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Summary

Cell type-specific transcriptional differences between brain tissues from donors with Alzheimer’s
disease (AD) and unaffected controls have been well-documented, but few studies have rigorously
interrogated the regulatory mechanisms responsible for these alterations. We performed single
nucleus multiomics (snRNA-seq+snATAC-seq) on 105,332 nuclei isolated from cortical tissues from 7
AD and 8 unaffected donors to identify candidate cis-regulatory elements (CREs) involved in
AD-associated transcriptional changes. We detected 319,861 significant correlations, or links,
between gene expression and cell type-specific transposase accessible regions enriched for active
CREs. Among these, 40,831 were unique to AD tissues. Validation experiments confirmed the
activity of many regions, including several candidate regulators of APP expression. We identified
ZEB1 and MAFB as candidate transcription factors playing important roles in AD-specific gene
regulation in neurons and microglia, respectively. Microglial links were globally enriched for
heritability of AD risk and previously identified active regulatory regions.
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Introduction 1

Identification of genetic contributors to Alzheimer’s disease has provided critical insights into 2

potential disease mechanisms. Rare, protein-altering variants in APP, PSEN1, or PSEN2 cause 3

early-onset, autosomal dominant AD 1, and genome-wide association studies (GWAS) have identified 4

common variants for late-onset AD that increase disease risk to varying degrees 2–6. However, the 5

majority of GWAS variants are located in noncoding regions of the genome and many presumably 6

affect gene regulation. Linkage disequilibrium makes identification of the causal variant difficult, 7

particularly for putative regulatory regions where conservation and deleteriousness estimates may 8
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not be as informative. Associating common and rare regulatory variants with affected genes is also 9

challenging7–9. In addition, disease-associated variants often function only in specific cell types, 10

further complicating interpretation of their effects10,11. Thus, determining which genes are 11

contributing to disease requires assessments in specific cell types. 12

Recent advances in single cell technologies have allowed profiling of gene expression12–18 and 13

chromatin accessibility10, either separately or in parallel from the same samples19,20. While these 14

studies have examined the cell type–specific transcriptional and epigenetic differences between 15

tissues from brain donors with AD and unaffected controls, few have rigorously interrogated the 16

regulatory mechanisms responsible for these alterations11,21. Integrating single nucleus RNA-seq 17

(snRNA-seq) and single nucleus ATAC-seq (snATAC-seq) data allows identification of potential cis 18

regulatory elements (CREs) by correlating chromatin accessibility with nearby gene expression. 19

Here, we simultaneously measure both gene expression and chromatin accessibility in the same nuclei 20

to identify cell type–specific regulatory regions and their target genes in dorsolateral prefrontal 21

cortex (DLPFC) tissues from both AD and unaffected donors. In addition, we identify regulatory 22

mechanisms unique to nuclei from donors with AD. 23

Results 24

Cellular diversity within the human dorsolateral prefrontal cortex 25

(DLPFC) 26

We used the 10X Genomics Multiome technology to perform snATAC-seq and snRNA-seq on nuclei 27

isolated from human postmortem DLPFC tissues from seven individuals diagnosed with AD (mean 28

age 78; Braak stages 4-6) and eight sex-matched unaffected control donors (mean age 63) (Table S1; 29

Figure 1A). This assay allows direct mapping of both gene expression and chromatin accessibility 30

within the same nuclei without the need to computationally infer cell type identification during 31

cross-modality integration. After removing low quality nuclei and doublets (Methods), we retained a 32

total of 105,332 nuclei with an average of 7,022 nuclei per donor (range of 1,410 - 11,723). We 33

detected a median of 2,659 genes and 11,647 ATAC fragments per cell. We performed normalization 34

and dimensionality reduction for snRNA-seq and snATAC-seq data using Seurat (v4)22 and Signac 35

(v1)23, respectively. We used weighted-nearest neighbor (WNN) analysis to determine a joint 36

representation of expression and accessibility and identified 36 distinct clusters composed of eight 37

major cell types and their associated subclusters (Figures 1B, S1A and S1B). Consistent with 38

previous scRNA-seq data sets12,13,15,19, we identified all expected cell types in the brain with similar 39

relative abundances across AD and control donors (Figures 1B, 1C, and S1C). Pericytes and 40

endothelial cell clusters contained <500 nuclei and were excluded from further analyses. Cluster 41

annotations were supported by both gene expression and promoter accessibility of well-established 42

cell type marker genes (Figures 1D and 1E). There were strong correlations in global gene 43

expression across donors within each cell type and between excitatory/inhibitory neurons (Figure 44

1F). The only cell type to display variable correlation values across donors was microglia, a cell type 45

known to be dysregulated in AD. In addition, we identified distinct subpopulations within each 46

major cell type with the exception of oligodendrocyte precursor cells (OPCs), pericytes, and 47

endothelial cells (Figure S2). These subtype annotations were consistent with those from prior 48

works14,22,24 and distributions were similar across AD and control donors, with the exception of 49

microglia subpopulations and two inhibitory neuron subtypes (Inh 1 and Inh 2; Figure S2). 50

Cell type-specific transcriptome changes in Alzheimer’s DLPFC 51

Within each cell type, we identified differentially expressed genes (DEGs) between AD and control 52

tissues. A total of 911 DEGs were identified after considering sex and age as covariates (Figure 2A, 53

Table S3). While significant sex-specific diferences in gene expression between AD and controls 54
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Figure 1. Cellular diversity of DLPFC from Alzheimer’s disease and unaffected donors
revealed by single cell multiomics.. A) Experimental design. B) UMAP visualization of
the weighted nearest neighbor (WNN) clustering of single nuclei colored by cell type and cluster
assignment. C) Total number of cells in each subcluster and the proportion of cells from each
individual (AD donors = red; unaffected donors = blue) in the subcluster. D) Row-normalized gene
expression of scREAD cell type markers. E) Chromatin accessibility across cell types for cell type
marker genes (indicated below). F) Correlation of pseudo-bulked cell type-specific expression profiles
between individuals. Colors indicating cell type are consistent throughout the figure.

have been shown previously24, due to our smaller sample size we did not detect such changes. While 55

the majority of DEGs were cell-type specific, 141 were identified across multiple cell types (Figure 56

2B). Of these DEGs, 62 were also identified in both Mathys et al.12 and Morabito et al.19, including 57

PTPRG, which is upregulated in AD microglia across all three studies (Figures 2C and 2D). Most 58

DEGs were upregulated in AD and were enriched for cell type–specific gene ontology terms including 59

PDGFR beta signaling in microglia, apoptosis in astrocytes, and Notch and BDNF signaling in 60

oligodendrocytes (Figure 2E, Table S4). In contrast, most DEGs downregulated in AD were in 61

neurons and showed enrichment in regulation of tau activity (Figure 2E, Table S4). 62

Identification of candidate cis regulatory elements 63

Previous single cell studies have characterized altered gene expression in AD brain tissues and cell 64

types12–14,17,19, and we observed signals consistent with those studies. Additionally, we sought to 65

leverage single cell multiomics data to identify cell type– and disease-specific CREs and their target 66

genes by correlating gene expression with chromatin accessibility. The cellranger-arc (v2.0) analysis 67

pipeline produces these correlations as “feature linkages”. A feature linkage, or link, is defined as an 68

ATAC peak with a significant correlation, across all nuclei in the data set, between its accessibility 69

and the expression of a linked gene25 (Figure 3A). We restricted this correlation analysis to 70

consider only peaks within 500 kb of each transcription start site (TSS), as previous studies have 71

found the majority of enhancers are within 50-100 kb of their target genes26. We first took the union 72
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Figure 2. Cell type-specific transcriptome dysregulation in Alzheimer’s DLPFC.. A)
MAST log(FC) of all up- and down-regulated genes in AD for each cell type. B) Number of shared
DEGs between cell types in both directions (upper triangle: up-regulated in AD; lower triangle:
down-regulated in AD). C) Normalized expression of the top DEG in the indicated cell types
(log2(FC) >1). D) Overlap of DEGs with agreement on cell type and direction with Morabito et
al.19 and Mathys et al.12. E) Heatmap showing the odds ratio of the top gene ontology terms for up
and down-regulated DEGs within each cell type (* indicates terms with an adjusted p-value <0.01).

