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Abstract

Contemporary single-cell omics technologies have enabled complex experimental designs
incorporating hundreds of samples accompanied by detailed information on sample-level
conditions. Current approaches for analyzing condition-level heterogeneity in these experi-
ments often rely on a simplification of the data such as an aggregation at the cell-type or
cell-state-neighborhood level. Here we present MrVI, a deep generative model that provides
sample-sample comparisons at a single-cell resolution, permitting the discovery of subtle
sample-specific effects across cell populations. Additionally, the output of MrVI can be
used to quantify the association between sample-level metadata and cell state variation. We
benchmarked MrVI against conventional meta-analysis procedures on two synthetic datasets
and one real dataset with a well-controlled experimental structure. This work introduces
a novel approach to understanding sample-level heterogeneity while leveraging the full
resolution of single-cell sequencing data.

1 Introduction

Technologies for single-cell omics readily allow multiplexing many samples via molecular labeling or genotype-
based strategies [1, 2, 3]. Accordingly, these technologies permit experimental designs that provide single-cell
readouts from hundreds of samples corresponding to different treatments, genetic perturbations, and/or
individual donors [4, 5, 6, 7]. Beyond increasing the scale of individual experiments, substantial efforts have
been made towards integrating many studies into atlases with an emphasis on refining characterizations of
cellular phenotypes [8, 9, 10].

These large-scale datasets promise the ability to comprehensively identify cellular and molecular properties
that distinguish or are common between samples. In this regime, a key challenge is to derive a metric that can
be used to compare samples to one another at high resolution. Such a metric can be used to stratify the data
for exploratory analysis, i.e., to reveal relevant covariates that are associated with particular phenotypes. For
instance, it could help characterize disease sub-types, which in turn may inform treatment options [11]. A
sample-sample distance metric can also be used in a guided manner, such as to identify subpopulations of cells
that are enriched for a sample-level covariate of interest, like disease status.
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A common approach for quantifying differences between single-cell samples relies on clustering cells into
groups representing cell states/types and then quantifying sample-specific differences in the relative abundance
of each group. This approach can be used to evaluate the distance between any pair of samples, and thus
enables an exploratory analysis [6, 7, 12, 13, 14]. However, it also oversimplifies the task by reducing the
high-dimensional omic information of every cell to a single, discrete label. This global comparison of samples
may also reduce the power to detect sample effects at the cell-state-level; for example, many diseases and
conditions (e.g. lupus [15], autism [16]) exhibit heterogeneous changes in gene expression across cell types
and individuals. These issues have been somewhat addressed in a recent line of work on guided recovery and
analysis of single-cell sample differences [17, 18, 19, 20]. These approaches operate on a graph representation
of the data and seek to reveal subpopulations (neighborhoods, clusters, etc.) of cells that are enriched for
particular covariates of interest (e.g., treatment). An underlying challenge for these approaches relates to
learning a common metric space for cells in which distances capture biological (and not technical) variation.
For this reason, all current approaches rely on single-cell integration methods as a preprocessing step, which
have varying technical and scalability performance [21].

In this work, we reformulate the task of quantifying sample-level cellular heterogeneity as that of estimating
a sample-sample distance matrix per cell (Figure 1a, b). This output enables both exploratory (sample
stratification) and guided (identification of metadata-associated cell subpopulations) analyses to be conducted
downstream at any desired level of resolution. To estimate the cell-level sample-sample distance matrices,
we introduce a hierarchical probabilistic model, MrVI1 (Multi-resolution Variational Inference), that posits
cells as being generated from nested experimental designs such as multi-donor studies in which samples are
collected from different clinics.

MrVI provides a normalized view of each cell at two levels. The first level is a low-dimensional stochastic
embedding of each cell that is decoupled from its sample-of-origin and any additional known technical factors
(e.g., which site the sample came from). This embedding space primarily reflects cell-state properties that
are common across samples and can be used to identify biologically-coherent cell groups in complex study
designs. The second level adds a latent effect corresponding to the sample-of-origin to each cell’s first-level
representation while still accounting for technical factors. As such, MrVI manifests as a hierarchical integration
method, extending and leveraging concepts used by methods like scVI [22]. The functional relationship
between MrVI’s latent variable levels can also be used directly to estimate sample-sample distance matrices per
cell. Finally, MrVI scales easily to millions of cells due to its reliance on variational inference, implemented
with a hardware-accelerated and memory-efficient stochastic gradient descent training procedure within the
scvi-tools package [23].

