at higher
levels in the adult female brain may be more highly ex-
pressed in the prenatal male brain during critical peri-
ods of neurodevelopment. These results may be in-
terpreted as support for the gender incoherence (Gl)
theory (61) rather than the extreme male brain (EMB)
theory (62) of ASD: while the EMB theory is consistent
with reports of “masculinized” traits in individuals with
ASD, including hyper-developed systemizing skills (62)
(c.f. 63) and brain region-specific measures (64), the Gl
theory is supported by reports of "androgenized” traits
in individuals with ASD, including digit ratios (61) and
brain region-specific measures (64—66).

Many sex-biased genes are regulated by estrogens
To illuminate the regulatory mechanisms underlying
sex-biased gene expression in the macaque brain and
to compare these mechanisms with those in humans,
we identified motifs that tended to exist within the pro-
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moters of sex-biased genes more often than those of
non-biased genes (Methods). We found that the pro-
moters of sex-biased genes in the macaque brain are
significantly enriched for estrogen receptor binding site
motifs (Erra: OR = 1.066, p = 0.021) (Supplementary
Table 15; Supplementary Figure 11). In further sup-
port of the importance of ER dynamics, we found that
the most highly enriched motifs were for transcription
factors that interact with estrogens, such as SF1 (OR
= 1.349, p = 0.003) and Tbet (OR = 1.207, p = 0.003).
This is consistent with previous findings that, in humans,
many sex-biased autosomal genes are indirectly modu-
lated by sex hormones (14). Although previous work on
sex differences in the human brain transcriptome asso-
ciated these differences with androgen regulation (16),
this study focused on sex-biased splicing patterns and
included a large proportion of post-menopausal women
(16). Finally, many other enriched motifs identified
here also regulate sex-biased gene expression across
human tissues (e.g., estrogens, HNF4a, NRF1, IRF3,
FOXAT) (12), which is likely to reflect conserved regula-
tory mechanisms across species and tissues.

Many sex-biased genes are regulated by estrogens

In order to investigate heterogeneity in sex-biased gene
expression across individuals (of the same sex), and to
identify potential drivers of this variation, we constructed
and evaluated region-specific sex prediction models of
the rhesus macaque brain transcriptome (model con-
struction repeated using 3 gene sets [non-Y chromo-
some genes (Figure 3), X chromosome genes only, au-
tosomal genes only] within each region, resulting in 15
regions x 3 gene sets = 45 models total). We could ac-
curately predict sex from the expression levels of rela-
tively few genes (models of non-Y chromosome genes:
mean accuracy = 0.977, mean number of genes = 39;
models of X chromosome genes only and autosomal
genes only performed similarly; Supplementary Table
19), similar to previous work across human tissues (12).
While most genes (87%) were only influential in one re-
gion, they tended to be ubiquitously expressed (89% ex-
pressed in at least 13 regions), which is likely to reflect
that the magnitude of sex differences in expression per
gene varies across brain regions, even for shared sex-
biased genes (Supplementary Table 20). These models
(all non-Y chromosome) tended to be better at correctly
classifying female individuals (Figure 3; Supplementary
Table 19; Supplementary Figure 12), which may reflect
that, of genes that were influential in at least one region
(N = 501), X chromosome genes were more influential
than autosomal genes (average of summed relative in-
fluence: X chromosome: mean = 14.28; autosomes:
mean = 8.42) (Supplementary Tables 19-20). Accuracy
was also lower in predicting the sex of older individ-
uals (linear regression of known sex probability mod-
elled as a function of age: p = 0.016) (Supplementary
Figure 13), specifically in models of autosomal genes
(Figure 3). This effect was stronger among males of
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Figure 4. Evolutionary characteristics of sex differences in gene expression.
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(A) Tissue specificity as a function of the absolute difference in mean residual expression per gene (averaged across regions) (N = 12,663, excludes Y chromosome
genes). (B) Loss-of-function (LOF) tolerance as a function of the absolute difference in mean residual expression per gene (averaged across regions) (N = 7,786,
includes one-to-one orthologues in LOFtools database only, excludes Y chromosome genes). (C) Genetic variance (log) as a function of the absolute difference in
mean residual expression per gene and region (N = 152,431 excluding Y chromosome genes).

all ages and older individuals (>8 years) (Supplemen-
tary Figures 13, 14). In fact, the most often misclas-
sified individual was also the oldest male in our sam-
ple (misclassified as female in 7/45 models, spanning
3 different regions and all gene sets; out of 527 sam-
ples x 3 gene sets = 1581 classifications, there were
only 16 misclassifications total) (Supplementary Table
21). These sex and age differences in prediction accu-
racy may reflect that males, particularly older males (>8
years), exhibit higher within-sex gene expression vari-
ation compared to females (median pairwise Euclidean
distance of residual gene expression among: old males
= 137.9, young males = 135.9, old females = 134.2,
young females = 133.7; all differences are significant
except young males versus old females, Tukey’s HSD
Padj < 0.05; Supplementary Figure 15).

