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Abstract

Aggregating voxel-level statistical dependencies between multivariate time

series is an important intermediate step when characterising functional con-

nectivity (FC) between larger brain regions. However, there are numerous

ways in which voxel-level data can be aggregated into inter-regional FC, and

the advantages of each of these approaches are currently unclear.

In this study we generate ground-truth data and compare the perfor-

mances of various pipelines that estimate directed and undirected linear FC

between regions. We test the ability of several existing and novel FC analysis

pipelines to identify the true regions within which connectivity was simu-

lated. We test various inverse modelling algorithms, strategies to aggregate

time series within regions, and connectivity metrics. Furthermore, we inves-

tigate the influence of the number of interactions, the signal-to-noise ratio,
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the noise mix, the interaction time delay, and the number of active sources

per region on the ability of detecting FC.

The best-performing FC pipeline consists of the following steps: (1)

Source projection using the linearly-constrained minimum variance (LCMV)

beamformer. (2) Principal component analysis (PCA) using the same fixed

number of components within every region. (3) Calculation of the multivari-

ate interaction measure (MIM) for every region pair to assess undirected FC,

or calculation of time-reversed Granger Causality (TRGC) to assess directed

FC. Lowest performance is obtained with pipelines involving the absolute

value of coherency. Interestingly, the combination of dynamic imaging of

coherent sources (DICS) beamforming with directed FC metrics that aggre-

gate information across multiple frequencies leads to unsatisfactory results.

We formulate recommendations based on these results that may increase the

validity of future experimental connectivity studies.

We further introduce the free ROIconnect plugin for the EEGLAB tool-

box that includes the recommended methods and pipelines that are presented

here. We show an exemplary application of the best performing pipeline to

the analysis EEG data recorded during motor imagery.

Keywords: Electroencephalography, Inter-regional Functional

Connectivity, Simulation, Source Reconstruction, Linearly-constrained

Minimum Variance Beamforming, Multivariate Interaction Measure,

Time-Reversed Granger Causality
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1. Introduction

In recent years, the field of functional neuroimaging has seen a shift from

the mere localization of brain activity towards assessing interaction patterns

between functionally segregated and specialized brain regions (Friston, 2011;

Schoffelen and Gross, 2019). Functional connectivity (FC), in contrast to

structural connectivity, expresses a statistical dependency between two or

more neuronal time series. It has been proposed that FC underlies inter-areal

brain communication (Fries, 2015). Moreover, empirical FC estimates have

been linked to various cognitive functions (Schoffelen and Gross, 2019) and

show pathological alterations in many neurological diseases like Parkinson’s

Disease, Alzheimer’s Disease, and epilepsy (Van Diessen et al., 2015).

Electroencephalography (EEG) and Magnetoencephalography (MEG) are

suitable tools for recording neural activity non-invasively with high temporal

resolution. Pipelines for analysing inter-regional FC from M/EEG record-

ings typically consist of a series of processing steps: artifact cleaning, source

projection, aggregation of signals within regions of interests (ROIs), and, fi-

nally, FC estimation. At each step, researchers can choose between a huge

selection of processing methods, where every decision has the potential to

crucially affect the final result of an analysis and its interpretation (Wang

et al., 2014; Colclough et al., 2016; Mahjoory et al., 2017). This not only

complicates the comparison of results from different FC studies, it also raises

the question: what pipeline is the most suitable for detecting source-level FC

from M/EEG?

In the absence of robust ground-truth information on information flow

patterns in the human brain, computer simulations are the most straightfor-
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ward way to address such questions (Ewald et al., 2012). Indeed, numerous

works have aimed to validate parts or aspects of M/EEG FC methodologies

by employing simulated activity. Several studies have focused on assessing

the accuracy of different inverse solutions (Grova et al., 2006; Haufe et al.,

2008, 2011; Castaño-Candamil et al., 2015; Bradley et al., 2016; Anzolin

et al., 2019; Halder et al., 2019; Jaiswal et al., 2020; Hashemi et al., 2021;

Allouch et al., 2022). Others have tested the performance of different FC

metrics (Astolfi et al., 2007; Silfverhuth et al., 2012; Haufe et al., 2013; An-

zolin et al., 2019; Sommariva et al., 2019; Allouch et al., 2022); however,

not always on source-reconstructed data exhibiting realistic levels of source

leakage.

Many studies aim at aggregating FC within physiologically defined ROIs

(Supp et al., 2007; Palva et al., 2010, 2011; Schoffelen et al., 2017; Basti

et al., 2020; Idaji et al., 2021). This approach has various advantages. First,

it is computationally more tractable (both memory- and time-wise) than the

computation of FC between many pairs of individual sources, and it can

avoid numerical instabilities for FC metrics that require full-rank signals.

Second, interpreting or even visualizing FC between thousands of separate

sources is almost impossible. Third, statistical testing is far easier due to a

much reduced number of multiple comparisons. And, forth, across-subject

statistical analyses are eased by working on a standardized set of regions

rather than in individual anatomical spaces lacking a common set of source

locations.

There have been various suggestions on how to reduce the signal dimen-

sionality within ROIs. While some approaches focus on selecting one source
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for each ROI that best represents the activity of all sources in it (Hillebrand

et al., 2012; Ghumare et al., 2018; Perinelli et al., 2022), others involve some

kind of averaging or weighted averaging over all source time series of a ROI

(Palva et al., 2010, 2011; Korhonen et al., 2014). This approach can be made

more general by using the strongest principal component (PC) of all sources

of a ROI as a representative time series of that ROI (Supp et al., 2007; Hille-

brand et al., 2012; Ghumare et al., 2018; Rubega et al., 2019; Basti et al.,

2020). The assumption behind this is that the projection of the data that

captures the highest amount of variance within a ROI (its strongest PCs)

also reflects the connectivity structure of that ROI best. While most works

use only the first PC per region, the use of multiple components has also been

suggested (e.g. Schoffelen et al., 2017). For this approach, the subsequent

FC estimation is usually calculated between pairs of multivariate time series.