2 A generative model of single-cell transcriptomes in two-stage nested experimental
designs

We focus on two-stage nested experimental designs [24] that are commonly used in single-cell omics. For
example, multi-site, multi-donor studies nest donors into collection sites, while studies using Perturb-seq-like
technologies [5, 25, 26, 27] nest genetic perturbations in multiple microfluidic chips or plates. Without loss of
generality, we assume that single-cell sequencing libraries are prepared in B different sites (clinics, plates,
chips, etc.), with S total samples collected. In this section, we describe a hierarchical model for these data,
MrVI, that aims to learn sample-specific effects on single cells (Section 2.1) while also accounting for technical
effects between sites (Section 2.2). The presentation here focuses on single-cell RNA-sequencing (scRNA-seq)
as a readout given the vast amount of available data, but we emphasize the MrVI can be extended to other
single-cell modalities by using appropriate noise models.

Notations We observe a collection of scRNA-seq experiments measuring transcriptomic profiles in S
distinct samples, each sequenced in one of B possible sites. The sequencing provides cell-specific gene
expression profiles {x1 . . . xN}, where xn ∈ NG is a vector of counts for cell n for the G observed genes. Let
sn ∈ {1 . . . S} identify the biological sample cell n originates from and let bn be the site it was sequenced in.

1Code available at https://github.com/YosefLab/mrvi
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Figure 1: Overview of MrVI. a. We consider two-level, nested experimental designs. In the canonical case, we gather
single-cell measurements from several donors, collected across several sites. b. In this work, we aim to infer the similarities
between biological samples in a multi-site, multi-cohort scRNA-seq at the cell subpopulation level. c. MrVI’s generative
model. A sample-unaware cell representation captures shared type information. From the knowledge of this quantity, and
of the sample of origin of the cell, we construct a sample-aware, cell-state representation of the cell, z. Last, we model
gene expression as a function of this latent variable and of observed nuisance factors.

2.1 Isolating sample-specific effects on cell state

We consider a two-level hierarchical model of single cells, aiming at disentangling shared and sample-specific
sources of variations (Figure 1c). The top-level latent variable un is a L-dimensional vector following a normal
distribution, Normal(0, IL). Here L is a hyperparameter representing the dimension of the latent embedding.
This latent variable captures sample-free sources of variation and aligns all samples in a common latent space,
and hence carries information about the general identity of the cell. The latent variable at the next level,
zn ∈ RL, provides a more general characterization of the cell state, aware of sample-specific environmental
factors that may shape its identity [28]. This variable, however, is still decoupled from other nuisance covariates
(referred to here as site). The relationship between un and zn is defined as follows:

zn = un + fθ(un, sn), where fθ(un, sn) = Asnun + asn . (1)

Here, for any s ∈ {1 . . . S}, the parameters As ∈ RL×L, as ∈ RL respectively characterize the effects of
sample s that are type-specific and shared across types. While Equation 1 writes as a linear combination, it
includes a interaction term between samples and states, Asnun, allowing to capture sample and state specific
variations.

2.2 Accounting for technical variation from multiple sites

Assuming that zn captures the unobserved biological state of cell n (i.e., representing underlying biological
variation and sample-effects), we model normalized expression for gene g, denoted as hng, as a function of
both zn and the observed technical factors. In particular,

(C + Cbn) zn + cdn
=: log hn ∈ RG, (2)

where log is the element-wise log operation. The matrix C ∈ RG×L maps the latent cell states to site-agnostic
expression patterns, while for any site b, Cb ∈ RG×L and cb ∈ RG capture site-specific gene expression
patterns.
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Following existing approaches [22, 29, 30, 31], we model observed raw transcript counts under conditional
independence assumption over the genes as xng ∼ NegativeBinomial (lnhng, rng) . The size factor ln, is
defined to be the total sum of counts of cell n and rng ≥ 0 denotes the the inverse dispersion of the distribution
learned during inference.