Models of X chromosome genes highlighted similari-
ties with humans, as that the most influential genes in
this study were also the most influential genes in mod-
els constructed in a recent study across 44 human tis-
sues (12) (N = 150 one-to-one orthologues with non-
zero influence in both studies; p = 0.222, p = 0.006; Fig-
ure 3; Supplementary Figure 16). This reflects species
similarities in the magnitude of sex-biased expression
across X chromosome genes (p > 0.69 across 8 over-
lapping regions with the human GTEx data; Figure 3;
Supplementary Figure 5; Supplementary Table 6). Fe-
male samples that were misclassified in X chromosome
gene models tend to exhibit relatively low expression of
the most influential X chromosome genes in those re-
gions (Supplementary Figure 17), which may partially
reflect variability in XCI escape across female individu-
als and tissues (67).

Many sex-biased genes are regulated by estrogens

To better understand the evolutionary dynamics
underlying sex differences in the macaque brain
transcriptome, we examined four mechanisms that
may facilitate the rapid evolution of sex-biased gene
expression observed in other studies: i) their tendency
to be located on sex chromosomes (due to sex-specific
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patterns of selection and inheritance (68)), since the
smaller effective population size of these chromosomes
may lead their genes to evolve more rapidly (69); ii)
higher tissue specificity (i.e., lower pleiotropy) (70, 71)
since pleiotropy may constrain evolutionary change due
to widespread multivariate stabilizing selection (72, 73);
iii) higher genetic variance in gene expression, since
genes whose expression is attributable to genetic vari-
ance (vs. environmental variance) can better respond
to selection (71); and iv) higher genic tolerance, since
this would allow for more coding sequence mutations
without losing function.

We found that sex-biased genes tend to be located on
the sex chromosomes (mechanism i above) and that
sex differences in expression predict tissue specificity
(ii) and genetic variance (iii), but not genic tolerance
(iv). Specifically: i) the X and Y chromosomes were
enriched for sex-biased genes (X chromosome: OR =
2.16; pagj = 0.002; Y chromosome: OR = Inf; pag; <
0.001), and these enrichments were driven by female-
and male-biased genes, respectively (X chromosome
female-biased: OR = 2.79; pag = 0.004; X chromo-
some male-biased: OR = 1.62; pagj = 1; Y chromo-
some expression is male-specific) (Figure 2). Female-
biased gene enrichment on the X chromosome is con-
sistent with a preponderance of female-beneficial mu-
tations that are dominant, since these mutations occur
in females two-thirds of the time and are, therefore, se-
lected for (in females) more often than selected against
(in males) (68); ii) Tissue specificity estimates ranged
from 0.018 to 1 (mean = 0.172; sd = 0.148; Supple-
mentary Table 22) and genes exhibiting larger sex differ-
ences in residual expression also showed more tissue-
specific expression (p = 0.332; p < 2.2e-16) (Figure 4);
iii) The structure of our data resulted in a bimodal dis-
tribution for estimates of genetic variance (vu), so we
evaluated the relationship between log(vu) and sex dif-
ferences in residual expression separately within each
distribution, and found significant positive associations
in both (upper distribution: p = 0.234, p < 2.2e-16; lower
distribution: p = 0.290, p < 2.2e-16) (Figure 4); and iv)
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We did not detect a relationship between absolute sex
differences in residual expression and LOF mutation tol-
erance (p= 0.006, p = 0.622) (Figure 4).

Conclusions

This work provides an in-depth characterization of the
patterns, biological functions, disease associations,
regulatory factors, and evolutionary mechanisms rel-
evant to sex-biased gene expression in the rhesus
macaque brain. We highlight that sex-biased genes
exhibit greater genetic variance for expression, more
tissue-specific patterns of expression, and a tendency
to be located on sex chromosomes. Despite the pres-
ence of these factors, which are likely to drive evolu-
tionary divergences in the expression and function of
sex-biased genes across species, we found that hu-
mans and rhesus macaque brains exhibit similar tran-
scriptomic sex differences. Not only are gene expres-
sion levels biased in the same direction (i.e., female- or
male-biased) in multiple brain areas, but adult macaque
and human brains appear to share estrogen-mediated
regulation of sex-biased genes, upregulation of the neu-
roimmune system in females, and sex-biased expres-
sion of genes implicated in sex-biased conditions, in-
cluding ASD. These similarities bolster the translatabil-
ity of this indispensable model species for studies of
sex-biased neurological conditions. The dataset gen-
erated here represents a valuable resource for future
studies of the rhesus macaque brain transcriptome, and
future work on earlier developmental periods will further
elucidate the extent to which sex differences in the ex-
pression of human disease-linked genes are conserved
across species.
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Methods
Sample collection

Tissue procurement and processing

Rhesus macaque (Macaca mulatta) individuals were
from the Cayo Santiago population and were removed
from the island and humanely euthanized as part of
the population management strategy implemented by
the Caribbean Primate Research Center, University of
Puerto Rico. No individuals were used for brain inva-
sive procedures or had signs of malformations or le-
sions. Within 30 minutes of euthanasia, following perfu-
sion with cold saline, whole brains were extracted. Left
and right hemispheres were separated using a sterilized
razor, and left hemispheres were set aside for fixation.
Right hemispheres were placed in a mold and cut into 2
centimeter coronal slabs. Slabs were flash frozen using
an ethanol and dry ice mixture. Brains were stored at
-80°C until dissection.