of ATAC peaks identified in each cell type and only retained those present in ≥2% of cells in at least 73

one cell type for a total of 189,925 peaks. Using this peak set, feature linkages were then calculated 74

independently using gene expression data from either AD or control nuclei allowing classification of 75

linkages as AD-specific, control-specific, or common (Methods). Cell type specificity of each link was 76

determined by the cell type(s) in which the ATAC peak was identified. A total of 319,905 peak-gene 77

links were found involving 15,471 linked-genes and 126,213 linked-peaks with a minimum absolute 78

correlation value of 0.2 (Figure 3A, Table S5). The median distance between the linked peak and 79

the TSS of the linked gene was 201,506 bp and there was an inverse relationship between absolute 80

correlation value and distance to TSS (Figure S3A). 81

For most genes, we identified a similar number of links in both AD (median = 12) and control 82

samples (median = 13). However, we found 1,294 genes had only AD links and 1,596 had only 83

control links (Figure S3B). We observed no significant bias when comparing the number of links 84

identified in either AD or control for a given gene (Figure S3B). Most genes were linked to multiple 85

peaks across all cell types with a median of 14 linked peaks per gene. However, 16% of genes were 86

linked with 40 or more peaks (Figure 3B) and these genes were significantly longer and more highly 87

expressed than those with fewer links (Figure S3C). 88

ATAC peaks often did not interact with only one gene. Nearly 70% (126,213) of the ATAC peaks 89

analyzed were linked to a gene with an average of two genes linked to each peak and a range of 1-21 90

linked genes (Figure 3B). Links ranged from being unique to one cell-type to shared across all. 91

Almost a third (30.24%) of the links were unique to a single cell type while 21% were common across 92

all cell types (Figure 3C). We identified 40,831 AD-specific links and 74,028 control-specific links 93

with the majority of links identified in both (205,046). To evaluate whether linked peaks associate 94

with regulatory regions, we evaluated their overlap with a curated set of candidate CREs identified 95

by ENCODE27. We found that linked peaks were significantly enriched for proximal (OR = 1.24, p 96

= 2.4 x 10-15) and distal (OR = 1.06, p = 3.06 x 10-9) enhancer-like sequences and the proportion of 97

overlap was similar across cell types (Figure 3D). As these annotations were not generated in our 98
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particular cell types and tissue, we also intersected these linked peaks with regions of H3K27ac 99

previously identified within cell types isolated from prefrontal cortex tissues11,28. We found that, on 100

average, 57.5% of linked peaks overlap a H3K27ac peak from the corresponding cell type and this 101

increases to 79% for cell type-specific linked peaks (Figure 3E). The majority (76.11%) of linked 102

peaks were positively correlated with gene expression, as is expected given the association between 103

open chromatin and transcriptional activation. 104

In order to associate DEGs with CREs, a link must be present for that gene. For DEGs identified 105

between AD and control nuclei, 95% had at least one linked peak. Of these DEGs, 69% had a cell 106

type-specific link in the same cell type where the gene was differentially expressed. One example is 107

KANSL1, a gene located in the MAPT locus that encodes a ubiquitously expressed member of a 108

histone acetyltransferase complex. Loss of function mutations in KANSL1 result in 109

neurodevelopmental defects and intellectual disability29. KANSL1 was the only DEG identified in 110

all cell types and was downregulated in AD (Figure 3F). Nine of the 37 KANSL1 linked peaks are 111

found in both AD and control donors, and 14 are neuron-specific (Figure 3G). One of these linked 112

peaks found in the promoter overlaps an eQTL30 (rs2532404) associated with progressive 113

supranuclear palsy31 and was recently shown via CRISPRi to regulate KANSL1 expression in 114

iPSC-derived neurons21. 115

Identification of AD-specific peak-gene-TF trios. 116

To further investigate the regulatory roles of links, we identified peak-gene-TF trios in which: 1) 117

there was a correlation between the linked peak and linked gene; 2) the accessibility of a linked peak 118

harboring a specific TF motif was correlated with the expression of that TF; and 3) the expression of 119

the TF was correlated with the expression of the linked gene (Figure 4A; Methods). This approach 120

is similar to a recently described method called TRIPOD32. We performed these correlation analyses 121

separately using either AD or control data sets to enable identification of TFs whose activities may 122

be associated with disease. We restricted these analyses to links with a correlation value >0.3 that 123

were within 100 kb of the linked gene’s TSS (115,107) and identified 60,120 peak-gene-TF trios 124

involving 17,149 unique peaks and 437 TFs (Table S6). Fewer than 20% of the peaks in these trios 125

are found in promoters, with the majority present in intronic regions (Figure 4B). Trio peaks were 126

enriched for ENCODE distal (OR=1.26, p=2.2 x 10-16) and proximal (OR=1.12, p=5.9 x 10-07) 127

enhancer-like sequences. There was a median of 37 trios per TF. The TF MEF2C was the most 128

common trio participant, appearing in nearly 5% of all trios. While MEF2C was expressed in most 129

cell types, expression of target genes in MEF2C trios were distinct between cell types (Figures 4C 130

and 4D) In microglia, target genes were enriched in pattern recognition receptor (PRR) signaling 131

and for synaptic transmission in neurons (Figure 4E, Table S7). PRRs consist of several receptor 132

families including Toll-like receptors that are critical for microglial activation33. 133

Within this set of trios, there was a small subset that were specific to either AD or control groups 134

(n = 2,718). While many of these were specific to a single cell type, 55% were shared across two or 135

more (Figure S4). All cell type-specific trios overlapped H3K27ac peaks from their respective cell 136

types (Table S6). Within microglia trios, NR4A2 was identified most frequently in the 137

control-specific trios (Figure 4F). NR4A2 can function as both an activator and repressor and has 138

been shown to repress inflammatory responses in microglia through recruitment of the CoREST 139

complex34,35. Target genes in NR4A2 trios are enriched in neutrophil degranulation (OR = 9.01, 140

q-value = 5.3 x 10-6) and include interleukin genes IL1A and IL1B, as well as TGFB1. Similarly, 141

MAFB was involved in 24% of the AD-specific trios (Figure 4F) where it was linked to the 142

microglial marker gene CX3CR1 and genes involved in microglial activation (TLR3, CD84, 143

HAVCR2 )36. In healthy microglia, MAFB inhibits inflammatory responses37, consistent with our 144

finding that target genes in AD-specific trios were enriched for negative regulation of myeloid 145

leukocyte mediated immunity (OR = 332, q-value = 0.0004). 146
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Figure 3. Identification of candidate CREs. A) Schematic of gene-peak association (top).
Heatmap of row-normalized accessibility and expression for the most correlated gene-peak link for
each gene (bottom). Columns are pseudo-bulked on cell type and disease status. B) Distributions of
the number of linked peaks per gene (left) and the number of linked genes per peak (right) for AD
(red) and control (blue) samples. C) Total number of links per cell type for AD and control. Cell
type of the link is assigned by the cell type in which the peak was called. D) ENCODE annotation of
linked peaks by cell type. E) Shared (across cell types) and cell type-specific linked peaks that overlap
H3K27ac of the corresponding cell type. F) Normalized expression of KANSL1 from AD and control
samples in each cell type. Expression is significantly different in AD vs control for all cell types. G)
Linkage plot for all links to KANSL1. Top panels: coverage plot of pseudo-bulked accessibility in
excitatory neurons separated by status (red = AD; blue = control). Bottom panel: significant AD
and control peak-gene links. Arc height represents strength and direction of correlation. Arc color
indicates if the link was identified in both AD and control (“common”, gray) or control donors only
(blue). A linked peak overlapping a single SNP is highlighted in gray.
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Figure 4. Identification of AD-specific TF regulatory networks. A) Strategy for defining
peak-gene-TF trios. A linked peak containing a TF motif must be correlated with that TF and
the expression of that TF must be correlated with the linked gene for that peak to be considered
a trio. B) Genome annotations for location of linked peaks within trios. C) Heatmap of column-
normalized expression of genes within MEF2C trios by cell type. D) Normalized expression of
MEF2C by cell type. E) Top enriched gene ontology terms for genes within MEF2C trios from
excitatory and inhibitory neurons (green = “Neuron”) and microglia (purple = “Microglia”). F)
Heatmap of correlation values of AD and control-specific trios identified in microglia (left) and
excitatory/inhibitory neurons (right). G) Linkage plot for GABRA5. Top panels: coverage plot of
pseudo-bulked accessibility in indicated cell types. Middle panel: coverage plot of ZEB1 ChIP-seq
signal from NeuN+ DLPFC tissue from two unaffected donors (1238 and 1242). Bottom panels:
significant peak-gene links; green indicates overlap with ZEB1 motif. Arc height represents strength
and direction of correlation. Track of ZEB1 motifs (green) and H3K27ac peaks from neurons (black;
Nott et al11). Linked peak of interest is highlighted in gray. H) ZEB1 motif from JASPAR 2022
(top). Normalized expression of ZEB1 and GABRA5 in excitatory/inhibitory neurons and microglia.