2.3 Model training using variational inference

The generative model is trained with the auto-encoding variational bayes (AEVB) paradigm [32]. In particular,
we introduce a mean-field variational family qϕ(u | x), that lower-bounds the data log-evidence. The resulting
evidence lower bound (ELBO) [32] is maximized over the generative model parameters θ and variational
parameters ϕ using standard procedures [33, 34]. More details about the optimization procedure can be found
in Supplement A.

3 Estimating sample-sample distances at the cellular level

We now describe how MrVI can be used to quantify sample effects on individual cells. We first introduce
the computation of local sample-sample distances via counterfactual queries (Section 3.1) and outline how
to construct type-specific sample-sample distance matrices via aggregation (Section 3.2). Critically, these
procedures do not require sample-level metadata, and can be used for exploratory analyses. In cases where
sample-level features of interest are available, we also describe a statistical procedure for retrospective guided
analysis, finding type-specific associations between sample features and gene expression (Section 3.3).

3.1 Counterfactual comparison of cell states

We aim to predict the state of cell n collected in sample s, given that it had been a member of any other sample
s′ ̸= s. This counterfactual cell state can help quantify the extent to which any particular cell’s gene expression
profile could have been explained by a different sample. To avoid technical factors from confounding our
analysis, we make these predictions at the level of the z latent variable and denote the counterfactual cell state as
zs

′

n . A straightforward approach to compute zs′n consists of (i) inferring the sample-free latent representation un

distribution based on gene expression profiles xn using the variational posterior qϕ(u | xn) and (ii) estimating
the counterfactual cell state zs′n := un + fθ(un, s

′).

Previous tangentially related methods have used a similar approach to model out-of-distribution outcomes
when conditioning on categorical covariates [22, 35, 36]. These methods employ nonlinear decoders as part of
conditional generative models to map some latent variable and observed covariates to gene expression. Due
to the nonlinear aspect of these models, the distances in the respective latent spaces may not reflect relevant
variations in gene expression [37, 38]. For instance, distinct latent codes can theoretically encode the same
normalized expression profile.

However in the considered setup (Equations 1, 2), neighborhoods of cells in the z latent space characterize
cells sharing similar gene expression profiles due to the linearity of the decoding function. Note indeed that
for any two latent codes za, zb, generating normalized gene expression profiles ha, hb, in the same site b,
∥log ha − log hb∥22 =

(
za − zb

)
(B +Bb)

T (B +Bb)
(
za − zb

)
. For this reason, we propose comparing cell

states directly via the Euclidean distance between counterfactuals zsan , zsbn to quantify differences in gene
expression across biological samples, as

dsa,sb(n) := ∥zsan − zsbn ∥2 (3)

These distances can then be used to construct the sample-sample distance matrix D(n) = (dsa,sb(n))sa,sb≤S ∈
(R+)

S×S for any cell n.

3.2 Aggregating local sample-sample distances

The aforementioned procedure can be extended to quantify sample-sample distances for any cell subpopulation
C ⊂ {1, . . . N} without the need for additional model fitting. To smooth over the noise of individual cells, we
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consider the aggregate distance matrix, defined as

D(C) :=
1

|C|
∑
x∈C

D(x). (4)

It may occur that an observed sample s contains no cells in C. In such a case, the combination u, s and hence,
z, may be unobserved in the training data and result in unreliably inferred distances for sample s in D(C). To
mitigate this issue, we discard any samples containing fewer than k = 5 observations in C. The matrix D(C)
can then be readily plugged in as a dissimiliarity measure for clustering the remaining samples via methods
like k-means or hierarchical clustering.

3.3 Associating sample metadata with cell states

The previous approach assumes no knowledge of sample properties. In what we called the guided analysis
approach, it is relevant to detect cells for which the inferred distances from Equation 3 induce a stratification
correlating with a discrete sample characteristic, e.g., disease status. For this purpose, for each cell, we test
whether the distributions of distances between samples of the same category are the same as the distances
between samples of different categories, under a Kolmogorov-Smirnov test (multiple hypothesis correction is
also performed [39]).