Tissue dissection

Brain samples were collected postmortem from 36
adult macaques (20 females, 16 males). Frozen slabs
were kept on dry ice during sampling. Samples were
collected using 1Tmm surgical punches with reference
to coronal cross-sections from the rhesus macaque
anatomical brain atlas (74). This sampling method
allowed us to sample relatively evenly across all cortical
layers, which exhibit distinct cell composition and gene
expression patterns (75).

Fifteen brain regions of interest were identified on
frozen hemispheres using gross landmarks (e.g., cor-
tical sulci/gyri and white matter tracts). Specifically:
1) The ventromedial prefrontal cortex (vmPFC; areas
10m/32) was sampled from the rostral most plane when
the cingulate, principal, and medio-orbital sulci were vis-
ible. Six punches were taken on the cingulate gyrus,
from slightly inferior to the tip at the medial surface to-
wards the underlying white matter in the latero-inferior
direction; 2) The dIPFC (area 46d) was sampled from
the rostral most plane when the cingulate, principal, and
medio-orbital sulci were visible. Six punches were taken
on gyrus superior to the principal sulcus, from the tip
at the lateral surface towards the underlying white mat-
ter in the medio-inferior direction; 3) The vIPFC (area
12r) was samples from the rostral most plane when the
cingulate, principal, and medio-orbital sulci were visible.
Six punches were taken on gyrus inferior to the prin-
cipal sulcus, from the tip at the lateral surface towards
the underlying white matter in the medial direction; 4)
The dmPFC (area 9m) was sampled from rostral most
plane when the cingulate, principal, and medio-orbital
sulci were visible. Six punches were taken on the supe-
rior frontal gyrus, from the tip at the medial surface to-
wards the underlying white matter in the latero-inferior
direction; 5) The anterior cingulate gyrus (ACCg; area
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24) was sampled from the rostral most plane when the
corpus callosum was visible. Six punches were taken
on the cingulate gyrus, from the tip at the medial sur-
face towards the underlying white matter in the latero-
inferior direction; 6) The mid-superior temporal sulcus
(mid-STS) was sampled when the central, intraparietal,
lateral, and superior temporal sulci were visible. Six
punches were taken from the inferior-most point of STS
towards the superior white matter (Sallet et al. 2011);
7) The primary motor cortex (M1; area 4) was sampled
when the precentral, central, lateral, and superior tem-
poral sulci were visible. Six punches were taken from
the superior-medial portion; 8) The primary visual cor-
tex (V1; area 17) was sampled on the anterior surface
of the most posterior slab, in the inferior arm of the cal-
carine sulcus; 9) The caudate nucleus (CN) was sam-
pled at the rostral most point at which the internal cap-
sule was visible and clearly separated the caudate nu-
cleus from the putamen. Six punches were taken from
the most superior-lateral point moving in the inferome-
dial direction; 10) The putamen (Pu) was sampled at
the rostral most point at which the internal capsule was
visible and clearly separated the caudate nucleus from
the putamen. Six punches were taken from the most
superior-lateral point moving in the inferomedial direc-
tion; 11) The amygdala was sampled when both it and
optic chiasm were clearly visible. Seven punches were
taken lateral to optic chiasm, sampling across the su-
perior portion of the amygdaloid complex (representing
the anterior cortical nucleus, central nucleus, medial nu-
cleus, and superior portions of the accessory basal and
basal nuclei); 12) The dentate gyrus (DG) was identified
within the hippocampal formation by its slightly darker
color, caused by a high density of small granule cells.
This sampling also included CA4, which is difficult to
differentiate from the polymorphic layer of the DG. Ac-
cordingly, other studies have combined these regions,
collectively referring to them as the hilus (which is the
formal name for the polymorphic layer of the DG) (76);
13) The CA3 was sampled from the area superior to
the DG within the hippocampal formation, in the medio-
lateral direction. This sampling likely also included por-
tions of CA2 and CA1; 14) The lateral geniculate nu-
cleus of the thalamus (LGN) was sampled when it was
clearly visible, and six punches were taken across all
layers in the medio-inferior direction; 15) The ventro-
medial hypothalamus (VMH) was sampled from rostral
most plane when the hypothalamus was visible. This
sampling likely also included portions of surrounding nu-
clei (e.g., arcuate). Four to six punches were taken from
the most medio-inferior portion. Dissected tissue sam-
ples were stored at -80°C prior to further processing.
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Bulk RNA-seq data generation and
quality assessment

RNA extraction

1 mL of Trizol was added to dissected frozen tissue
samples immediately before lysing. A single chilled
5mm stainless steel bead was added to each tube be-
fore placing samples in the TissuelLyser Il bead mill.
Samples were homogenized for 2 minutes at 20 hz.
Plates were rotated before homogenization was re-
peated. Homogenized samples were then transferred to
new tubes and incubated at room temperature for 5 min-
utes. 200 mL of chloroform was added to each sample,
tubes were manually shaken for 15 seconds, incubated
at room temperature for 2 minutes, and centrifuged at
12k at 4°C for 15 minutes. The upper aqueous solution
(containing RNA) was transferred to a new sample tube,
and Total RNA was extracted using Zymo Quick-RNA
Microprep kits. Each sample was subjected to DNase
treatment as per manufacturer’s instructions.

RNA quality assessment

RNA quality was assessed using a Fragment Analyzer
or a Tapestation, which provided RQN or RINe values,
respectively. For later analyses, RQN and RINe values
were converted to RIN values using published regres-
sion lines (RQN = 0.9697*RIN, R2 = 0.9635; RINe =
0.991*RIN, R2 = 0.936) (77, 78).