Within neuronal trios, we identified KLF10 and ZEB1 most frequently in control– and 147

AD–specific trios, respectively (Figure 4F). These two TFs were also the most frequently observed 148

in excitatory neuron trios; there were no inhibitory-specific trios identified (Figure S4B). In 149

neurons, we identified ZEB1 in nearly 60% of all AD-specific trios with target genes involved in 150
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regulating ion channel signaling (ITPR1, CAMK2A, CACNB3, KCNH3, KCNQ5, and KCNT1 ). 151

ZEB1 was never found in control-specific trios. Given the frequency of ZEB1 participation in 152

neuronal AD-specific trios, we performed ZEB1 ChIP-seq in NeuN+ nuclei isolated from two control 153

donors (1238 and 1242). We found that 41% of neuronal ZEB1 trios are bound by ZEB1, and these 154

include 57 peaks within the AD-specific trios. The GABAA receptor α5 subunit, encoded by 155

GABRA5, is one gene that we find likely to be regulated by ZEB1 in AD (Figure 4G). α5 GABAA 156

receptors are associated with learning and memory, consistent with highest expression of GABRA5 157

in hippocampal neurons and association of reduced expression with neurodevelopmental disorders38. 158

In our data, ZEB1 is expressed in both neurons and microglia; however, GABRA5 is primarily 159

expressed in excitatory neurons (Figure 4G, right). In excitatory neurons, we identified a linked 160

peak correlated with GABRA5 expression that was marked with H3K27ac and contained a ZEB1 161

motif. ChIP-seq data from two of our unaffected donors confirmed ZEB1 binding at this site 162

providing additional evidence to suggest cis regulatory activity of this region for GABRA5. 163

Genetic variation at candidate CREs 164

We performed stratified linkage disequilibrium score (sLDSC) regression39 to determine if our links 165

were significantly enriched for SNPs associated with complex brain-related traits (Figure 5A, 166

Table S8). Consistent with previous studies40,41, our microglia links were significantly enriched for 167

heritability of AD across five different studies2-6; however, this was not true for those microglia links 168

identified only in control samples, suggesting that variants in AD-specific CREs could have a greater 169

contribution to AD risk. Specificity of microglia links for AD heritability is also supported by the 170

lack of significant enrichment of these feature links with risk variants from other brain-related 171

traits42-46 or traits where other immune cells play important roles47-49. In contrast, links identified 172

in other cell types were enriched for heritability of brain-related traits including autism spectrum 173

disorder (ASD), bipolar disorder (BD) and schizophrenia (SZ) with AD-specific links largely 174

excluded from any significant enrichment in these traits. These findings are consistent with previous 175

studies where candidate CREs identified in excitatory and inhibitory neurons were significantly 176

associated with neuropsychiatric traits11. As expected, we identified no significant enrichments with 177

immune diseases or with other phenotypic traits, such as body mass index (BMI)50 or height51. 178

Validation of candidate CREs 179

We compared the >300,000 links to pre-existing, large-scale functional genomic datasets to determine 180

which candidate elements had previously shown evidence of regulatory activity. Three data types 181

were considered to provide orthogonal evidence of regulatory activity: 1) massively parallel reporter 182

assays (MPRAs)21,52-54, 2) eQTL studies30,55, and 3) HiC56 datasets. We found significant 183

enrichments of links across each of these datasets despite several MPRAs being performed in cancer 184

cell lines (Figure 5B). The MPRA data provided evidence that linked peaks could stimulate 185

transcription, but are not capable of identifying the target gene. In contrast, HiC data from NeuN+
186

nuclei provided orthogonal validation of a linked peak’s target gene, but no evidence of promoting 187

transcriptional activity. However, we intersected the results from these analyses and found that 1,542 188

of the 60,473 links that displayed regulatory activity in one or more MPRAs also identified the same 189

target gene as the HiC data. In addition, 617 linked peaks overlapped eQTLs and were linked to the 190

same gene providing both evidence of activity and confirming the target gene. Of the 67,541 links 191

that overlapped at least one functional dataset, only 1,668 were also identified by Morabito et al.19. 192
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Figure 5. Identification of AD-specific TF regulatory networks. A) sLDSC results using
16 GWAS traits as indicated with our linked peaks stratified by cell type and group (“All” = all
links, “Common” = links identified in both AD and control data, “AD” = links specific to AD,
“Control” = links specific to control). Heatmap indicates coefficient z-score from running sLSDC
with each set of links combined with the 97 baseline features. Feature-trait combinations with a
z-score significantly larger than 0 (one-sided z-test with alpha = 0.05, P-values corrected within each
trait using Holm’s method) are indicated with a numeric value reporting the enrichment score. B)
Bar plot showing enrichment (+/- 95% CI) of feature linkages for previously nominated regulatory
regions: active MPRA elements (blue), eQTLs where target gene is same as linked gene (pink), and
HiC loops linking region to same target gene (green). C) Box plots showing statistically significant
(* indicates p <0.05, ANOVA with Fisher’s LSD) elements representing feature linkages tested in
luciferase assays. Luciferase elements are denoted by the linked gene for the nominated region. D)
Box plots showing comparison of rs12445022 to its corresponding reference element linked to JPH3 (*
indicates p <0.05, ANOVA with Fisher’s LSD). E) Top: Normalized expression of APP in each cell
type. Middle panels: Coverage plot of accessibility in indicated cell types. Bottom panel: Significant
control (blue) and common (gray) gene-peak links to APP tested in luciferase assays. Arc height
represents strength and direction of correlation. Links that contained CREs that increased expression
of the luciferase reporter are highlighted in gray. F) Box plots showing all tested luciferase elements
representing APP-peak links. Elements highlighted in gray are located within the APP gene body (*
indicates p <0.05, ANOVA with Fisher’s LSD).
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For additional validation, we selected 51 neuronal links for testing in a luciferase reporter assay 193

(Table S9). We performed these assays in the neuroepithelial-derived human embryonic kidney 293 194

(HEK293 and 293FT) cell lines because of the similar chromatin accessibility landscape to that found 195

in brain tissues21. These cell lines are also technically tractable as they are highly transfectable and 196

allow for efficient screening of regions of interest. We did not select any AD-specific links for 197

validation, as we are using cell lines from a presumably unaffected individual. Thirteen of these 51 198

links contained SNPs associated with a brain-related trait (e.g. AD, epilepsy, neurodegeneration, 199

etc.) and we tested both alleles of these SNPs (Table S10). Twelve of the elements increased 200

activity of the luciferase reporter including regions linked to SNCA (α-synuclein) and APP (amyloid 201

precursor protein) (Figures 5C–5F). Three of these active elements were involved in peak-gene-TF 202

trios (CCSER1 -MEF2C, JPH3 -RARB, and ADAMTS1 -SOX10). ChIP-seq analysis of NeuN+
203

nuclei confirmed that MEF2C is bound at the peak linked to CCSER1, a gene associated with 204

autism57 (data not shown). Only one of the 15 variants tested abolished activity, rs12445022, a G/A 205

substitution in a peak linked to JPH3 (p = 0.0003 by ANOVA with Fisher’s LSD) (Figure 5D). 206

JPH3 encodes junctophilin-3, important for regulating neuronal excitability58. This JPH3 linked 207

peak was highly correlated (r = 0.64) with JPH3 expression in both AD and control samples in all 208

cell types except microglia. The linked peak is located 45,503 bp upstream of the JPH3 TSS and 209

was also linked to ZCCHC14-DT, although with a much lower correlation (r = 0.36). Repeat 210

expansions in JPH3 have been associated with a Huntington’s disease-like phenotype59,60. 211