4 Experiments

We benchmarked MrVI against traditional methods for sample-sample distance estimation. The first set of
methods we considered are useful for exploratory analyses and rely on counting the abundance of samples
within cell types. For each cell type, we first clustered subpopulations of cells using the Leiden algorithm [40]
on cell embeddings that are derived using either principal component analysis (PCA) or scVI. We then
compared sample proportions within subclusters as a way to define distances between samples for each cell
type. We refer to these baseline approaches as CompositionPCA and CompositionSCVI, respectively. Details
about the implementation of these baselines can be found in Supplement C. For guided analyses, we considered
Milo [18] for the detection of association between subpopulations and donor metadata. Milo is a statistical
framework for differential abundance testing, aiming to detect cell neighborhoods enriched in certain sample
groups based on a pre-computed cell-cell graph. In our case, we used the scVI latent space to construct the
cell-cell neighbors graph.

We considered three scRNA-seq data sets, one synthetic, one semi-synthetic, and one real experiment in which
sample statifications in the different cell subpopulations are either known or can be justified by the experimental
design.

4.1 Sample stratification on synthetic data

We simulated, using SymSim [41], a scRNA-seq dataset mimicking a multi-site, multi-sample experiment.
SymSim’s model produces expression profiles simulating batch effects, measurement noise, biological
variability, and transcriptional noise. This simulation reflects a dataset constructed from two batches, each
containing 16 samples, and two cell types A and B, for a total of 20,000 cells (≈ 625 cells per sample) and
2,000 genes. Each sample, which could represent donors or perturbations, is characterized by three underlying
biological covariates that affect gene expression (Figure 2a). In this experiment, cell type B has uniformly
distributed gene expression profiles across samples, but gene expression in cell type A has sample-specific
biological variability, such that the correlations between sample-specific effects are known. More details about
this dataset can be found in Supplement B.1.

We first assessed the ability of each method to capture the ground truth stratification for type A in an
exploratory manner by comparing their estimated sample-sample distances (Figure 2b). MrVI provided a local
representation of the sample-sample distances that qualitatively matched the ground-truth stratification. To
quantify this, we performed hierarchical clustering of samples using the estimated distances and found that
MrVI’s stratification was the closest to the ground truth in terms of RF distance (Figure 2c).

The guided approach discussed in Section 3.3 accurately identified subpopulation stratification according
to a predetermined metadata (Figure 2d). For the first two sample covariates, MrVI has more power while
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Figure 2: SymSim dataset. a. Dataset simulation procedure. We generated gene expression profiles for two cell types
A and B, differently affected by metadata. In cell type A, gene expression is affected by three binary metadata. Gene
expression for cell type B is uniform across all metadata assignments. Each cell was then assigned to a synthetic sample
based on its metadata assignments (32 samples in total, the illustration shows the stratification for 8 samples for conciseness).
We also introduced batch effects corresponding to two sites randomly assigned to each sample. b. Exploratory analysis:
Heatmaps showing the distance matrices of the ground truth and of different approaches for cell type A. The samples are
ordered by metadata assignments and batch. c. Bar plot showing the mean Robinson-Foulds (RF) distances between the
ground truth hierarchical clustering and the clustering of different approaches for cell type A, averaged across five random
runs of the algorithms (lower is better). MrVI’s RF is significantly lower than both CompositionSCVI and CompositionPCA
(p ≤ 10−5, under a one-sided t-test). d. Guided analysis: False Discovery Rate (FDR) and True Positive Rate (TPR)
comparison for significance testing of the relevant sample metadata in cell type A for the different approaches, all aiming to
control the FDR at target level α = 0.05.

controlling the FDR. For the third covariate, however, only MrVI managed to detect cell subpopulations of
type A, as hinted by the respectively large and low TPR of MrVI and MILO.