Library preparation and sequencing

cDNA libraries were prepared using the NEBNext Ultra
Il RNA Library Prep Kit for lllumina, as per the manu-
facturer’s instructions with some modifications. Briefly,
poly-adenylated mRNA was purified from 200 ng of total
RNA using the NEBNext Poly(A) mRNA Magnetic Isola-
tion Module. The mRNA was then reverse transcribed
into cDNA, ligated to lllumina adapters, size-selected for
a median size of 600 bp, and amplified via PCR for 12
cycles. Each sample was tagged with a unique molecu-
lar barcode and pooled samples into lllumina NovaSeq
lanes (across 2 sequencing runs, one using 2x50bp se-
quencing on the S2 flow cell and another using 2x100bp
sequencing on the S4 flow cell).

Reference genomes and read alignment

Following sequencing, we mapped reads to the rhesus
macaque transcriptome v10 (Ensembl) using the pseu-
doaligner kallisto v0.43.1 (79). Given that sequence
homology across the sex chromosomes present in
reference genomes/transcriptome can lead to technical
mapping errors, we created two modified, sex-specific
transcriptomes and separately mapped reads from
males and females (following 80). Specifically, the Y
chromosome was removed from the female-specific
transcriptome, and CD99 on the Y chromosome (within
the pseudoautosomal region (81)) was removed from
the male-specific transcriptome. We also confirmed
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chromosomal sex of individuals by mapping to a
non-sex-specific transcriptome and examining Y chro-
mosome gene counts.

We imported the transcript count matrices for males
and females into R using the function tximport (R pack-
age tximport) and combined them into one count matrix.
We summarized transcript counts to the gene level us-
ing the appropriate functions in the R package biomaRt
and the function summarizeToGene (R package txim-
port). This procedure resulted in a 22,514 x 532 (p x
n) read-count matrix, where p is the number of genes
measured and n is the number of samples. We con-
firmed the identity of all samples based on genotyping
from the RNA-seq reads.

Quality assessment

We removed 5 samples that were low quality (e.g., sam-
ples with low Phred scores and/or high PCR duplication
rates). This resulted in a 22,514 x 527 (p x n) read-count
matrix, where p is the number of genes measured and n
is the number of samples. We also confirmed the chro-
mosomal sex of all individuals/samples by mapping to
an unedited (non-sex-specific transcriptome) and exam-
ining Y chromosome gene expression (Supplementary
Figure 18).

Read normalization

We normalized the read count matrix using the func-
tions calcNormFactors (R package edgeR (82) and
voom in the R package limma (83). Prior to further
RNA-seq data analysis, we filtered out genes that were
very lowly or not detectably expressed in our samples.
Specifically, within each region we removed any gene
with mean TPM<10 in both males and females (i.e.,
genes with >=10 mean TPM in at least one sex were
retained). This procedure resulted in a mean of 10,171
genes (range: 9,617-11,135), and 12,672 unique genes
were detectably expressed in at least one brain region.
These data (normalized log2 counts per million reads)
were used throughout the statistical analyses described
below.

Genotyping

We used genotype data (with variants called from
RNAseq data) to control for genetic relatedness among
individuals in this study. For each sample, we mapped
reads to the rhesus macaque reference genome v10
(Ensembl) using STAR (84) and then pooled mapped
reads for each individual across all brain regions. We
used the Genome Analysis Toolkit (GATK) (53, 54) to
mark duplicates (MarkDuplicates), split reads spanning
splice events (SplitNCigarReads), and recalibrate base
quality scores (BaseRecalibrator and ApplyBQSR) be-
fore calling variants (HaplotypeCaller) using a standard
minimum confidence threshold for calling of 20.0. We
retained sites that passed the following filters: QD <
2.0; MQ < 40.0; FS > 60.0; HaplotypeScore > 13.0;
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MQRankSum < -12.5; and ReadPosRankSum < -8.0.
We estimated kinship with the program IcMLkin using
variants that were genotyped in all 36 individuals, had
minor allele frequencies > 0.3, minimum completeness
of 0.9, and were at least 100 kb apart (thinned us-
ing VCFtools (55)). These relatedness estimates were
confirmed using known mother-offspring pairs (5 known
pairs: mean relatedness estimate = 0.48; remaining
pairs: relatedness estimates <= 0.25).

Behavioral data collection

Previous work has shown that dominance rank can im-
pact gene expression in the brain and peripheral tissues
of wild and laboratory animals (e.g., 85-87). Here, dom-
inance rank reflects the direction and outcome of win-
loss agonistic interactions (e.g., aggression, threats,
displacements, submissions) recorded during focal ani-
mal samples or during ad libitum observations. To cal-
culate individual dominance ranks, behavioral data were
collected for all animals in this study (and all other mem-
bers of this social group age 4 and above) in the three
months prior to removal. Methods for behavioral data
collection as well as dominance rank inference in this
population are described by Testard and colleagues (89,
90). Ranks were calculated separately within each sex
because dominance is attained differently in male and
female macaques. Specifically, male macaques tend to
disperse from their natal groups and their rank in the
new groups are largely determined by their duration of
tenure (89, 90). Female macaques are philopatric and
dominance rank is inherited maternally, resulting in sta-
ble linear dominance hierarchies among females (89,
90). Accordingly, known maternal relatedness was used
to resolve behavioral gaps in the female hierarchy. To
account for group size, dominance rank was first de-
fined as the percentage of same sex individuals that a
subject outranked. We then followed previous work (88)
in creating categorical dominance ranks, calculated by
classifying animals as high- (rank >= 80%), mid- (50%
<= rank < 80%), or low-ranking (rank < 50%) based on
their percentage dominance ranks within each sex. We
modeled categorical dominance rank as an ordinal vari-
able for all differential expression analyses using the or-
dered factor class in R.