Due to its importance in AD pathogenesis, we focus our validation efforts particulalry on the APP 212

locus (Figure 5E) where we tested 15 elements and identified three that increased expression in the 213

luciferase reporter assay (Figure 5F). APP is expressed across all cell types (Figure 5E, top panel) 214

consistent with the high promoter accessibility observed (Figure 5E, middle panels). We also found 215

one element with a negative correlation with APP expression that significantly reduced reporter 216

activity; however, this assay was not designed to detect repressor activity and further experiments 217

are required to assign a repressive function to this element. 218

Discussion 219

Single cell multiomics has allowed for the generation of a rich source of disease– and cell 220

type–specific candidate CREs enriched in variants associated with AD. Our study provides tangible 221

advances by employing snRNA-seq and snATAC-seq in the same cells. Others have generated 222

snRNA-seq and snATAC-seq separately and integrated them to identify CREs in AD19; however, 223

profiling gene expression and chromatin accessibility simultaneously in the same nuclei allows for 224

greater confidence in the correlations linking potential CREs to target genes. As such, we identified 225

five times as many new candidate CREs (319,905 links vs 56,552 gene-linked cCREs) than previously 226

reported19. To our knowledge, only one other study of another human neurodegenerative disease, 227

Parkinson’s, used the 10X Genomics Multiomics (ATAC+Gene Expression) technology61 and 228

identified a similarly large number of peak-gene linkages. Our approach is unique in that we 229

identified peak-gene correlations independently in control and AD data sets allowing us to identify 230

40,831 peak-gene links specific to AD. 231

Our study provides two main advances in our understanding of altered gene regulation in AD. 232

First, by leveraging the AD– and control–specific links identified here we constructed peak-gene-TF 233

trios to determine which TFs were particularly involved in regulating AD-specific transcriptional 234

programs. MAFB and ZEB1 were found to be enriched in AD-specific trios in microglia and neurons, 235

respectively. MAFB has been implicated in exercise-associated responses in the peripheral immune 236

system in AD62. Centrally, MAFB has been implicated in regulation of the receptor VISTA in 237

microglia, which is up-regulated in AD63. In this study, we identify a previously unknown role for 238

ZEB1 in AD-specific transcriptional regulation. Previously, ZEB1 was shown to play a critical role 239

in epithelial-mesenchymal transition in neural crest migration and glioblastoma64,65 and further 240

10/29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.04.510636doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510636
http://creativecommons.org/licenses/by-nc-nd/4.0/


investigation is necessary to reveal its role in AD. Secondly, we demonstrated enhancer-like activity 241

for 12 candidate CREs linked to neurodegeneration-associated genes APP, SNCA, PHF24, 242

ADAM11, and ADAMTS1. This study lays the groundwork for additional functional validation in 243

future studies to confirm these genes as targets of these CREs. 244

One limitation of this study is that snATAC-seq data can contain spurious signals, as well as bias 245

from transcribed genes. This limitation underscores the importance of evaluation via orthogonal 246

methods, which we have provided using both published and newly generated data. A second 247

limitation is that our sample size is small. This can be addressed in future studies by increasing 248

sample size; however, the shared signals we observed with larger AD snRNA-seq studies emphasizes 249

the representative nature of our sample set, and that our total number of cells per biological sample 250

is adequate. Finally, as with any study from postmortem tissue, we are measuring by definition the 251

material that remains in a neurodegenerative disease, which can confound interpretation. For this 252

reason, we chose to evaluate DLPFC, which is preserved later into the disease course of AD than 253

tissues affected earlier such as entorhinal cortex and hippocampus. 254

In summary, our study provides important new insights into the contribution of CREs to AD 255

including the roles of TFs ZEB1 and MAFB in neurons and microglia. These findings could provide 256

additional insights for interpreting SNPs associated with AD risk should they disrupt binding motifs 257

for these TFs. Further, these TFs could be therapeutic targets for manipulating aberrant gene 258

regulation in AD. Our study lays the groundwork for future research to expand on the candidate– 259

and literature-based validation approaches taken here. High throughput CRISPRi screens are 260

well-suited to test the necessity and sufficiency of regulatory elements for linked gene expression. 261

Future validation efforts will greatly contribute to advancing our understanding of the effects of 262

non-coding variation on risk for AD. 263
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Methods 271

Resource availability 272

Further information and requests for resources and reagents should be directed to and will be 273

fulfilled by the lead contact Lindsay Rizzardi (LRizzardi[at]hudsonalpha.org). 274

Experimental model and subject details 275

Cell cultures 276

HEK293 cells were obtained from ATCC (CRL-1573) and grown in DMEM (high glucose, 277

L-glutamine, no sodium pyruvate) (ThermoFisher), supplemented with 10% fetal bovine serum 278

(FBS). 293FT cells were obtained from ThermoFisher Scientific (R70007) and maintained in DMEM 279

(high glucose, L-Glutamine, 100 mg/L Sodium Pyruvate) supplemented with 10% FBS, 1% 280
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Glutamax, 1% non-essential amino acids (NEAA), and 500 mg/mL Geneticin (G418 Sulfate, 281

ThermoFisher). All cells were cultured at 37◦C with 5% CO2. 282

Human brain tissues 283

Postmortem human brain biospecimens were obtained from the NIH Neurobiobank at the University 284

of Miami and the Human Brain and Spinal Fluid Resource Center (HBSFRC) and from 285

collaborators from the Pritzker Neuropsychiatric Disorders Research Consortium in the Department 286

of Psychiatry and Human Behavior, University of California Irvine (UCI) as noted in Table S1. 287

Flash-frozen tissues were obtained from the dorsolateral prefrontal cortex (BA9/46) of 9 donors 288

diagnosed with Alzheimer’s (Braak stages 4-6) and 9 unaffected controls. Demographic information 289

for each donor is presented in Table S1. No statistical methods were used to pre-determine sample 290

sizes, but our sample sizes are similar to those reported in previous publications18,19. Data collection 291

and analyses were not performed blind to tissue of origin. We did not pre-select samples based on 292

APOE genotype, but genotype information was generated for each sample through TaqMan 293

genotyping assays (see APOE Genotyping). 294

Method details 295

Nuclei Isolation from human brain tissues for single nucleus multiomics 296

Approximately 50-100 mg of frozen tissue per sample was homogenized in 4 mL of nuclei extraction 297

buffer [0.32 M sucrose, 10 mM Tris - pH 7.4, 5 mM CaCl2, 3 mM Mg(Ac)2, 1 mM DTT, 0.1 mM 298

EDTA, 0.1% Triton X-100, 0.2U/µL Protector RNAse inhibitor (Sigma cat. 3335399001)] by 299

douncing 30 times in a 40 mL dounce homogenizer. Filter through 70 µm filter and spin at 500xg, 5 300

min at 4◦C in a swinging bucket centrifuge. Resuspend nuclei in 500 µL nuclei extraction buffer and 301

layer over 750 µL sucrose solution (1.8 M sucrose, 10 mM Tris pH 7.4, 3 mM Mg(Ac)2, 1 mM DTT) 302

in a 1.5 mL tube. The samples were then centrifuged at >16,000xg for 30 min at 4◦C. After 303

centrifugation, the supernatant was removed by aspiration and the nuclear pellet was resuspended in 304

125 µL PBS with 1% BSA and centrifuged 5 min at 500 x g at 4◦C in a swinging bucket centrifuge. 305

Permeabilization was performed according to 10X Genomics protocol CG000375 Rev B: nuclei were 306

resuspended in 100 µL lysis buffer (10 mM Tris-pH 7.4,10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.01% 307

Tween-20, 0.01% NP-40, 0.001% digitonin, 1 mM DTT, 1 U/µL Protector RNase inhibitor) and 308

incubated 2 min on ice. Nuclei were washed once and resuspended in 30 µL of 1X nuclei buffer with 309

1 mM DTT and 0.5 U/µL of Protector RNAse inhibitor. Nuclei quality and concentrations were 310

determined using the Countess II FL (ThermoFisher). 311

Single nucleus multiomics 312

Transposition, nuclei isolation, barcoding, and library preparation were performed according to the 313

10X Genomics Chromium Next GEM Single Cell Multiome protocol CG000338 Rev E with the 314

following alterations. The initial set of eight samples were processed as above (noted as “batch 1” in 315