Another approach, used for example in Schoffelen et al. (2017), is to apply a

multivariate FC metric (here, a multivariate extension of Granger causality,

Barrett et al., 2010) to the first C PCs of each pair of ROIs. Compara-

ble undirected metrics are the multivariate interaction measure (MIM) and

the maximized imaginary coherency (MIC) (Ewald et al., 2012; Basti et al.,

2020), which are currently already in use for source-to-source FC estimation

(e.g. D’Andrea et al., 2019). These are promising approaches towards more

reliable FC estimation. But their virtue in the context of inter-regional FC

estimation is still unclear. Moreover, a comprehensive approach evaluating

entire data analysis pipelines rather than individual steps is still lacking (see

Mahjoory et al., 2017; Haufe and Ewald, 2019).

Consequently, this work addresses two questions: First, what pipeline
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should be recommended for inferring FC? And second, what is the most

promising pipeline to infer the directionality of an interaction? In addi-

tion, we investigate how the number of PCs per ROI affects FC estimation.

Finally, we evaluate how the performance of detecting ground-truth inter-

actions varies depending on crucial data parameters like the signal-to-noise

ratio (SNR), the number of ground-truth interactions, the noise composition,

and the length of the interaction delay. This is tested within an EEG sig-

nal simulation framework that builds on our prior work (Haufe and Ewald,

2019).

The best-practice methods and pipelines identified in this study are im-

plemented in the free ROIconnect plugin for the EEGLAB toolbox. We

describe the functionality of ROIconnect and apply it to investigate EEG

FC during left and right hand motor imagery.

2. Methods

2.1. Data generation

We generate time series at a sampling rate of 100 Hz with a recording

length of three minutes (Nt = 100 · 60 · 3 = 18000 samples). For spectral

analyses, we epoch the data into Ne = 90 segments of T = 200 samples (2

seconds) length.

Ground-truth activity at interacting sources is generated as random white

noise filtered in the alpha band (8 to 12 Hz). Throughout, we use zero-phase

forward and reverse second-order digital band-pass Butterworth filters. The

interaction between two regions is modeled as unidirectional from the sending

region to the receiving region. This is ensured by defining the activity at the
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receiving region to be an exact copy of the activity at the sending region

with a certain time delay (see Section 3). Additionally, pink (1/f scaled)

background noise is added to the sending and receiving regions independently.

More specifically, both the ground-truth signal and the pink background noise

are first normalized to have unit-norm in the interacting frequency band. To

this end, the pink noise time series are filtered in the interacting frequency

band. The unfiltered noise time series is then divided by the `2-norm of its

filtered version. Likewise, the interacting signal time series is divided by its

`2-norm. Subsequently, the normalized signal time series is multiplied with

the parameter θ = 0.6, and the normalized noise time series is multiplied

with (1 − θ) = 0.4. Then both are summed up. The result is called the

(interacting) signal. The parameter θ is defined between 0 and 1 and defines

the SNR in decibel (dB): SNRθ=0.4 = 20 ∗ log10( θ
1−θ ) = 3.52 dB.

In contrast, activity of non-interacting sources—referred to as brain noise—

is generated using random pink noise only without additional activity in the

alpha band.

We use a surface-based source model with 1895 dipolar sources placed

in the cortical gray matter. Regions are defined according to the Desikan-

Killiany atlas (Desikan et al., 2006), which is a surface-based atlas with 68

cortical regions. Depending on the number of interacting voxels (see Exper-

iment 6 Section, 3), one or two time series per region are generated. Every

ground-truth time series is placed in a randomly selected source location

within a region, so that every region contains the same number of ground-

truth time series. The region pairs containing the interacting signals are

chosen randomly, and all other regions contain time series with brain noise.
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The spatial orientation of all simulated dipolar sources is chosen to be per-

pendicular to the cortex surface.

In the next step, signal and brain noise sources are separately projected to

sensor space by using a physical forward model of the electrical current flow

in the head, summarized by a leadfield matrix. The leadfield describes the

signal measured at the sensors for a given source current density. It is a func-

tion of the head geometry and the electrical conductivities of different tissues

in the head. The template leadfield is obtained from a BEM head model of

the ICBM152 anatomical head template, which is a non-linear average of the

magnetic resonance (MR) images of 152 healthy subjects (Mazziotta et al.,

1995). We use Brainstorm (Tadel et al., 2011) and openMEEG (Gramfort

et al., 2010) software to generate the headmodel and leadfield. Ns = 97 sen-

sors are placed on the scalp following the standard BrainProducts ActiCap97

channel setup.

At sensor level, we mix the different signal and noise components. We gen-

erate white sensor noise with equal variance at all sensors. The multivariate

sensor-space time series corresponding to all three signal components—brain

noise, interacting signals, and sensor noise—are divided by their Frobenius

norms with respect to the interacting frequency band (see above) and com-

bined as follows: first, we add brain noise and sensor noise with a specific

brain noise-to-sensor noise-ratio (BSR) to obtain the total noise. The default

BSR value is set to 0 dB. Second, we sum up signal and total noise with a

specific SNR. The default SNR value is set to 3.52 dB. As a last step, we

high-pass filter the generated sensor data with a cutoff of 1 Hz.
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2.2. Source reconstruction

We test four different inverse solutions for source reconstruction: ‘Exact’

low-resolution electromagnetic tomography (eLORETA), linearly-constrained

minimum variance beamforming (LCMV), dynamic imaging of coherent sources

(DICS), and Champagne. Inverse source reconstructions are based on the

same leadfield used to simulate the signals. Full 3D currents are estimated

for each source dipole. That is, prior information about the dipoles’ orienta-

tion is not used. A normal direction could in principle be estimated from the

reconstructed cortical surface mesh (which we used here for signal genera-

tion); however, such estimation is considered to be rather unstable, since we

do not have a good estimate of the cortical surface orientation in practice.

The aggregation of the three spatial dimensions is discussed in Section 2.3.

‘Exact’ low-resolution electromagnetic tomography

The starting point to solve the source localization problem is the linear

forward model Q̃ = LJ̃, where Q̃ ∈ RNs×Nt stands for the sensor mea-

surements, J̃ ∈ R3Nv×Nt is the activity of the brain sources to be recovered,

and L ∈ RNs×3Nv is the linear leadfield matrix that maps the electrical ac-

tivity from sources to sensor level. Here, 3Nv stand for the three spatial

dimensions that together define the dipole orientation of the source activity.