Statistical analyses

All statistical analyses were performed using R v4.0.0
(91) or Homer v4.10 (92).

Dimensionality reduction

To visualize the structure of the expression data, we ap-
plied dimension reduction methods to the normalized,
filtered expression matrix. Prior to dimension reduc-
tion, the effects of library batch and RIN were removed
from the data using the removeBatchEffect function in
the R package limma (83). Dimension reduction was
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performed using Uniform Manifold Approximation and
Projection (UMAP) via the umap function in the R pack-
age umap (93) with the following metrics: n_neighbors =
200, min_dist = 0.5, metric = 'manhattan’. We also pro-
vide t-SNE and PCA plots in the supplement using the
Rtsne function (perplexity=30) in the R package Rtsne
(94) and the prcomp function in the R package stats).

Hierarchical clustering

Unsupervised hierarchical clustering was conducted us-
ing the normalized, filtered expression matrix. Prior to
hierarchical clustering, the effects of library batch and
RIN were removed from the data using the remove-
BatchEffect function in the R package limma (83). Clus-
ter analyses were performed by the pvclust function (R
package pvclust) (95). Correlation was used as the dis-
tance measure. This function provides both approxi-
mately unbiased (AU) p-value and bootstrap probability
(BP) value. AU values are calculated using multiscale
bootstrap resampling, while BP values are calculated
by the ordinary bootstrap resampling (95). This method
was applied to expression values averaged across sam-
ples per region (to examine clustering by region).

Variance partitioning

We performed variance partitioning on the normalized,
filtered expression matrix using the fitExtractVarPart-
Model and plotVarPart functions in the R package vari-
ancePartition (96). This function allowed us to fit a linear
mixed model to estimate contribution of multiple sources
of variation while simultaneously correcting for all other
variables. Prior to hierarchical clustering, the effects of
library batch and RIN were removed from the data using
the removeBatchEffect function R package limma (83).
We modelled the expression of each gene as a function
of individual, region, sex, age, and ordinal rank. Cate-
gorical terms were modeled as random effects, as rec-
ommended by the package’s creator (97). We then ex-
tracted and visualized the fraction of variance explained
by each biological or demographic term, in addition to
the residual variance.

Modeling sex effects on gene expression

To identify genes that were affected by sex within
each region, we used linear mixed effects models that
control for relatedness. We analyzed each of the 15
brain regions separately using the emmreml function
in the R package EMMREML (37). Normalized gene
expression values were modelled as a function of sex,
age, ordinal rank, RIN, and library batch. Although
standard normalizations fail to account for the effects
of RNA degradation, statistically controlling for RNA
quality corrects for most of these effects (98). For each
gene in the normalized, filtered expression matrix, we
estimated the effect of sex on gene expression using
the Equation 1 below:
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Y = intercept + sex + age + ordinal rank + RIN + library
batch

y=p+vB+ay+rd+r262+ pn4wi_kTi_p+ Zu+e

u~MVN(0,02, K)
e~ MVN(0,02,1)

where y is the n by 1 vector of normalized gene expres-
sion levels for the n samples collected per region; pis
the intercept; van n by 1 vector of sex and Bis its effect
size; ais an n by 1 vector of age in years at the time of
sample collection and vis its effect size; r is an n by 1
vector of linear contrasts of sex-specific rank and dis its
effect size; r? is an n by 1 vector of quadratic contrasts
of sex-specific rank and 8%is its effect size; pis an n by 1
vector of RIN values and nis its effect size; and w4 are
k vectors (with k equal to the number of library batches
for the given region), each of which is an n by 1 vector
of a dummy variable for that library batch (0 = sample
not included in this batch; 1 = sample included in this
batch), and 14 are the effect sizes for each vector. The
m by 1 vector u is a random effects term to control for
kinship and other sources of genetic structure. Here, m
is the number of unique individuals sampled for each re-
gion, the m by m matrix K contains estimates of pairwise
a relatedness derived from a genotype data set, 6,2 is
the genetic variance component (0 for a non-heritable
trait), and Z is an incidence matrix of 1’s and 0’s that
maps samples to individuals in the random effects term.
Residual errors are represented by €, an n by 1 vector,
where 62 represents the environmental variance com-
ponent (unstructured by genetic relatedness), | is the
identity matrix, and MVN denotes the multivariate nor-
mal distribution.