Table S1) and each sample was loaded across two lanes of the Chromium Next GEM Chip J. Nuclei 316

were loaded according to manufacturer’s recommendations to target recovery of 10,000 nuclei per 317

lane. The second batch of ten samples were processed as above, but two samples were pooled per lane 318

of the Chromium Next GEM Chip J (each pool is indicated by sub-batch in Table S1). Each pool 319

consisted of a male and female donor to facilitate assignment of each single cell back to the donor 320

based on genotype and chrY gene expression (see Sample Demultiplexing). For these samples, we 321

pooled 20,000 nuclei from each sample and the entire pool was processed according to the multiome 322

protocol. Libraries were sequenced by HudsonAlpha Discovery using Illumina NovaSeq S4 flowcells. 323
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Sample demultiplexing 324

For lanes where a male and female sample were pooled together, reads were assigned to samples by 325

genotyping cells. Variants were called from the cellranger output bam file for each cell using 326

cellsnp-lite66. High-confidence SNPs from the 1000 Genome Project were used as a reference panel 327

to call variants. Cell genotypes were then split by individual using vireoSNP with the number of 328

donors set to two 67. Cells were labeled as donor 0, donor 1, unassigned, or doublet. Unassigned and 329

doublet cells were removed. Donor ID was assigned to the sample by observing the number of UMIs 330

for genes on chrY. The donor ID with the higher mean counts was assigned to the male sample 331

(Table S11). 332

Joint snRNA-seq and snATAC-seq workflow 333

Low-quality cells were filtered on gene expression data (nFeatures > 200, nFeatures < 10,000, and 334

mitochondrial percent < 5) and chromatin accessibility data (nucleosome signal < 2 and TSS 335

enrichment > 2). PMI-associated genes68 were removed from the RNA counts matrix. Peaks that 336

were present in less than 10 cells were removed from the ATAC matrix. RNA counts were 337

normalized with SCTransform with mitochondrial percent per cell regressed out. Principal 338

component analysis (PCA) was performed on RNA, and UMAP was run on the first 30 principal 339

components (PCs). The optimum number of PCs was determined to be 30 PCs using an elbow plot. 340

The ATAC counts were normalized with term-frequency inverse-document-frequency (TFIDF). 341

Dimension reduction was performed with singular value decomposition (SVD) of the normalized 342

ATAC matrix. The ATAC UMAP was created using the 2nd through the 50th LSI components. 343

Doublet density was computed using computeDoubletDensity from scDblFinder where doublet score 344

is the ratio of densities of simulated doublets to the density in the data. Cells with a doublet score > 345

3.5 were removed. Normalization and dimension reduction were performed again on the filtered set 346

with the same parameters. Predicted cell types were determined for each cell using Seurat 347

SCT-normalized reference mapping. Gene expression data was mapped to SCT-normalized DLPFC 348

data12 and annotated with the cell types of the reference map. Cells with a predicted cell type score 349

< 0.95 were removed from the data. Batch effects were corrected in RNA (theta=1) and ATAC 350

(theta=2) with Harmony (v1.0.0)69 by removing the effect of sample. 351

WNN analysis of snRNA-seq and snATAC-seq 352

The weighted nearest neighbor (wnn) graph was determined with Seurat’s FindMultiModalNeighbors 353

to represent a weighted combination of both modalities. The first 30 dimensions of the 354

Harmony-corrected RNA reduction and the 2nd through the 50th dimensions from the 355

Harmony-corrected ATAC reduction were used to create the graph. The WNN UMAP was created 356

using the wknn (k=20) (Figure S5). 357

Differential expression 358

Differentially expressed genes (DEGs) were determined for AD versus control for each cell type. 359

Within each cell type, the gene expression data was log-normalized with a scale factor of 1 x 105. 360

Pericytes and Endothelial cells were not included in the analysis because of small cell counts. 361

Differential expression was assessed using MAST70 for genes present in at least 25% of either AD or 362

control cells. Age and sex were included as covariates in the MAST model. Genes with a 363

Bonferroni-adjusted p-value < 0.01 and an absolute log2 fold change > 0.25 were determined to be 364

significant. DEGs between cell types were determined using MAST with age and sex as covariates 365

for genes present in at least 25% of cells. Genes with a Bonferroni adjusted p-value < 0.01 and an 366

absolute log2 fold change > 0.5 were determined to be significant. 367
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Annotation of cell subpopulations 368

Cell type subclusters were identified using weighted snRNA and snATAC modalities. Expression 369

data were normalized with SCTransform, and chromatin accessibility data were normalized with 370

TFIDF within each cell type. Normalized values were used to construct a multimodal weighted 371

nearest neighbor graph (k=20). Clusters were identified using wknn and the SLM algorithm. The 372

resolution (0.3, 0.2, 0.3, 0.3, 0.45) was adjusted for each cell type (Astro, Inh, Exc, Olig, Mic). Any 373

cluster with < 100 cells was excluded from DEG analysis. Within each cell type, cluster DEGs were 374

determined for each subcluster versus all other subclusters. DEGs were defined as those with a 375

Bonferroni adjusted p-value <0.01 using MAST with age and sex as covariates. Only genes that 376

were detected in at least 25% of cells in a subcluster were considered. 377

Neuronal subclusters were further annotated with Azimuth 22 Human motor cortex 71 clusters to 378

identify known neuronal subpopulations. For each neuronal subcluster, a subtype was assigned by 379

the enrichment for up-regulated subcluster DEGs in Azimuth gene sets. Enrichment was performed 380

using enrichR72-74 and the Azimuth Cell Types 2021 gene sets. The top subtype annotation was 381

assigned to a subcluster if the adjusted p-value was < 0.01. 382

AD-specific subclusters and subtypes were determined by observing overrepresentation of cells 383

isolated from AD individuals. Statistically significant overrepresentation was evaluated with a 384

Fisher’s exact test and adjusted p-values. 385

Gene set enrichment 386

The R package enrichR72-74 was used for all gene set enrichment analyses. Sets of DEGs and 387

peak-linked genes were used as input to look for enrichment in GO Biological Process 2021, GO 388

Molecular Function 2021, GO Cellular Component 2021, and KEGG 2021 databases. Terms with an 389

adjusted p-value < 0.05 were considered to be enriched. 390

Feature linkage analysis 391

ATAC peaks were called independently for each cell type using MACS2 and Signac CallPeaks and 392

the union of these peaks was used in subsequent analyses retaining the cell type annotations. The 393

peaks were then annotated with ChIPseeker75 and TxDb.Hsapiens.UCSC.hg38.knownGene where 394

promoters were considered to be 1 kb upstream and 100 bp downstream of the TSS. Only ATAC 395

peaks that were present in at least 2% of cells in at least one cell type were included in linkage 396

analyses. AD and control linkages were identified separately via the cellranger-arc (v2.0) reanalyze 397

function using the filtered cell type ATAC peaks and either AD or control expression and 398

accessibility data as input. The maximum interaction distance was restricted to 500 kb. Peak-peak 399

links are produced by the cellranger-arc pipeline by default, but were not used for downstream 400

analyses. Feature linkages with an absolute correlation score > 0.2 and linked to a gene with < 200 401

UMIs were removed. 402

Gene-Peak-TF trios 403

Trios were called for a filtered set of feature linkages by removing links further than 100 kb and links 404

with an absolute score < 0.2. Motifs were then called in each linked-peak using Signac AddMotifs 405

and the JASPAR 2022 76 CORE PFM. Peaks with > 100 motifs were additionally filtered from the 406

link set. TF expression, linked-gene expression, and linked-peak accessibility matrices for trio 407

correlation were derived from the average counts within metacells. Metacells were determined using 408

WNN clusters for all AD cells and all control cells separately. TF-peak scores are the Pearson 409

correlation between peak accessibility and the expression of the TF whose motif was called in the 410

peak. TF-gene scores are the Pearson correlation between a gene and the TF whose motif was called 411
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in the linked-peak. Significant associations were defined as those with a p-value < 0.001. Significant 412

trios were then defined as those with a significant positive TF-peak correlation and a significant 413

TF-gene correlation. 414

Partitioned heritability analysis 415

To evaluate whether feature links are enriched with common genetic variants that have been 416

associated with AD or other traits by GWAS, we performed stratified linkage disequilibrium (LD) 417

score regression (sLDSC v1.0.1)39,77. sLDSC estimates the proportion of genome-wide SNP-based 418

heritability that can be attributed to SNPs within a given genomic feature by a regression model 419

that combines GWAS summary statistics with estimates of LD from an ancestry-matched reference 420

panel. Summary statistics for AD were downloaded from2–6. To estimate SNP heritability from AD 421