4.2 Capturing sample-sample distances on semi-synthetic data

We next generated a semi-synthetic dataset from a real scRNA-seq dataset of 12,000 human PBMCs [42] in
which samples affect cells heterogeneously (Figure 3a). To do so, we randomly assigned cells to one of 32
synthetic samples, affecting the expression of the cell differently depending on the cell’s type. In two cell types,
referred to as cluster A and B, we introduced sample-specific in silico gene perturbations by modifying gene
expression in selected subsets of genes such that the ground-truth sample-sample distances matrices in A and
B were known (see Supplement B.2). The rest of the clusters were left unaffected by the sample assignments.

On this dataset, we observed that MrVI estimates local sample distances that more accurately represent the
ground-truth stratification of the samples (Figure 3b), while the compositional approaches fail to capture
relevant structure. This observation was validated by comparing the RF distances between true and inferred
trees by the different algorithms (Figure 3c). We also assessed whether the p-values provided in the guided
case by our framework are properly calibrated (Figure 3d). While MrVI reaches lower TPR levels than MILO,
it better controls the FDR for the considered sample metadata.

4.3 Retrieving meaningful sample stratification from multi-technology single-cell data

Finally, we considered a real dataset [43], in which samples from four healthy human livers were sequenced
with both scRNA-seq and single-nuclei RNA-sequencing (snRNA-seq) technologies for a total of 61,486
cells (Figure 4a), and a total of 3,000 genes, selected using highly variable gene selection using seurat [44]. We
used the dataset structure in two ways to benchmark sample stratification. First, we evaluated performance in a
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Figure 3: Semi-synthetic dataset. a. Dataset presentation. Starting from a scRNA-seq of PBMCs, we mimicked a
multi-samples dataset of 32 samples. we generated sample-specific gene perturbations by modifying the gene expression
matrix in two cell clusters, while leaving untouched the remaining clusters. the illustration shows the stratification for 8
samples for conciseness. b. Heatmaps showing the distance matrices for the ground truth and different approaches. c. Bar
plots showing the RF distances between the ground truth hierarchical clustering and the clustering of different approaches
for both clusters A and B, averaged across five random runs of the algorithms (lower is better). In each cluster, MrVI’s RF
is significantly lower than both CompositionSCVI and CompositionPCA (p ≤ 10−5, under a one-sided t-test). d. FDR
comparison for significance testing of the three most relevant sample metadata in cluster A for the different approaches.

nested experimental design, where each combination of donor and technology represented a different sample.
Here, the technology acts as a known nuisance factor, but the donor of each sample, which is shared with
another sample measured with a different technology, is hidden from all methods. In this setup, an expected
stratification will reflect the (unknown) donor origin of each sample, such that samples from the same donor
will be grouped together. As an additional control, we randomly split one of the samples into two samples as
another way to benchmark sample stratification inference.

MrVI successfully disentangled technology and donor effects from cell-type variation, providing an efficient
way to integrate and annotate single-cell data (Figure 4b). To assess whether our latent representation does not
exhibit unwanted variation, we used adjusted silhouette metrics [21] (see Supplement C for more details). In
particular, we observed that the u latent representation has comparable silhouette scores (in terms of batch,
sample, and author-provided cell annotations) to scVI, showing that the linear decoders from Equations 1, 2
compare favorably to the MLPs used by scVI.

We next visualized the sample-sample distances for the different approaches (Figure 4c). MrVI better captured
the sample-sample structure corresponding to the first donor; in particular, it is the only approach successfully
attributing low distances to all the relevant samples. To quantitatively evaluate how well the distance matrices
aligned with our expectations, we compared ratios of average distances between samples from the same donor
against samples from different donors but with the same technology (Figure 4d) over cell types. A ratio
below one would indicate that the inferred sample-sample distances reflect samples from the same donor
while properly removing technical noise corresponding to the sequencing technology differences. Here, MrVI
provided much lower ratios for two of the four donors (almost two fold improvement for the orange and yellow
donors), and overall provides significantly lower ratios than all other approaches (one-sided t-test; p-value
< 0.001).