The solution of this equation is ill-posed since the number of brain sources

Nv is much smaller than the number of measurement sensors Ns. There-

fore eLORETA imposes the constraint of spatially smooth current density

distributions (Pascual-Marqui, 2007; Pascual-Marqui et al., 2011). Briefly,

eLORETA uses a weighted minimum norm criterion to estimate the source
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distribution:

Ĵ = arg min
J̃

[
||Q̃− LJ̃||2 + aJ̃>WJ̃

]
, (1)

where a ≥ 0 denotes a regularization parameter, and W ∈ R3Nv×3Nv is a

symmetric weight matrix. The solution of Equation (1) is given by:

Ĵ = W−1L>(LW−1L> + aK)†Q̃ = PE>Q̃, (2)

where K ∈ RNs×Ns is a centering matrix re-referencing the leadfield and

sensor measurements to the common-average reference, A† is the Moore-

Penrose pseudo-inverse of a matrix A, and PE ∈ RNs×3Nv is the eLORETA

inverse filter. eLORETA then first computes

M = (LW−1L> + aK)† (3)

and then for v = 1, ..., 3Nv, calculates weights

wv = [L>v MLv]
1/2. (4)

It then iterates Equation (3) and (4) until convergence and use the final

weights to calculate Ĵ. eLORETA has been shown to outperform other linear

solutions in localization precision (Pascual-Marqui, 2007; Halder et al., 2019;

Allouch et al., 2022).

In this study, we choose the regularization parameter based on the best

result in a five-fold spatial cross-validation (Hashemi et al., 2021) with fifteen

candidate parameters taken from a logarithmically spaced range between

0.01 ∗ Tr(CovQ̃) and Tr(CovQ̃), where Tr(A) denotes the trace of a matrix

A and CovQ̃ ∈ CNs×Ns denotes the sample covariance matrix of the sensor-

space data.
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Linearly-constrained minimum variance beamforming

The LCMV (Van Veen et al., 1997) filter PL ∈ RNs×3Nv belongs to the

class of beamformers. It estimates source activity separately for every source

location. While LCMV maximizes source activity originating from the target

location, it suppresses noise and other source contributions. Let Lv ∈ RNs×3

and PL
v ∈ RNs×3 denote the leadfield and projection matrix for a single

source location, respectively. The LCMV projection filter minimizes the total

variance of the source-projected signal across the three dipole dimensions:

PL
v = arg min

Pv

Tr(Pv
>CovQ̃P

v
) (5)

under the unit-gain constraint

Pv
>Lv = I3×3 . (6)

The source estimate Ĵv ∈ R3×Nt at the v-th voxel is given by

Ĵv =
[
(L>v CovQ̃

−1Lv)
−1L>v CovQ̃

−1] Q̃ = PL
v

>
Q̃. (7)

Previous simulations indicated that LCMV overall shows a higher connec-

tivity reconstruction accuracy than eLORETA but is more strongly affected

by low SNR (Anzolin et al., 2019).

Dynamic imaging of coherent sources

DICS (Gross et al., 2001) is the frequency-domain equivalent of LCMV. In

contrast to LCMV, DICS estimates spatial filters separately for each spectral

frequency. The DICS filter PD is evaluated for a given frequency f using the

real part of the sensor-level cross-spectral density matrix SQ:

PD
v (f) =

(
L>v SQ(f)−1Lv

)−1
L>v SQ(f)−1. (8)
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with

SQ(f) =
〈
q(f, e)q∗(f, e)

〉
e
∈ CNs×Ns , (9)

where (·)∗ denotes complex conjugation and q(f, e) denotes the Fourier trans-

form of the sensor measurements q̃(t, e). That is, the time-domain sensor

signal Q̃ is cut into Nc epochs of T time samples to derive q̃(t, e), then mul-

tiplied with a Hanning window of length T , and Fourier-transformed epoch

by epoch to derive q(f, e).

The beamformer filter PD(f) = [PD
1 (f), . . . ,PD

Nv
(f)] can then be used to

project the sensor cross-spectrum to source space:

SJ(f) = PD>(f)SQ(f)PD(f) ∈ C3Nv×3Nv (10)

Based on previous literature described above, we hypothesize that the

beamformer solutions (LCMV and DICS) perform better than eLORETA

when used in combination with undirected FC measures. However, since

directed FC measures need to aggregate information across frequencies, we

hypothesize that the estimation of such measures might be negatively affected

by DICS source reconstruction. Concretely, we expect that DICS’ ability to

optimize SNR per frequency and, thereby, to reconstruct different sources for

each frequency can be counterproductive in cases where in fact the same pairs

of sources are interacting at multiple frequencies. In contrast, we expect that

LCMV, which reconstructs a single set of sources by optimizing the SNR

across the whole frequency spectrum, would yield more consistent source

cross-spectra and, therefore, better directed FC estimates than DICS.
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Champagne

Champagne (Wipf et al., 2010) uses hierarchical sparse Bayesian inference

for inverse modelling. Specifically, it imposes a zero-mean Gaussian prior

independently for each source voxel. The prior source covariance is given by

Γ =


Γ1 0 . . . 0

0 Γ2 . . . 0
...

...
. . .

...

0 0 . . . ΓNv

 ∈ R3Nv×3Nv , (11)

where 0 is the 3 × 3 zero matrix and Γv is the 3 × 3 covariance of the v-

th voxel. Here we use a Champagne variant that models each Γv as a full

positive-definite matrix

Γv =


γv,1 γv,4 γv,5

γv,4 γv,2 γv,6

γv,5 γv,6 γv,3

 (12)

with six parameters. The prior source variances and covariances in Γ are

treated as model hyperparameters and are optimized in an iterative way.

For any given choice of Γ, the posterior distribution of the source activity is

given by (Wipf et al., 2010):

p(J̃|Q̃, γ) =
Nt∏
t=1

N (̂j(t),Σj) , where (13)

ĵ(t) = ΓL>(Σq)−1q̃(t) = PCq̃(t) (14)

Σj = Γ− ΓL>(Σq)−1LΓ (15)

Σq = σ2I + LΓL> , (16)
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and where σ2 denotes a homoscedastic sensor noise variance parameter. The

posterior parameters ĵ(t) and Σj are then used to obtain the next estimate

of γ by minimizing the negative log model evidence (Bayesian Type-II like-

lihood):

LII(γ) = −log p(Q̃|γ) =
1

Nt

Nt∑
t=1

q̃(t)>Σq
−1q̃(t) + log||Σq|| . (17)

This process is repeated until convergence. Importantly, the majority of

source variance parameters converges to zero in the course of the optimiza-

tion, so that the reconstructed source distribution becomes sparse.