GWAS summary statistics, we excluded the APOE and MHC/HLA genomic regions. Additional 422

GWAS summary statistics were downloaded for brain-related42-46,78 and other traits47-51. Each cell 423

type feature link was tested individually along with the full baseline model (baseline-LD model v2.2.) 424

that included 97 categories capturing a broad set of genomic annotations. Links to GWAS summary 425

statistics are available in Table S8. Additional files needed for the sLDSC analysis were downloaded 426

from https://alkesgroup.broadinstitute.org/LDSCORE/ following instructions at 427

https://github.com/bulik/ldsc/wiki. 428

APOE genotyping 429

To determine APOE status, TaqMan genotyping assays (cat#: 4371353) were used to genotype 430

SNPs rs429358 and rs7412 (cat: 4351379, C 3084793 20 and C 904973 10, respectively) following 431

the manufacturer’s instructions. Genotyping calls were made using QuantStudio software (v1.3) for 432

all individuals in this study. APOE status is reported in Table S1. 433

Comparisons to external data sources 434

Cell type-specific H3K27ac peak calls were obtained from11 and converted to hg38 coordinates using 435

the liftOver function from the R package rtracklayer. GABA and GLU neuronal sub-type H3K27ac 436

fastqs from Kozlenkov et al. 28 were downloaded from Synapse (syn12033252) and processed as 437

individual replicates using the AQUAS Transcription Factor and Histone ChIP-Seq processing 438

pipeline79. (https://github.com/kundajelab/chipseq pipeline). Peaks were called using the IDR 439

naive overlapping method with a threshold of 0.05 and the optimal peak sets were used. For each 440

cell type, only peaks identified in at least 3 individuals were retained for downstream analyses. 441

ATAC-seq peaks from non-neuronal cell types were intersected with H3K27ac data from the 442

corresponding cell type obtained from Nott et al.11. Excitatory and inhibitory neuron ATAC-seq 443

peaks were intersected with H3K27ac peaks identified from GLU (NeuN+/SOX6-) or GABA 444

(NeuN+/SOX6+) neuronal nuclei28 and from neuronal (NeuN+) nuclei11. MPRA data was obtained 445

from21,52-54, eQTL data was obtained from30,55, and neuronal HiC loop calls were obtained from56. 446

Plasmids 447

The pNL1.1.CMV [Nluc/CMV] and pGL4.23 [luc2/minP] vectors were obtained from Promega. 448

Luciferase elements were generated by selecting 467 bp of the nominated region using hg38 449

coordinates. Both the forward and reverse complement sequences were ordered as gBlocks from 450

Integrated DNA Technologies (IDT). Gibson assembly was performed by cloning elements into the 451

pGL4.23 [luc2/minP] vector digested with EcoRV. Element insertion was confirmed by Sanger 452

sequencing (MCLAB). Each element was individually prepped 3 times for a total of 6 individual 453

plasmid preparations per nominated region. 454
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Transfection 455

HEK293 and 293FT cells were plated at 70,000 cells/cm2 in a 24-well format. Before plating 293FT 456

cells, culture plates were pre-coated with poly-L-ornithine solution (Millipore Sigma). The next day, 457

cells were transfected with 1 µg of plasmid DNA using Lipofectamine LTX with Plus Reagent 458

(ThermoFisher) following the manufacturer’s recommendations. Per transfection, 900 ng of luciferase 459

element and 100 ng of pNL1.1.CMV [Nluc/CMV] were used. A transfection reaction of 900 ng 460

pGL4.23 [luc2/minP] and 100 ng pNL1.1.CMV [Nluc/CMV] was used as a baseline control. Both 461

vectors were also transfected as background controls (100 ng) with pmaxGFP (900 ng, Lonza). Cell 462

lysates were harvested by freezing at -80◦C 48 hours post-transfection. 463

Luciferase assays 464

Luciferase assays were performed using the Nano-Glo Dual-Luciferase Reporter Assay System 465

(Promega) following the manufacturer’s protocol. Cell lysis was performed on the 24 well plate and 466

aliquoted across 4 wells of a white 96-well plate for 4 technical replicates per biological replicate. 467

Assays were completed in quadruplicate. Firefly luminescence was first normalized across the 468

average plate luminescence and then normalized to the average control luminescence. For each 469

biological replicate, the median fold luminescence value was determined for the four technical 470

replicates. Four biological replicates were compared to the pGL4.23 [luc2/minP]/ pNL1.1.CMV 471

[Nluc/CMV] control using an ordinary one-way ANOVA with Fisher’s LSD. 472

Chromatin preparation for sorted nuclei 473

Buffers required: Nuclei Extraction Buffer (NEB): 0.32 M Sucrose, 5 mM CaCl2, 3 mM Mg(Ac)2, 0.1 474

mM EDTA, 10 mM Tris-HCl, 0.1 mM PMSF, 0.1% Triton X-100, 1 mM DTT. Before use, add 475

Roche cOmplete protease inhibitor cocktail according to manufacturer recommendation (Sigma 476

11697498001). Sucrose Cushion Buffer (SCB): 1.6 M Sucrose, 3 mM Mg(Ac)2, 10 mM Tris-HCl, 1 477

mM DTT. Interphase Buffer: 0.8 M Sucrose, 3 mM Mg(Ac)2, 10 mM Tris-HCl. Blocking buffer: 1x 478

PBS, 1% BSA, 1 mM EDTA. Pellet buffer: add up to 200 µL 1 M CaCl2 to 10 mL SCB. RIPA: 1x 479

PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS. 480

Methods for extracting and sorting nuclei from postmortem brain are similar to previously 481

published methods80. Here, approximately 500 mg of tissue was placed into a chilled 40 mL Dounce 482

homogenizer containing 5 mL of NEB on ice and allowed to partially thaw to ease douncing (2-3 483

minutes). Extract nuclei by douncing with “tight” pestle 30-40 times until the tissue is homogenized. 484

Transfer to 15 mL conical tube on ice, wash glassware with 5 mL NEB and add to 15 mL tube. Fix 485

chromatin by adding 625 µL of 16% formaldehyde (methanol free, Thermo 28906) to a final 486

concentration of 1% and rotate end-over-end at room temperature for 10 minutes. Halt fixation by 487

adding 500 µL of 2.5 M Glycine and incubate another 5 minutes rotating at room temperature then 488

place homogenate back on ice. During fixation, prepare sucrose gradient in two ultracentrifuge 489

buckets (Beckman Coulter cat:344058) by layering 5 mL of Interphase buffer atop 10 mL of SCB in 490

each. Carefully layer nuclei homogenate atop sucrose gradient, balance with NEB, then 491

ultracentrifuge at 24,000 rpm for 2 h using SW28 swinging bucket rotor (Beckman Coulter). Upon 492

completion, inspect tubes for a visible pellet of nuclei at the bottom of tube. Remove debris at 493

interphase first by using a 25 mL graduated pipette, then continue removing the remaining sucrose 494

gradient being careful not to disturb the nuclei pellet. Carefully resuspend the pellet in 1 mL cold 495

PBS and transfer to a 15 mL lo-bind tube containing 2 mL PBS on ice. (Optional: if pellet appears 496

to contain large debris then pass through 70 µm filter). Wash ultracentrifuge tubes with 1 mL cold 497

PBS and combine in 15 mL tube to a final volume of 10 mL, inverting to mix. Centrifuge the nuclei 498

at 1,000xg for 10 minutes at 4◦C to remove residual sucrose. Label nuclei by resuspending pellet in 5 499

mL blocking buffer with NeuN-488 antibody (Millipore, cat: MAB377X) and OLIG2 antibody 500

(Abcam, cat: ab109186) at 1:5,000 each. Incubate nuclei in staining buffer with rotation for at least 1 501
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hour at 4◦C. Spin nuclei 500xg for 5 minutes to pellet, remove supernatant, then resuspend in 5 mL 502

blocking buffer with goat-anti-rabbit-647 (Thermo, cat: A-21245) at 1:5,000 and DAPI at 1:100,000. 503

Incubate for at least 1 hour at 4◦C with rotation. Remove stain by centrifuging 500xg 5 minutes at 504

4◦C and resuspending in 3 mL cold PBS. Hold on ice and proceed immediately to sorting. 505