5 Discussion

Both the scale and complexity of single-cell omics data are growing, fueled by technological advancements and
organized efforts to construct the Human Cell Atlas [45]. One of the major promises of multi-donor studies is
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Figure 4: snRNA & scRNA experiment. a. Four human samples were sequenced with both scRNA- and snRNA-seq
technologies. If we consider the sequencing technology as a nuisance factor, we expect cells coming from the same tissue
to have similar profiles. b. top: Comparison of average batch silhouette width scores (using the sequencing technology and
donor id as batches), as well as the cell-type silhouette width, using the original study’s annotations (higher is better).
bottom: MrVI’s u latent space, colored by donor and cell-type annotations from the original study c. Heatmaps showing
the sample distance matrices for the different algorithms. Red borders denote pairs of samples originating from the same
tissue, and hence, expected to have small distances. d. Ratio of distance of same donor different technology over different
donor same technology (lower is better). In the figure, ns denotes non-significant differences, 2 × ⋆, 5 × ⋆ significant
differences at respective levels 10−2, 10−5 under one-side t-tests.

to identify previously unknown stratifications of the donor population that can lead to new discoveries such as
disease sub-types with different prognostics and different targeted therapies. It also lends statistical power
to identify molecular and cellular features associated with a-priori known stratifications, such as response to
therapies. The dramatic increase in scale and resolution of the data enables these studies.

Here we presented MrVI, a deep generative model for single-cell omics that explicitly models nested
experimental designs that are increasingly common in the field. MrVI uses hierarchical data integration to
produce estimates of sample-sample distances at the resolution of single-cells. By doing so it generalizes
concepts used in single-cell data integration [22, 46], as well as recent approaches for fine-grained differential
abundance analysis.

In this work, we considered simple decoders to motivate the choice of Euclidean distances in the z latent space
for cell state comparisons. For future work, we propose investigating alternatives for assessing sample-sample
distances when using nonlinear decoders as well as determining whether they are necessary to improve
integration. Removing intricate technical variation is an essential step to analyzing collections of disparate
studies, sequenced with potentially different technologies, by different teams, and at different time points.
While our work focuses on studies with a single observed nuisance factor, a natural extension of MrVI is to
assess how to handle multiple, potentially continuous, and hierarchically-structured technical covariates. With
the continued development of cell atlases, understanding how to deploy a model initially trained on such data
to analyze a new experiment is a key challenge. Thus, extending MrVI to use transfer learning techniques like
scArches [47] could further improve cell state characterization.
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Supplement

A Model training

Objective function and training procedure We aim to find generative model parameters that maximize
the conditional log-evidence of the data log pθ(x). Unfortunately, this requires to marginalize the latent
variables of the model, which has no closed-form for this problem. For this reason, we resort to variational
inference for model training. In particular, we introduce mean-field variational distributions qϕ(zo | x, d, b) ∼
Normal(µϕ(x, d, b), σϕ(x, d, b)

2), whose parameters are the outputs of neural networks to construct an
easier-to-optimize lower bound on the log-evidence:

log pθ(x) ≥ E
[
log

pθ(x | zo, d, b)p(zo)
qϕ(z0 | x, d, b)

]
=: LELBO

We optimize the algorithm using the Adam optimizer [33] using minibatches of size 256, with early-stopping.

Implementation details We use MLPs to parameterize the variational distributions means and log variances
using ReLU activation functions and conditional batch normalization [48]. To avoid learning site-confounded
z representations, we did not include the interactions terms Asnun and Cbnzn, respectively appearing in
Equations 1, 2, to compute gradients with respect to the latent variables. Additionally, we used dropout
regularization [49] on the Cbnzn, which empirically improved performance. MrVI was implemented in
PyTorch [50] using scvi-tools [23], and the same architecture was used for MrVI in all experiments, with
L = 10.

B Data generation details

B.1 SymSim

SymSim [41] is a scRNA-seq simulation framework relying on a promoter kinetic model of gene expression. To
model donor-specific variation, we simulated three underlying binary metadata associated with the generated
cells. This was done by concatenating independently generated metadata associated-EVFs (external variability
factors) in conjunction to the cell type-associated EVFs and non-differentially expressed EVFs.To model
variation in the effect of metadata on gene expression, the three sets of EVFs were generated with different
levels of covariance. The concatenated EVFs were then used to generated the observed gene counts with
additionally batch effect between two batches. In the second cell type, the same number of EVFs were generated
from an independent seed to simulate a single homogeneous population, irrespective of metadata.