In the original Champagne version, a baseline or control measurement is

used to estimate noise covariance in sensor data. Since baseline data are not

available in our study, we use a homoscedastic noise model in which all sensors

are assumed to be perturbed by uncorrelated Gaussian white noise with equal

variance, and estimate the shared variance parameter using five-fold spatial

cross-validation (Hashemi et al., 2021). Again, fifteen candidate parameters

are taken from a logarithmically spaced range between 0.01 ∗Tr(CovQ̃) and

Tr(CovQ̃).

2.3. Dimensionality reduction

To aggregate time series of multiple sources within a region, an intuitive

approach would be to take the mean across sources within each spatial di-

mension. However, this approach has two disadvantages: First, it assumes

a high homogeneity within all voxels of a pre-defined region, which is not

always given. Second, it does not offer a solution for aggregating the three

14
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spatial dimensions, since averaging across these might lead to cancellations

due to different polarities.

Principal component analysis

An alternative approach is to reduce the dimensionality of multiple time

series by employing a singular value decomposition (SVD) or, equivalently,

principal component analysis (PCA), and to subsequently only select the C

strongest PCs accounting for most of the variance within a region for further

processing. Let J̃r ∈ RNt×3R denote the reconstructed broad-band source

time courses of R dipolar sources within a single region r after mean sub-

traction. The covariance matrix Covr = J̃>
r J̃r/N−1 ∈ R3R×3R is a symmetric

matrix that can be diagonalized as

Covr = VBV>, (18)

where B ∈ R3R×3R is a diagonal matrix containing the eigenvalues λv (vari-

ances) of the PCs, which are, without loss of generality, assumed to be given

in descending order, and V ∈ R3R×3R is a matrix of corresponding eigenvec-

tors in which each column contains one eigenvector. The jth PC can then be

found in the jth column of J̃rV.

In practice, the PCs are calculated using an SVD of the zero-mean data

matrix J̃r as

J̃r = UDV> . (19)

Using the ‘economy version’ of the SVD, U ∈ RNt×3R is a matrix of or-

thonormal PC time courses, D ∈ R3R×3R is a matrix of corresponding sin-

gular values, and V ∈ R3R×3R is the matrix of eigenvectors (or, equivalently,
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singular vectors) defined above. Note that the square of the elements of D,

divided by Nt − 1 are identical to the variances of the corresponding PCs

(eigenvalues of Covr). Each squared singular vector, normalized by the sum

of all singular vectors, thus corresponds to the variance explained by the

corresponding singular vector. We will use this property for the two VARPC

pipelines (Section 2.5).

Comparing PCA and SVD, one can easily see that

Covr = VDU>UDV> = V
D2

N − 1
V>, (20)

and λv = d2v
N−1 . Thus, the PCs can also be calculated with SVD:

J̃rV = UDV>V = UD . (21)

To reduce the dimensionality of the voxel data within one region, we keep

only the strongest C PCs, i.e., the columns of UD that correspond to the

largest eigenvalues. For a more extensive overview of the relationship between

SVD and PCA, we refer to Wall et al. (2003). Note that in this study, we

applied SVD on the time-domain source signals J̃r for most of the pipelines.

However, we applied PCA on the real part of the source-level cross-spectrum,

summed across frequencies, in case of DICS. For the ease of reading, we will

stick to PCA terminology for all pipelines in the following.

It has been popular in the literature (Friston et al., 2006; Basti et al.,

2020) to select only the first PC for every region and subsequently employ

a univariate FC measure for further processing. We describe this approach

further in Section 2.5, pipeline FIXPC1.
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2.4. Connectivity metrics

There are numerous approaches to estimate FC (Schoffelen and Gross,

2019). One key distinction can be made between FC metrics that measure

undirected (symmetric) interactions between signals and those that also mea-

sure the direction of FC.

It has been shown that the estimation of both undirected and directed FC

from M/EEG recordings is complicated by the presence of mixed noise and

signal sources (Nolte et al., 2004; Haufe et al., 2013; Bastos and Schoffelen,

2016; Wang et al., 2018; Schaworonkow and Nikulin, 2021). Due to volume

conduction in the brain, signal sources from all parts of the brain superimpose

at each M/EEG sensor. Projecting the sensor signals to source space can help

disentangling separate signal sources. However, a signal reconstructed at a

specific source voxel may still contain contributions from other sources in its

vicinity. This phenomenon is called source leakage (Schoffelen and Gross,

2009).

Volume conduction and source leakage can lead to spurious FC despite

the absence of genuine interactions (Nolte et al., 2004; Haufe et al., 2013).

To overcome this problem, robust FC metrics have been developed (Nolte

et al., 2004, 2008; Haufe et al., 2013; Winkler et al., 2016). Robustness

is here referred to as the property of an FC measure to converge to zero

in the limit of infinite data when the observed data are just instantaneous

mixtures of independent sources (Nolte et al., 2004). Robust FC metrics

use that spurious interactions due to signal mixing are instantaneous, while

physiological interactions impose a small time delay. Robust FC metrics are

therefore only sensitive to statistical dependencies with a non-zero time delay
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while eliminating zero-delay contributions.

We here test six different FC measures, four to detect undirected FC

(coherence, iCOH, MIC, and MIM), and two measures that estimate the

direction of interaction between two sources (multivariate GC and TRGC).

This selection includes four robust FC metrics (c.f. Section 1) and two non-

robust ones (coherence and GC). Based on the literature described above, we

hypothesize that robust metrics will perform better than non-robust metrics.

Please note that all tested FC metrics are frequency-resolved. That is, all

metrics output an Nroi×Nroi×Nfreq tensor that contains the estimated FC

for all region pairs at all frequencies. However, since we expect the interaction

to be located in the interacting frequency band between 8 and 12 Hz (see

Section 2.1), we select only those frequency bins within this band and average

the FC scores across them. As a result, we obtain an Nroi ×Nroi matrix.

All tested FC metrics are derived from the cross-spectrum. Let x̃(t, e) ∈

RK and ỹ(t, e) ∈ RL be two multivariate time series where t ∈ {1, . . . , T}

indexes samples within epochs of 2 seconds length and e indexes epochs. Of-

ten, K = L = 3 represents the three dipole orientations of two reconstructed

current sources. In other cases, K and L denotes the number of retained

data dimensions of two brain regions after (e.g., PCA) dimensionality reduc-

tion. These time-domain data are then multiplied with a Hanning window

and Fourier transformed into x(f, e) and y(f, e), where f ∈ {0, 0.5, . . . , 50}

indexes frequencies. The joint cross-spectrum is then computed from the

Fourier transformed data as

S[xy](f) =

 Sxx(f) Sxy(f)

Syx(f) Syy(f)

 ∈ C(K+L)×(K+L) , (22)
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where Sxy = 〈x(f, e)y∗(f, e)〉e ∈ CK×L.