Nuclei were sorted using Sony MA900 with a 70 µm nozzle and pressure not exceeding pressure 506

setting of 7. Gates were set to capture those populations that were positive for 488 signal (NeuN+), 507

positive for 647 signal (OLIG+), or negative for both (NeuN-;OLIG-). Each population was collected 508

into 5 mL tubes held at 4◦C and pooled into 15 mL lo-bind tubes on ice. Purity of selected samples 509

were typically >95% based on reanalysis of sorted samples. To concentrate nuclei for downstream 510

analysis, add approximately 2 mL of pellet buffer per 10 mL of sorted nuclei and rotated at 4◦C for 511

15 minutes. Centrifuge 500xg for 10 minutes at 4◦C, after which a pellet should be visible. Remove 512

supernatant and carefully resuspend pelleted nuclei in at least 3 mL cold PBS. Centrifuge 500xg for 513

5 minutes at 4◦C. 514

To generate chromatin for ChIP-seq, resuspend pellet in cold RIPA plus protease inhibitor (Roche, 515

Sigma 11836153001) at approximately 3 million nuclei per 250 µL. Transfer 250 µL of each sample 516

to the Bioruptor (Diagenode, cat: C30010016) tubes and sonicate tissue using a Bioruptor Pico (8 517

cycles; 30 seconds on/ 30 seconds off). Pool the sonicated chromatin into a 1.5 mL DNA lo-bind 518

conical tube and centrifuge 12,000xg for 5 minutes at 4◦C to remove any insoluble debris. Collect 519

supernatant into a separate tube, add RIPA to final volume equivalent to 500,000 nuclei per 100 µL, 520

then dispense working aliquots into 1.5mL tubes held on dry ice. Store at -80◦C. 521

ChIP-seq protocol 522

ChIP-seq for ZEB1 was performed using chromatin from NeuN+ sorted DLPFC nuclei from two 523

control donors serving as biological replicates. ChIP-seq for MEF2C was performed on bulk DLPFC 524

tissues from two control donors serving as biological replicates. Protocols for ChIP-seq are similar to 525

those for frozen tissue previously described by our lab 81,82 and consistent with techniques 526

recommended by the ENCODE Consortium (www.encodeproject.org/documents). Briefly, 60 µL 527

Dynabeads (ThermoFisher, cat: 11203D) were washed with cold 1x PBS + 5 mg/mL BSA then 528

combined with 8 µL antibody targeting ZEB1 (Bethyl, cat: A301-921A) or MEF2C (proteintech, cat: 529

18290-1-AP) in a final volume of 200 µL and held at 4◦C overnight with rotation. Tubes of aliquoted 530

chromatin are thawed on ice and bead/antibody complex is washed with PBS + 5 mg/mL BSA 531

solution. Beads are ultimately resuspended in 100 µL RIPA and broµght to 200 µL with 100 µL 532

chromatin aliquot. Incubate bead/antibody with chromatin using rotation for one hour at room 533

temperature then move to 4◦C for another hour. After incubation, bead complexes were washed five 534

times with a LiCl wash buffer (100 mM Tris at pH 7.5, 500 mM LiCl, 1% NP-40, 1% sodium 535

deoxycholate) and wash with 1 mL of cold TE (10 mM Tris-HCl at pH 7.5, 0.1 mM Na2EDTA). 536

Chromatin was eluted from beads by incubating with intermittent shaking for 1 hour at 65◦C in IP 537

elution buffer (1% SDS, 0.1 M NaHCO3), followed by incubating overnight at 65◦C to reverse 538

formaldehyde cross-links. DNA was purified using DNeasy Blood and Tissue kit (Qiagen 69506) and 539

eluted in a final volume of 50 µL EB. Recovered DNA was quantified using Qubit dsDNA HS Assay 540

kit (Thermo Q32854). For input controls, one aliquot of each tissue was brought to 200 µL with 541

RIPA and reverse-crosslinked overnight at 65◦C. The following morning, samples were incubated an 542

additional 30 minutes with 20 µL Proteinase K and 4 µL RNase A (Qiagen 19101) and subsequently 543

eluted for DNA using DNeasy Blood and Tissue kit. The entirety of the remaining IP DNA (and 544

approximately 250 ng Input control) were used to generate sequencing libraries. Libraries were 545

prepared by blunting and ligating ChIP DNA fragments to sequencing adapters for amplification 546

with barcoded primers (30 sec at 98◦C; [10 sec at 98◦C, 30 sec at 65◦C, 30 sec at 72◦C] x 15 cycles; 547

5 min at 72◦C). Libraries were quantified with Qubit dsDNA HS Assay kit and visualized with 548

Standard Sensitivity NGS Fragment Analysis Kit (Advanced Analytical DNF-473) and Fragment 549
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Analyzer 5200 (Agilent). Libraries were sequenced using Illumina NovaSeq flowcell with 100 bp 550

single-end runs. 551

ChIP-seq analysis 552

Prior to analysis, reads were processed to remove optical duplicates with clumpify (BBMap v38.20; 553

https://sourceforge.net/projects/bbmap/) [dedupe=t optical=t dupedist=2500] and remove adapter 554

reads with Cutadapt (v1.16)83 [-a AGATCGGAAGAGC -m 40]. Input reads were capped at 40 555

million using Seqtk (v1.2; https://github.com/lh3/seqtk). Individual experiments were constructed 556

following ENCODE guidelines (https://www.encodeproject.org/about/experiment-guidelines/) and 557

analyzed with the chip-seq-pipeline2 processing pipeline 558

(https://github.com/ENCODE-DCC/chip-seq-pipeline2). All software within the package was run 559

using the default settings or those recommended by the authors for transcription factors. Final 560

peaks were called using the IDR näıve overlapping method with a threshold of 0.05. 561

Data and code availability 562

The raw and processed data generated will be made available through NCBI GEO under series 563

accession number GSE214637 upon publication. All supplementary tables are available upon request. 564

All the code generated during this study is available at aanderson54/scMultiomics AD 565
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21. Cooper, Y.A., Teyssier, N., Dräger, N.M., Guo, Q., Davis, J.E., Sattler, S.M., Yang, Z., Patel,
A., Wu, S., Kosuri, S., et al. (2022). Functional regulatory variants implicate distinct transcriptional
networks in dementia. Science 377, eabi8654. 10.1126/science.abi8654.

22. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk,
A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184,
3573-3587.e29. 10.1016/j.cell.2021.04.048.

23. Stuart, T., Srivastava, A., Madad, S., Lareau, C.A., and Satija, R. (2021). Single-cell
chromatin state analysis with Signac. Nat. Methods 18, 1333–1341. 10.1038/s41592-021-01282-5.

24. Belonwu, S.A., Li, Y., Bunis, D., Rao, A.A., Solsberg, C.W., Tang, A., Fragiadakis, G.K.,
Dubal, D.B., Oskotsky, T., and Sirota, M. (2022). Sex-Stratified Single-Cell RNA-Seq Analysis
Identifies Sex-Specific and Cell Type-Specific Transcriptional Responses in Alzheimer’s Disease
Across Two Brain Regions. Mol. Neurobiol. 59, 276–293. 10.1007/s12035-021-02591-8.

25. DeTomaso, D., and Yosef, N. (2021). Hotspot identifies informative gene modules across
modalities of single-cell genomics. Cell Syst. 12, 446-456.e9. 10.1016/j.cels.2021.04.005.

26. Fulco, C.P., Nasser, J., Jones, T.R., Munson, G., Bergman, D.T., Subramanian, V.,
Grossman, S.R., Anyoha, R., Doughty, B.R., Patwardhan, T.A., et al. (2019). Activity-by-contact
model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51,
1664–1669. 10.1038/s41588-019-0538-0.

27. ENCODE Project Consortium, Moore, J.E., Purcaro, M.J., Pratt, H.E., Epstein, C.B.,
Shoresh, N., Adrian, J., Kawli, T., Davis, C.A., Dobin, A., et al. (2020). Expanded encyclopaedias of
DNA elements in the human and mouse genomes. Nature 583, 699–710. 10.1038/s41586-020-2493-4.

28. Kozlenkov, A., Li, J., Apontes, P., Hurd, Y.L., Byne, W.M., Koonin, E.V., Wegner, M.,
Mukamel, E.A., and Dracheva, S. (2018). A unique role for DNA (hydroxy)methylation in epigenetic
regulation of human inhibitory neurons. Sci. Adv. 4, eaau6190. 10.1126/sciadv.aau6190.