Multivariate adaptive shrinkage (MASH)

To identify genes that are differentially expressed be-
tween males and females and whether or not these
effects are shared or region-specific sex effects, we
used the outputs from the EMMA mixed models de-
scribed above (i.e., per gene betas and their standard
errors within each of 15 regions) as inputs for multi-
variate adaptive shrinkage models (R package mashr)
(38). For missing data, betas were set to 0 and stan-
dard errors were set to 100 (as recommended by the
mashr package’s creators). We first selected strong sig-
nals by running a condition-by-condition (1by1) analy-
sis on all the data (mash_1by1 function) and extracting
those results with local false sign rate (LFSR) < 0.05
in any condition. Specifically, this analysis runs ash in
the R package ashr (99) on the data from each con-
dition, an Empirical Bayes approach to FDR analysis
that incorporates effect size estimates and standard er-
rors, and assumes the distribution of the actual effects
is unimodal, with a mode at 0 (39). We also gener-
ated a random subset of the data (50% of expressed
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genes), computed a list of canonical covariance matri-
ces (cov_canonical function), and used these data and
matrices to estimate the correlation structure in the null
tests (estimate_null_correlation function). We then set
up the main data objects (i.e., “strong” and “random”)
with this correlation structure in place (mash_set_data
function). We used the strong tests to set up data-driven
covariances by performing PCA on the data (using 5
PCs; cov_pca function) and using the resulting 5 can-
didate covariance matrices to initialize and perform “ex-
treme deconvolution” (cov_ed function) (100). We then
estimated canonical covariances from the random tests
and then fit mash to the random tests using both data-
driven and canonical covariances. We extracted the fit-
ted g mixture from this model and specified this mixture
model when fitting mash to the strong tests. Significant
genes (i.e., ‘sex-biased genes’) passed an LFSR cutoff
of 0.05.

Human (GTEx) comparison

We estimated sex effects across 10 tissues from the hu-
man GTEx data (V8), including the amygdala, BA24,
caudate nucleus, cerebellar hemisphere, BA9, hip-
pocampus, hypothalamus, nucleus accumbens, puta-
men, and substantia nigra (mean N = 39F/119M; Sup-
plementary Table 23). Technical replicates for two re-
gions (“Cortex” and “Cerebellum”) were excluded. Us-
ing the EMMA models described above, we modelled
gene expression (within each region and for each gene)
as a function of sex, age, RIN, experimental batch, and
ischemic time. We then applied MASH to the model
outputs (as described above). To test for the consis-
tency of sex effects on gene expression across data
sets, we compared the results across 8 overlapping
regions (AMY/amygdala, ACCg/BA24, CN/caudate,
dmPFC/BA9, DG/hippocampus, CA3/hippocampus,
VMH/hypothalamus, Pu/putamen) for all one-to-one or-
thologs that were significant (LFSR < 0.05) in at least
one data set. We report Spearman’s rank order corre-
lation coefficients (p) and the quadrant count ratio (q =
(N concordant - N discordant) / total).

Cell type enrichment analysis

We tested for cell type enrichment among male- and
female-biased genes using cell type markers from the
R package BRETIGEA (BRain cEll Type speclfic Gene
Expression Analysis) (41). In this package, the ‘mark-
ers_df _brain’ data frame contains the top 1000 marker
genes (ranked by specificity) from each of the six major
brain cell types (i.e., astrocytes, endothelial cells, mi-
croglia, neurons, oligodendrocytes, and OPCs), which
were estimated from their meta-analysis of brain cell
gene expression data from both humans (Homo sapi-
ens) and mice (Mus musculus). Homo sapiens gene
names were converted to (Macaca mulatta) Ensembl
gene IDs using the bioMart R package. Sex-biased
gene sets included any genes that were significantly
male-biased or female-biased in any region (LFSR <
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0.05). Fisher’s exact tests were used to test for cell
type-specific enrichments (fisher.test function in the R
package stats; alternative = ‘greater’). P-values were
adjusted using the Benjamini-Hochberg method, and
tests with adjusted p-values less than 0.05 were con-
sidered significant. This analysis was also performed
on sex-biased genes (LFSR < 0.05 in any region) iden-
tified in our analysis of the human GTEx data (described
above).

Deconvoluting cell type proportions and modelling
sex effects on gene expression

Given that sex-biased gene sets were enriched for
certain cell types (see Results), we also estimated sex
effects after performing cell type deconvolution analysis
in the R package BRETIGEA (41). Using the cell type
marker genes described above, cell type deconvolution
analyses were conducted within each region. First,
the effects of library batch and RIN were removed
from each normalized, filtered expression matrix using
the removeBatchEffect function (R package limma).
This matrix and the marker gene list were used as
inputs to estimate the relative cell type proportions
(i.e., surrogate cell type proportion variable (SPVs) for
each cell type). This was performed by the findCells
function, using the top 50 markers for each cell type
and the singular value decomposition (SVD) dimension
reduction approach, and scaling the gene expression
data from each marker gene prior to using it as an input
for dimension reduction. SPVs are eigenvectors of an
SVD and do not directly quantify cell type proportions;
rather, SPVs reflect relative differences in cell type
composition within each cell type and, therefore, some
SPVs will take on negative values. Finally, we adjusted
each row of gene expression for sample differences
in relative cell type proportions using the adjustCells
function, which outputs the residuals from a linear
model for downstream analysis. For each gene in the
adjusted expression matrix, we estimated the effect
of sex on expression using Equation 2 below (see
‘Modelling sex effects on gene expression’ section for
details). Technical effects (i.e., library batch and RIN)
were not included here since they were removed prior
to the estimation of relative cell type proportions.