Coherence and imaginary part of coherency

(Absolute) coherence (COH) and iCOH are measures of the synchronicity

of two time series. Both coherence and iCOH are derived from the complex-

valued coherency, which is a generalization of correlation in the frequency

domain. As such, coherency quantifies the linear relationship between two

time series at a specific frequency. Its phase expresses the average phase

difference between the two time series, whereas its absolute value expresses

the stability of the phase difference.

Complex-valued coherency C ∈ CK×L is the normalized cross spectrum

(Nunez et al., 1997):

Cxy(f) =
Sxy(f)(

Sxx(f)Syy(f)
)1/2 . (23)

Based on the terminology of Nolte et al. (2004), we define coherence as the

absolute part of coherency: COHxy(f) =
∣∣Cxy(f)

∣∣, where | · | denotes

the absolute value. Coherence captures both zero-delay and non-zero-delay

synchronization between two time series. This can be problematic in the

context of M/EEG measurements, where substantial zero-delay synchroniza-

tion can be introduced by signal spread due to volume conduction or source

leakage in absence of genuine interactions between distinct brain areas (Nolte

et al., 2004). In contrast, the imaginary part of coherency is a robust FC

measure since it is only non-zero for interactions with a phase delay different

from multiples of π (Nolte et al., 2004). Here, we use the absolute value of

the imaginary part of coherency, iCOHxy(f) =
∣∣CI

xy(f)
∣∣, as a measure of

synchronization strength, where CI denotes the imaginary part of C.
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Note that both coherence and iCOH are not designed to aggregate FC

between two multivariate time series into one FC score. A single FC score can

be obtained by taking the average across all elements of COHxy or iCOHxy,

respectively.

Multivariate interaction measure and maximized imaginary coherency

The multivariate interaction measure (MIM) and maximized imaginary

coherency (MIC, Ewald et al., 2012) are multivariate generalizations of iCOH

and are therefore also robust against source leakage.

MIM is defined as follows:

MIMxy(f) = Tr
[(

CR
xx(f)

)−1
CI

xy(f)
(
CR

yy(f)
)−1 (

CI
xy(f)

)>]
, (24)

where CR denotes the real part of C. In contrast, MIC aims at maximizing

iCOH between the two multivariate time series. That is, MIC finds projec-

tions from two multi-dimensional spaces to two one-dimensional spaces such

that iCOH between the projected signals becomes maximal:

MICxy(f) = max
a,b

(iCOH′xy(f)) = max
a,b

(
a>S̃I

xy(f)b

|a| |b|

)
, (25)

where S̃ is a whitened version of the cross-spectrum S (Ewald et al., 2012),

and where a ∈ RK×1 and b ∈ RL×1 are projection weight vectors corre-

sponding to the subspaces, or regions, of x and y, respectively. Note that,

while the imaginary part itself can be positive or negative, flipping the sign

of either a or b will also flip the sign of the imaginary part. Thus, without

loss of generality, maximization of Eq. (25) will find the imaginary part with

strongest magnitude.
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All undirected FC metrics (COH, iCOH, MIC, and MIM) are bounded

between 0 and 1.

Multivariate Granger causality and time-reversed Granger causality

Granger Causality (GC) defines directed interactions between time series

using a predictability argument (Granger, 1969; Bressler and Seth, 2011).

Considering two univariate time series x̃(t) and ỹ(t), we say that ỹ Granger-

causes x̃ if the past information of ỹ improves the prediction of the presence

of x̃ above and beyond what we could predict by the past of x̃ alone. That is,

GC does not only assess the existence of a connection but also estimates the

direction of that connection. We here use a spectrally resolved multivariate

extension of GC (Geweke, 1982; Barrett et al., 2010; Barnett and Seth, 2014),

which allows us to estimate Granger-causal influences between groups of

variables at individual frequencies. There are multiple strategies to arrive at

spectral Granger causality estimates. Here, we follow recommendations made

in Barnett and Seth (2014, 2015); Faes et al. (2017); Barnett et al. (2018)

that ensure stable and unbiased estimates, and use Matlab code provided by

the respective authors.

We first transform the joint cross-spectrum into an autocovariance se-

quence G[xy](p) ∈ R(K+L)×(K+L) with lags p ∈ {0, 1, . . . , NP}, NP = 20,

using the inverse Fourier transform. The autocovariance spectrum is further

used to estimate the parameters A(p) ∈ R(K+L)×(K+L), p ∈ {1, . . . , NP} and

Σ = Covt [ε(t)] ∈ R(K+L)×(K+L) of a linear autoregressive model x(t)

y(t)

 =

NP∑
p=1

A(p)

 x(t− p)

y(t− p)

+ ε(t) (26)
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of order NP using Whittle’s algorithm (Whittle, 1963; Barnett and Seth,

2014). Autoregressive model parameters are next converted into a state-

space representation (Ā, C̄, K̄, Σ̄) corresponding to the model

z(t) = Āz(t) + K̄ε(t) (27) x̄(t)

ȳ(t)

 = C̄z(t) + ε(t) , (28)

using the method of Aoki and Havenner (1991), where x̄(t) = [x̄>(t), x̄>(t−

1), . . . , x̄>(t−NP )]> and ȳ(t) = [ȳ>(t), ȳ>(t− 1), . . . , ȳ>(t−NP )]> are tem-

poral embeddings of order NP , z(t) ∈ R(K+L)NP and ε(t) ∈ R(K+L)NP are

unobserved variables, and all parameters are (K + L)NP × (K + L)NP ma-

trices. Subsequently, the transfer function H(z) ≡ I − C̄(I − Āz)−1K̄z ∈

C(K+L)NP×(K+L)NP of a moving-average representation x(t)

y(t)

 = H(z) · ε(t) (29)

of the observations is derived, where I ∈ R(K+L)NP×(K+L)NP denotes the

identity matrix and where z = e−i4πf/T for a vector of frequencies f ∈

{0 Hz, 0.5 Hz, . . . , 50 Hz}, T = 200, and a factorization of the joint cross-

spectrum is obtained as S[xy](f) = H(f)Σ̄H∗(f) (Barnett and Seth, 2015).