29. Zollino, M., Orteschi, D., Murdolo, M., Lattante, S., Battaglia, D., Stefanini, C., Mercuri, E.,
Chiurazzi, P., Neri, G., and Marangi, G. (2012). Mutations in KANSL1 cause the 17q21.31
microdeletion syndrome phenotype. Nat. Genet. 44, 636–638. 10.1038/ng.2257.

30. Bryois, J., Calini, D., Macnair, W., Foo, L., Urich, E., Ortmann, W., Iglesias, V.A., Selvaraj,
S., Nutma, E., Marzin, M., et al. (2022). Cell-type-specific cis-eQTLs in eight human brain cell
types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 25,
1104–1112. 10.1038/s41593-022-01128-z.

31. Chen, J.A., Chen, Z., Won, H., Huang, A.Y., Lowe, J.K., Wojta, K., Yokoyama, J.S.,
Bensimon, G., Leigh, P.N., Payan, C., et al. (2018). Joint genome-wide association study of
progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to
neurodegenerative diseases. Mol. Neurodegener. 13, 41. 10.1186/s13024-018-0270-8.

32. Jiang, Y., Harigaya, Y., Zhang, Z., Zhang, H., Zang, C., and Zhang, N.R. (2022).
Nonparametric Interrogation of Transcriptional Regulation in Single-Cell RNA and Chromatin
Accessibility Multiomic Data. 2021.09.22.461437. 10.1101/2021.09.22.461437.

33. Kigerl, K.A., de Rivero Vaccari, J.P., Dietrich, W.D., Popovich, P.G., and Keane, R.W.
(2014). Pattern recognition receptors and central nervous system repair. Exp. Neurol. 258, 5–16.
10.1016/j.expneurol.2014.01.001.

34. Saijo, K., Winner, B., Carson, C.T., Collier, J.G., Boyer, L., Rosenfeld, M.G., Gage, F.H.,
and Glass, C.K. (2009). A Nurr1/CoREST transrepression pathway attenuates neurotoxic
inflammation in activated microglia and astrocytes. Cell 137, 47. 10.1016/j.cell.2009.01.038.

20/29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.04.510636doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510636
http://creativecommons.org/licenses/by-nc-nd/4.0/


35. K, S., B, W., Ct, C., Jg, C., L, B., Mg, R., Fh, G., and Ck, G. (2009). A Nurr1/CoREST
pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced
death. Cell 137. 10.1016/j.cell.2009.01.038.

36. Patir, A., Shih, B., McColl, B.W., and Freeman, T.C. (2019). A core transcriptional
signature of human microglia: Derivation and utility in describing region-dependent alterations
associated with Alzheimer’s disease. Glia 67, 1240–1253. 10.1002/glia.23572.

37. Holtman, I.R., Skola, D., and Glass, C.K. (2017). Transcriptional control of microglia
phenotypes in health and disease. J. Clin. Invest. 127, 3220–3229. 10.1172/JCI90604.

38. Jacob, T.C. (2019). Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors.
Front. Mol. Neurosci. 12.

39. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.R., Anttila, V.,
Xu, H., Zang, C., Farh, K., et al. (2015). Partitioning heritability by functional annotation using
genome-wide association summary statistics. Nat Genet 47, 1228–1235. 10.1038/ng.3404.

40. Tansey, K.E., Cameron, D., and Hill, M.J. (2018). Genetic risk for Alzheimer’s disease is
concentrated in specific macrophage and microglial transcriptional networks. Genome Med. 10, 14.
10.1186/s13073-018-0523-8.

41. Novikova, G., Kapoor, M., Tcw, J., Abud, E.M., Efthymiou, A.G., Chen, S.X., Cheng, H.,
Fullard, J.F., Bendl, J., Liu, Y., et al. (2021). Integration of Alzheimer’s disease genetics and
myeloid genomics identifies disease risk regulatory elements and genes. Nat. Commun. 12, 1610.
10.1038/s41467-021-21823-y.

42. International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control
Consortium 2, Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, C.C.A., Patsopoulos, N.A.,
Moutsianas, L., Dilthey, A., Su, Z., et al. (2011). Genetic risk and a primary role for cell-mediated
immune mechanisms in multiple sclerosis. Nature 476, 214–219. 10.1038/nature10251.

43. van Rheenen, W., van der Spek, R.A.A., Bakker, M.K., van Vugt, J.J.F.A., Hop, P.J.,
Zwamborn, R.A.J., de Klein, N., Westra, H.-J., Bakker, O.B., Deelen, P., et al. (2021). Common
and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with
distinct genetic architectures and neuron-specific biology. Nat. Genet. 53, 1636–1648.
10.1038/s41588-021-00973-1.

44. Grove, J., Ripke, S., Als, T.D., Mattheisen, M., Walters, R.K., Won, H., Pallesen, J., Agerbo,
E., Andreassen, O.A., Anney, R., et al. (2019). Identification of common genetic risk variants for
autism spectrum disorder. Nat. Genet. 51, 431–444. 10.1038/s41588-019-0344-8.

45. Wray, N.R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E.M., Abdellaoui, A.,
Adams, M.J., Agerbo, E., Air, T.M., Andlauer, T.M.F., et al. (2018). Genome-wide association
analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet.
50, 668–681. 10.1038/s41588-018-0090-3.
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van der Weide, R.H., Teunissen, H., Võsa, U., Franke, L., et al. (2019). High-throughput
identification of human SNPs affecting regulatory element activity. Nat. Genet. 51, 1160–1169.
10.1038/s41588-019-0455-2.

55. Consortium, T.Gte. (2020). The GTEx Consortium atlas of genetic regulatory effects across
human tissues. Science 369, 1318–1330. 10.1126/science.aaz1776.

56. Hu, B., Won, H., Mah, W., Park, R.B., Kassim, B., Spiess, K., Kozlenkov, A., Crowley, C.A.,
Pochareddy, S., Li, Y., et al. (2021). Neuronal and glial 3D chromatin architecture informs the
cellular etiology of brain disorders. Nat. Commun. 12, 3968. 10.1038/s41467-021-24243-0.
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Supporting Information

Figure S1. Integrating snRNA-seq and snATAC-seq data. A) UMAP visualization of cells
represented by only snRNA-seq data, only snATAC-seq data, and joint WNN. Cells are colored
by cell type and cluster assignment. B) WNN UMAP colored by the percent weight given to the
snATAC-seq data for each cell when creating the WNN graph. C) The proportion of cells assigned
to a cell type from each individual. P-values from t-test are indicated above box plots.
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Figure S2. Identification of cell type subclusters. A) UMAP visualization of 5 microglia
subclusters.B) Heatmap of row-normalized expression for the top DEGs for each microglia subcluster.
C) The proportion of cells assigned to each subcluster from each individual (* indicates subclusters
with a t-test p-value < 0.05; ** p-value < 0.01). D) UMAP visualization of 5 astrocyte subclusters.
E) Heatmap of row-normalized expression for the top 10 DEGs for each astrocyte subcluster. F)
UMAP visualization of the 4 oligodendrocyte subclusters. G) Heatmap of row-normalized expression
for the top 10 DEGs for each oligodendrocyte subcluster. H) UMAP visualization of the 10 excitatory
neuron subclusters. I) Heatmap of row-normalized expression for Azimuth Glutamatergic subtype
markers. J) UMAP visualization of the 8 inhibitory subclusters. K) Heatmap of row-normalized
expression for Azimuth GABAergic subtype markers. L) The proportion of cells assigned to each
inhibitory subcluster from each individual (* indicated t-test p-value < 0.05).
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Figure S3. Feature linkage description. A) Characteristics of genes by number of links. Left
panel: distribution of gene length by the number of links to the gene. Middle panel: distribution of
UMIs by the number of links to the gene. Right panel: average absolute correlation score by the
number of links to the gene. B) Distribution of the distance to linked-gene TSS by binned absolute
correlation.
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Figure S4. AD and control-specific peak-gene-TF trios. A) Heatmap of correlation values of
AD and control specific trios identified in links shared across cell types, B) excitatory neurons, C)
oligodendrocytes, and D) astrocytes.
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Figure S5. Donor characteristics across cell types. WNN UMAP colored by A) disease status,
B) Braak Stage, C) sex, D) postmortem interval (PMI), E) RNA integrity number (RIN), and F)
Age.
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