Equation 2:

Y = intercept + sex + age + ordinal rank

y=pu+vB+ay+ré+r262+ Zu+e
u~MVN(0,02,K)
e~ MVN(0,62,1)

We then used the outputs from these models (i.e., per
gene betas and their standard errors within each of 15
regions) as inputs for multivariate adaptive shrinkage
models (see ‘Multivariate adaptive shrinkage’ section
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above for details). Significant genes (i.e., ‘sex-biased
genes’) passed an LFSR cutoff of 0.05.

Functional enrichment analysis

Gene ontology (GO) enrichment analyses were per-
formed using the R packages topGO (101) and
ViISEAGO (102). GO term names were obtained from
Ensembl using the Ensembl2GO and annotate func-
tions. Enrichment analyses were conducted on male-
biased and female-biased genes separately, with each
set of genes defined as those that were significantly
biased in mashr (LFSR < 0.05) in any region (exclud-
ing Y chromosome genes, which are not expressed
in females). For each test, background genes repre-
sented all expressed genes that were not in the male-
or female-biased gene set of interest. We used Fisher’s
exact tests, which are based on gene counts. Enrich-
ments with nominal p<0.05 were considered significant,
as suggested by the topGO package’s creators. The
parent child algorithm (103) was used since it deter-
mines over-representation of terms in the context of
annotations to the term’s parents. Other approaches
to measuring over-representation of GO terms cannot
cope with the dependencies resulting from the struc-
ture of GO because they analyze each term in isola-
tion. The parent child approach reduces the depen-
dencies between the individual term’s measurements,
and thereby avoids producing false-positive results ow-
ing to the inheritance problem. We computed the
semantic similarity between GO terms using Wang’s
method (compute_SS_distances function) (104), and
clustered GO terms using Ward'’s clustering criterion
(GOterms_heatmap function) (105).

Disease gene set enrichment analysis (GSEA)

Gene set enrichment analyses for disease ontology
(DO) terms were performed using human risk genes
downloaded from the DISEASES resource, which in-
tegrates the results of text mining and manually cu-
rated disease-gene associations, cancer mutation data,
and genome-wide association studies from existing
databases (108). (Macaca mulatta) Ensembl |IDs were
linked to human diseases from this database using one-
to-one human orthologues (and their associated pro-
teins) from the R package bioMart. Diseases with at
least 10 associated genes were retained for further
analysis. Genes were ranked according to their mean
standardized betas (i.e., mashr beta divided by pos-
terior SD, averaged across regions). For each dis-
ease in the final dataset (N=1257), we used two-sample
Kolmogorov-Smirnov (KS) tests to compare the cumula-
tive distribution functions of the mean standardized be-
tas of genes associated with the disease to those as-
sociated with every other disease in the data set. We
tested two alternative hypotheses, namely that the cu-
mulative distribution function for the target set was ei-
ther less than or greater than that of the background set.
P-values were adjusted using the Benjamini-Hochberg
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method, and tests with adjusted p-values less than 0.05
were considered significant. These analyses were also
run within each region (using ranked standardized be-
tas), and on the mean standardized betas from our anal-
ysis of the human GTEXx data (described above).

We also tested whether the sex-biased genes iden-
tified here tend to exhibit altered expression levels
in human disease. Whole cortex ASD-upregulated
and -downregulated genes were collected from (53).
(Macaca mulatta) Ensembl IDs were linked to human
diseases from this database using one-to-one human
orthologues (and their associated proteins) from the R
package bioMart. For each ASD gene set, Fisher’s ex-
act tests were performed on female- and male-biased
gene sets. This analysis was also performed on the
standardized sex effects estimated in our analysis of the
human GTEx data (described above).

Motif enrichment analysis

We used HOMER (Hypergeometric Optimization of Mo-
tif EnRichment) (92) to analyze the promoters of genes
and look for motifs that are enriched in the target gene
promoters relative to other promoters. The target gene
set consisted of all genes that were consistently sex-
biased in at least 13 regions. We searched for mo-
tifs from -1000 to +300 relative to the transcriptional
start site (TSS) using HOMER'’s curated set of 414
known vertebrate motifs. The program assigns weights
to the background promoters based on the distribution
of GC content in the target gene promoters to ensure
that comparable numbers of low and high-GC promot-
ers are analyzed. It also performs autonormalization to
remove sequence content bias from lower order oligos
(1/2/3-mers) by adjusting background weights based
on the target distribution. The hypergeometric distribu-
tion is used to score motifs. Enrichment p-values less
than 0.05 were considered significant. QQ plots of ob-
served versus expected -log10 p-values include infla-
tion estimates (lambda = the median of the resulting chi-
squared test statistics divided by the expected median
of the chi-squared distribution; <1 = less significant than
expected; 1 = in line with uniform distribution; >1 = more
significant than expected).