Frequency-dependent Granger scores

Fx→y(f) = log
||Syy(f)||

||Syy(f)−Hyx(f)Σ̄xx|yH∗yx(f)||
(30)

and (analogously) Fy→x(f) are then calculated, where H(f) and Σ̄ are par-

titioned in the same way as S(f), where Σ̄xx|y ≡ Σ̄xx − Σ̄xyΣ̄−1yyΣ̄yx denotes
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a partial covariance matrix, and where || · || denotes matrix determinant

(Barnett and Seth, 2015). Finally, differences

Fnet
x→y(f) ≡ Fx→y(f)−Fy→x(f) (31)

and Fnet
y→x(f) = −Fnet

x→y(f) summarizing the net information flow between

the multivariate time series x̃(t) and ỹ(t) are calculated (Winkler et al.,

2016).

Just like coherence, GC is not robust, i.e. can deliver spurious results for

mixtures of independent sources as a result of volume conduction or source

leakage (e.g., Haufe et al., 2012, 2013). This can be easily acknowledged

by considering a single source that spreads into two measurement channels,

which are superimposed by distinct noise terms. In that case, both channels

will mutually improve each other’s prediction in the sense of GC (Haufe and

Ewald, 2019). This problem is overcome by a robust version of GC, time-

reversed GC (TRGC), which introduces a test on the temporal order of the

time series. That is, TRGC estimates the directed information flow once on

the original time series and once on a time-reversed version of the time series.

If GC is reduced or even reversed when the temporal order of the time series

is reversed, it is likely that the effect is not an artifact coming from volume

conduction (Haufe et al., 2012, 2013; Vinck et al., 2015; Winkler et al., 2016).

Formally, multivariate spectral GC as introduced above can be evaluated on

the time-reversed data by fitting the autoregressive model in Eq. (26) on the

transposed autocovariance sequence GTR
[xy](p) = G>[xy](p), p ∈ {0, 1, . . . , NP}.

This yields net GC scores FTR net
x→y (f) for the time-reversed data, which are

subtracted from the net scores obtained for the original (forward) data to
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yield the final time-reversed GC scores:

FTRGC
x→y (f) ≡ Fnet

x→y(f)−FTR net
x→y (f) (32)

and (analogously) FTRGC
y→x (f) ≡ Fnet

y→x(f)−FTR net
y→x (f) = −FTRGC

x→y (f).

2.5. Pipelines

In the following section, we describe the processing pipelines that were

tested. All pipelines take the sensor measurements Q̃ as input. Then all

pipelines calculate and apply an inverse model P to project sensor data

to source level. From there, we aggregate voxel activity within regions

by employing PCA and estimate inter-regional FC with various FC met-

rics described above. We describe several strategies of combining PCA with

the calculation of FC in the following subsections. This step results in a

Nroi × Nroi × Nfreq FC matrix which is then averaged across the frequency

bins within the interaction frequency band (8-12 Hz). The output of all

pipelines is one connectivity score for every region combination. We describe

the processing exemplarily for the calculation of FC between two regions X

and Y.

Pipelines FIXPC1 to FIXPC6: Fixed number of principal components

The first six pipelines use PCA dimensionality reduction. Afterwards,

depending on the pipeline, a fixed number C of either one, two, three, four,

five, or six strongest PCs are selected for further processing. Then, FC is

calculated: in case of univariate measures (i.e., coherence and iCOH), we

first calculate FC scores between all PC combinations of the two regions X

and Y and then average across all pairwise FC scores. In case of multivariate

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.05.510753doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510753
http://creativecommons.org/licenses/by-nc/4.0/


FC measures, we directly calculate a single FC score between the PCs of

region X and those of region Y. This approach has been used previously (e.g.

Schoffelen et al., 2017).

Pipelines VARPC90 and VARPC99: Variable numbers of principal compo-

nents

Pipelines VARPC90 and VARPC99 are equivalent to the FIXPC pipelines,

with the difference that we do not select the same fixed number of PCs

for every region. Instead, we select the number of PCs such that at least

90% (VARPC90) or 99% (VARPC99) of the variance in each ROI is pre-

served (c.f. Section 2.3). Thus, an individual number of PCs is chosen

for each region. FC is then calculated analogously to pipelines FIXPC1 to

FIXPC6. The idea of selecting the number of PCs such that a pre-defined

fraction of the variance is retained has been used in previous literature (e.g.

Gómez-Herrero et al., 2008).

Pipeline MEANFC: Mean first FC second

In this pipeline, the time series of all voxels within one region are averaged

separately for the three orthogonal dipole orientations. Then, for univariate

FC measures, FC is calculated between all 3*3 dimension combinations of

the 3D-time series of region X and region Y. Afterwards, the average of these

nine FC scores is taken. Multivariate FC measures are directly calculated

between the 3D time series.

Pipeline CENTRAL: Central voxel pick

In this pipeline, we select only the central voxel of each region for further

processing. The central voxel of a region is defined as the voxel whose average

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.05.510753doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510753
http://creativecommons.org/licenses/by-nc/4.0/


Euclidean distance to all other voxels in the region is minimal. To calculate

the FC score between the 3D time series of the central voxel of region X and

the 3D time series of the central voxel of region Y, we proceed analogous

to pipeline MEANFC: in case of univariate FC measures, the FC score for

all combinations of dipole orientations is calculated and then averaged. In

case of multivariate FC measures, only one FC score is calculated between

the two 3D time series. Selecting the time series of the central voxel as the

representative time series for the region is an idea that has been used in

previous studies already (Perinelli et al., 2022).

Pipeline FCMEAN: FC first mean second

In pipeline FCMEAN, the multivariate FC between each 3D voxel time

series of region X with each voxel time series of region Y is calculated first.

That is, if RX is the number of voxels of region X and RY is the number

of voxels in region Y, RX ∗ RY FC scores for all voxel combinations are

calculated. To obtain a single FC score between region X and region Y,

we then average all RX ∗ RY FC scores. Due to computational and time

constraints, we test this pipeline only for MIM and MIC. This approach has

also been used in the literature before (Babiloni et al., 2018).