Now with a cell-by-gene matrix with associated metadata, we assigned donor labels based on the ground
truth cell metadata. For the first cell type, donor labels were assigned to the subset of cells with matching
metadata. For example, for the donor exhibiting the metadata assignment (a, a, b), we would sample from the
subset of cells generated with the respective metadata values. Although the cells in the second cell type were
selected based on attached metadata, the distribution of the cell states was uniform across donors due to the
EVF generation procedure.

B.2 PBMCs

To generate the semi-synthetic data set, we randomly assign one of 32 random donors to each cell of the real
data [41]. Next, we introduce cell-type specific sample perturbation to two cell subpopulations, corresponding
to two clusters obtained from Leiden clustering on scVI [22] latent representations of the cells in the data. In
each of these subpopulations, we randomly generate a ground-truth sample similarity binary tree, whose leaves
correspond to the donors. Next, we randomly partition the genes of the data set, such that a specific set of
genes corresponds to each edge in the tree. For all cells of the given cluster and sample, we perturb all the
genes associated to the root to sample leaf edges, by doubling gene expression for all the relevant genes.

Figure S1 illustrates the data generation scheme in the simpler case where only eight donors are considered.
In particular, for sample D2, all cells belonging to cluster 1 will have doubled gene expression for genes
belonging in G1 ∪G2 ∪G4, and cells of cluster 2 doubled gene expression for genes in G′

1, G
′
5, G

′
6.
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Figure S1: Semisynthetic data generation

C Baselines

C.1 Models

Differences in composition Assuming access to cell representations {zn, n ≤ NC} and to donor assignments
{dn, n ≤ NC} in a given cluster C of cells, we use Leiden to partition the cluster into K clusters. For each
donor, we then compute the proportion of cells coming from donor d, in cluster k, that we denote fk

d . Finally,
we compute the sample distance matrix from Euclidean distances between the proportions.

MILO To detect cell states affect by a sample characteristic, MILO performs differential abundance testing
in the following way. It first construct a k-nearest neighbors graph based on precomputed cell representations,
supposed site-agnostic. After inferring a set of characteristic neighborhoods in the graph, MILO compares
the number of cells coming from each conditon via differential abundance testing that relies on a negative
binomial regression model. We used scVI’s cell representations as inputs for MILO.

C.2 Metrics

Cell-type silhouette scores We consider averaged silhouette width scores computed as in ref. [21] as a way
to assess the relevance and the proper mixing of the latent representation u. To do so, we first compute the
silhouette score with respect to author-provided cell-type annotations. For any cell n with cell representation
r(n), belonging to annotation Co, let d(n,C) denote the mean distance of r(n) to representations of annotation
C, excluding n if C = Co. let a(n) denote the average distance of r(n) to cells of the same annotation, and
b(n) the smallest mean distance of r(n). The silhouette score for cell n is computed as

s(n) =
minC,C ̸=Co d(n,C)− d(n,Co)

max{minC,C ̸=Co
d(n,C), d(n,Co)}

, (5)

and the overall dataset silhouette score is the average of rescaled silhouette scores across all cells in the data.
The rescaling, s̃(n) = 1

2 (s(n) + 1), puts the dataset score in the range (0, 1) This score assesses to what extent
the data representations cluster according to the annotations. When the dataset score is 1, representations with
the same annotation perfectly cluster together.

Batch silhouette scores We also used the silhouette to measure the extent to which batch IDs mix together
in the latent space. To do so, we follow the procedure described in ref. [21], which consists of, for each
previously-annotated cell type: (i) computing cell silhouette scores with respect to the batch assignments, (ii)
rescaling these scores, such that ŝ(n) = 1− |s(n)|, and (iii) computing an overall silhouette score computed
as a weighted average of ŝ(n), to ensure that that each cell type gets the same contribution.
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