Sex prediction

Sex prediction: For each region, we created sex predic-
tion models using residual gene expression values (i.e.,
expression levels after removing the effects of age, or-
dinal rank, RIN, library batch, and relatedness using the
EMMA models and the normalized, filtered expression
matrix described above). Specifically, we implemented
gradient boosted models (GBM) using leave-one-out
cross validation in the R package caret. We fit these
models across various tuning parameters (interaction
depths =1, 3, 5, 9; number of trees = 50, 100, 150, 200,
250; shrinkage = 0.1; n.minobsinnode = 5), and models
with the highest receiver operating characteristic (ROC)
values were selected as the optimal model for each
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region. For each optimal model, we extracted the
prediction probabilities for each sample, calculated the
relative influence of each gene using the GBM model
based technique in the varlmp function (i.e., relative
influence = the reduction in sums of squared error due
to any split on that predictor, summed over all trees in
the model (107)) scaled to a maximum value of 100)
and calculated multiple performance metrics, including
accuracy, sensitivity, and specificity (see below). This
was done separately for: 1) combined X chromosome
and autosomal genes; 2) autosomal genes only; and 3)
X chromosome genes only.

True “Positives” (TP) = the number of samples correctly
identified as female

True “Negatives” (TN) = the number of samples cor-
rectly identified as male

False “Positives” (FP) = the number of samples incor-
rectly identified as female

False “Negatives” (FN) = the number of samples
incorrectly identified as male

Accuracy = (TP+TN) / (TP+TN+FP+FN)

Sensitivity = TP / (TP+FN)

Specificity = TN/ (TN+FP)

We tested for age effects on the accuracy of our sex
prediction models by modelling mean prediction proba-
bility of known sex per individual as a function of age.
We also examined age effects on the variability of our
sex predictions by modelling the standard deviation of
known sex prediction probabilities per individual as a
function of age. To test for the stability of these effects
within old and young individuals and for varying sam-
ple sizes, we examined age effects on accuracy within
subsamples of young (<= 8 year) and old (>8 years)
individuals. Specifically, for each region, we randomly
sampled 7 males and 7 females (6 for the LGN) and
used these individuals to re-create sex prediction mod-
els (using both X chromosome and autosomal genes)
and estimate known sex prediction probabilities per in-
dividual.

Sex differences in gene expression heterogeneity

To investigate sex and age differences in gene ex-
pression heterogeneity, we calculated Euclidean dis-
tances for residual gene expression between all pairs
of samples using the euc function in the R package
bioDist (108), maintained all pairs of same-sex, same-
age group (< or > 8 years), and cross-individual sam-
ples, and compared average distances between sex
and age group combinations using Tukey’s HSD.

Chromosome overrepresentation analysis

We tested for chromosome overrepresentation among
sex-biased genes (LFSR < 0.05 in any region) using
one-sided Fisher’'s Exact tests (fisher.test function in the
R package stats; alternative = ‘greater’). We also ran
this analysis on male- and female-biased gene sets sep-
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arately. P-values for each chromosome were adjusted
using the Bonferroni correction (p.adjust function in the
R package stats) and adjusted p-values less than 0.05
were considered significant.

Tissue specificity
For each gene we calculated T, a measure of tissue
specificity using the following formula (64, 94):

1— In(TPM;)
In(TPMmagz)

N-1

L

(3

where N is the number of tissues examined, TPMi is the
mean TPM per gene within each region, and TPMmax
is the highest expression level detected for a given gene
over all tissues examined (i.e., maximum TPMi value).
The value of tranges from 0 to 1, with lower values in-
dicating an expression pattern that is evenly distributed
through all tissues examined and higher tvalues indicat-
ing more variation in expression levels across tissues
and, thus, a greater degree of tissue specificity. Fol-
lowing other studies (70), we did not normalize the t
calculations in order to reflect this biological reality of
gene expression levels. For genes with expression val-
ues approaching 0 and low TPMmax, calculations of ©
are subject to sampling stochasticity. In order to reduce
this effect, TPMi was set to 1 for samples with no de-
tected expression (i.e., less than 1 TPM) (70). Per gene,
we modelled log(t) as a function of the absolute value
of the difference between male mean and female mean
residual expression values (calculated as in Aim 3) (av-
eraged across all samples). To test for a significant re-
lationship between these variables, we: 1) calculated
the Spearman’s rank order correlation; and 2) calcu-
lated the moving average log(t) across non-overlapping
window increments of 0.05 expression-level differences,
and then calculated the best-fit linear regression line for
this moving average. We ran these analyses on all non-
Y chromosome genes (as their expression is limited to
males).

Comparisons of loss-of-function (LOF) mutation tol-
erance

We used LoFtools (110) to assign LOF metrics to each
gene. This database is based on the ratio of loss-of-
function to synonymous mutations, with lower LoFtool
percentiles representing more intolerance to functional
variation. Homo sapiens gene names from the LoFtools
list were converted to (Macaca mulatta) Ensembl gene
IDs using the bioMart R package, resulting in a set of
7786 orthologous genes. Per gene, we modeled LOF
intolerance percentiles as a function of the absolute
value of the difference between male and female mean
residual expression values (see above) across all sam-
ples and regions. We tested for a significant association
between these variables as above (see Tissue speci-
ficity).
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Comparisons of genetic variance

For each gene within each region, the genetic variance
of expression (vu) was estimated from the EMMA mod-
els described above. Per gene and within each region,
we modeled log(vu) as a function of the absolute value
of the difference between male and female mean resid-
ual expression values (see above). The structure of
this data resulted in a bimodal distribution for estimated
values of vu, so we evaluated the relationship between
vu and sex differences in expression separately within
each distribution. We tested for a significant association
between these variables as above (see Tissue speci-
ficity).
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