Pipeline TRUEVOX: True voxel pick

This pipeline is used as a baseline. Here we select the voxel for fur-

ther processing that indeed contains the activity of the given ROI—i.e. the

ground-truth voxel (see Section 2.1). All further processing is analogous to

pipeline CENTRAL. In configurations with two active voxels per region (see

Section 3, Experiment 6), FC scores are calculated for 2 ∗ 3 ∗ 3 voxel- and
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dipole orientation combinations.

2.6. Performance evaluation

We use a rank-based evaluation metric to assess the performance of the

pipelines. All processing pipelines result in one FC score for every region–

region combination. To evaluate the performance of a pipeline, we first sort

all FC scores in a descending order and retrieve the rank r ∈ RNI , with

NI ∈ {1, 2, 3, 4, 5} denoting the number of ground-truth interactions. Based

on this rank vector, we calculate the percentile rank (PR):

PR′ =

∑NI

i

(
1− ri

F

)
NI

, (33)

with F denoting the total number of FC scores. The PR′ is then normalized

to the perfect-skill PRps and no-skill PRns cases, and is therefore defined

between 0 and 1:

PRps =

∑NI

i

(
1− i

F

)
NI

(34)

PRns =

∑NI

i

(
1− F−i+1

F

)
NI

(35)

PR =
PR′ − PRns

PRps − PRns

. (36)

We report all PR values rounded to the second decimal. In case of the

phase-based FC metrics, the PR is calculated on the original FC scores. In

case of GC and TRGC, we separately evaluate each pipeline’s interaction

detection ability, and its ability to determine the direction of the interaction.

For evaluating the detection, we calculate the PR on the absolute values

of the FC scores, whereas for evaluating the directionality determination

performance, we calculate the PR only on the positive FC scores. Note that

this is sufficient for the anti-symmetric directed FC measures used here.
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2.7. ROIconnect toolbox

Based on our experimental results (see Section 3), we identified a set

of recommended methods and pipelines. These have been implemented in

a Matlab toolbox and are made available as a plugin to the free EEGlab

package1. This toolbox also contains code for analyzing spectral power in

EEG source space, and for visualizing power and FC results in source-space.

A comprehensive description of the functionality and usage of the toolbox is

provided in Appendix A. Moreover, an exemplary application of the toolbox

to the analysis of a real EEG dataset is provided in Section 4.

3. Experiments and Results

We conducted a set of experiments to assess the influence of the different

pipeline parameters on the reconstruction of ground-truth region-to-region

FC. We describe the general experimental setting in Figure 1. Each exper-

iment consisted of the following steps: (1) Signal generation. (2) Source

projection. (3) Dimensionality reduction within regions. (4) Functional con-

nectivity estimation. (5) Performance evaluation. Each experiment was car-

ried out 100 times (= iterations). If not indicated otherwise, all experiments

had the following default setting:

• LCMV inverse solution

• SNR = 3.5 dB

• BSR = 0 dB

1https://github.com/arnodelorme/roiconnect
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• number of interactions = 2

• time delay of the interaction = 50 to 200 ms

• number of generated sources per region = 1

If not stated otherwise, the following parameters were drawn randomly

in each iteration: ground-truth interacting (seed and target) regions (two

distinct regions uniformly drawn between 1 and Nroi), ground-truth active

voxel(s) within regions (uniformly drawn between 1 and Rroi), time delay

(uniformly drawn between 50 and 200 ms). Furthermore, brain noise and

sensor noise, as well as the signal were generated based on (filtered) random

white noise processes as described above.

Figure 2 to Figure 9 show the results of experiments 1–6. In addition, all

main results are summarized in Table 1. All figures (plotting code adapted

from Allen et al., 2019) follow the same scheme: in every subplot, the 100

dots on the right side mark the performance, i.e. the PR, measured in each

of the 100 iterations. On the left, a smooth kernel estimate of the data

density is shown. The red and black lines represent the mean and median

PR of the experiment, respectively, and the boxcar marks the 2.5th and

97.5th percentiles. Please note that the Y-axis is scaled logarithmically in all

plots. We tested differences between pipeline performances with a one-sided

Wilcoxon signed-rank test. Please note that a p-value pA,B corresponds to a

one-sided test for B > A.

Matlab code to reproduce all experiments is provided under2.

2https://github.com/fpellegrini/FCsim
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1. Signal generation 

4. Connectivity 
estimation

Coherence/ iCOH
MIM/MIC

GC/ TRGC

5. Evaluation 100x
3. Dimensionality 

reduction
FIXPC
VARPC

MEANFC
CENTRAL
FCMEAN
TRUEVOX

2. Source projection 
eLORETA

LCMV
DICS

Champagne

Figure 1: Experimental setup. Every experiment consisted of five consecutive steps:

(1) Signal generation. (2) Source projection. (3) Dimensionality reduction within

regions. (4) Functional connectivity estimation. (5) Performance evaluation. Every

experiment was carried out 100 times.
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3.1. Experiment 1

Experiment 1A

In Experiment 1A, we evaluated the performance of different FC metrics

in detecting the ground-truth interactions. The ability to detect FC was

tested for coherence, iCOH, MIC, MIM, GC, and TRGC. The ability to

detect the correct direction of the interaction was tested for GC and TRGC

(see Section 2.4).

In Figure 2, we show the performances of different FC metrics. We see

that MIM, MIC and TRGC (detection) all have a mean PR of over 0.97 and

clearly outperform the other measures in detecting the ground-truth FC. The

non-robust metrics coherence (mean PR = 0.59) and GC (mean PR = 0.95)

detect the ground-truth interactions less reliably (pcoherence, MIM < 10−4;

pGC,MIM = 0.0040). When comparing GC and TRGC in their ability to infer

the direction of the interaction, TRGC (mean PR = 0.98) outperforms GC

(mean PR = 0.96; pGC,TRGC < 10−4).

Experiment 1B

In Experiment 1B, we tested the influence of different strategies of dimen-

sionality reduction within regions. In Figure 3, we show the comparison for

MIM (interaction detection) and TRGC (directionality determination). For

MIM, we observe that the FIXPC pipelines show a better performance than

most of the other pipelines. Within the FIXPC pipelines, the pipelines with

two, three or four PCs perform best (all mean PR = 0.99, pFIXPC5,FIXPC3 <

10−4). Only the TRUEVOX (baseline) pipeline using ground-truth infor-

mation on voxel locations expectantly shows a higher performance (mean

PR = 1.00; pFIXPC3,TRUEVOX < 10−4). The two VARPC pipelines show a
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Figure 2: Comparison of different functional connectivity metrics (Experiment 1A).

Red and black lines indicate the mean and median percentile rank (PR), respectively.

The boxcar marks the 2.5th and 97.5th percentiles.

substantially reduced performance (mean PR = 0.96 and mean PR = 0.73,

respectively; both pVARPC,FIXPC3 < 10−4). The MEANFC and CENTRAL

pipelines (mean PR = 0.98 and mean PR = 0.96, respectively) also show re-

duced performance in comparison to the FIXPC3 pipeline (both p < 10−4).

The FCMEAN pipeline (mean PR = 0.97) also did not perform as well

as the FIXPC3 pipeline (p < 10−4) while taking much longer to compute

(FIXPC3 < 1 h, FCMEAN = 32 h, single core, allocated memory: 16 GB).

In terms of directionality estimation using TRGC, the outcome is similar.

Again, the TRUEVOX pipeline shows perfect performance (mean PR = 1.00).

The FIXPC pipelines also exhibit very high performances (FIXPC4: mean

PR = 0.99). Notably, in contrast to the results obtained with MIM, the

VARPC90 also achieves competitive performance (mean PR = 0.99,

pVARPC90,FIXPC3 = 0.0235). Please see Figure S1 to compare computation

times of all pipelines.

We show the full matrix of all combinations of FC metrics and dimen-
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(a) Undirected FC reconstruction performance using MIM.
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(b) Directed FC reconstruction performance using TRGC.

Figure 3: Comparison of different pipelines (Experiment 1B). (a) Undirected FC

reconstruction performance achieved using the multivariate interaction measure (MIM).

(b) Directed FC reconstruction performance achieved using the time-reversed Granger

causality. Red and black lines indicate the mean and median percentile rank (PR),

respectively. The boxcar marks the 2.5th and 97.5th percentile.
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sionality reduction pipelines in Supplementary Figure S2. However, for all

further experiments, we report performances only for MIM (interaction de-

tection) and TRGC (directionality determination) since they performed best

in Experiment 1A, and we focus on the FIXPC3 pipeline due the high per-

formance observed in Experiment 1B.

3.2. Experiment 2

Experiment 2A

In Experiment 2, we tested the influence of the type of inverse solution on

the pipelines’ performances. In Figure 4, we show the comparison between

eLORETA, LCMV, DICS, and Champagne. We observe that the two beam-

former solutions and Champagne clearly outperform eLORETA (mean PR

0.65; Figure 4a) in detecting undirected connectivity (all p < 10−4). While

DICS, LCMV and Champagne all show very good performances, we see a

slight advantage of LCMV (mean PR = 0.99) in comparison to Champagne

(mean PR = 0.97, pChampagne,LCMV = 0.0013). We do not observe a significant

difference between DICS and LCMV (pDICS,LCMV = 0.2805).

In terms of directionality determination (Figure 4b), the picture is dif-

ferent: while LCMV (mean PR = 0.98) leads to accurate directionality es-

timates, DICS fails to detect the direction of the ground-truth interaction

in a high number of experiments (mean PR = 0.28, pDICS,LCMV < 10−4).

eLORETA also shows a reduced overall performance (mean PR = 0.69,

peLORETA, LCMV < 10−4). Champagne shows decent performance (mean PR

= 0.99), which is, however, lower than that of LCMV (pChampagne,LCMV < 10−4).

The differences in computation times of the different inverse solutions

are also remarkable. While LCMV (2 sec) and DICS (178 sec) are fast to
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(a) MIM performance.
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(b) TRGC performance.

Figure 4: Comparison of different inverse solutions (Experiment 2). (a) Undirected FC

reconstruction performance achieved using the multivariate interaction measure (MIM).

(b) Directed FC reconstruction performance achieved using the time-reversed Granger

causality. Red and black lines indicate the mean and median percentile rank (PR),

respectively. The boxcar marks the 2.5th and 97.5th percentile.

compute, eLORETA (388 sec) and Champagne (3747 sec) take much longer

to compute as a cross-validation scheme to set the regularization parameter is

implemented for both. Setting the regularization parameter to a default value

would drastically reduce computation time for eLORETA and Champagne,

but would also decrease performance (results not shown).

Experiment 2B

To investigate further why eLORETA performs considerably less well

than LCMV in our experiments, we generated ground-truth activity with an

interaction between one seed voxel in the left frontal cortex and one target

voxel in the left precentral cortex. We then again generated sensor data as

described in Section 2.1 and applied pipeline FIXPC1 to calculate regional

MIM scores. In Supplementary Figure S3, we show the resulting power

maps, as well as seed MIM scores and target MIM scores for data projected

with eLORETA and MIM, respectively. We see clearly the advantage of
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LCMV: while both power and MIM in the eLORETA condition are spread

out to other regions, LCMV is able to localize the ground-truth power and

connectivity very precisely.

Experiment 2C

Does LCMV only perform so well in our experiment because our exper-

imental setup artificially favors it? In the following additional analysis, we

investigated whether LCMV still has an advantage over eLORETA when

multiple pairs of correlated sources are present. More specifically, we here

simulated two pairs of interacting sources where the time courses of the sec-

ond source pair were identical to those of the first source pair. Results are

presented in Figure 5. Please note that in this case, also the cross-interactions

between the seed and target regions were evaluated as ground-truth interac-

tions. We see that, while eLORETA is not much affected by the correlated

sources setup, LCMV has a decreased reconstruction performance accord-

ing to both MIM and TRGC. However, LCMV still performs better than

eLORETA even in this setup (peLORETA,LCMV < 10−4).

3.3. Experiment 3

In real-world EEG measurements, data are to a certain extent corrupted

by noise, e.g. from irrelevant brain sources, or by noise sources from the

outside. In Experiment 3, we investigated the effect of SNR and BSR on FC

estimation performance. In Figure 6a and 6b, we show the performance of

the FIXPC3 pipeline for SNRs of -7.4 dB, 3.5 dB and 19.1 dB. For both MIM

(Figure 6a) and TRGC (Figure 6b), we observe decreased performances for

decreased SNRs, as expected. For an SNR of 19.1 dB, nearly all experiments
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Figure 5: Performance observed for two perfectly correlated source pairs. (a)

Undirected FC reconstruction performance achieved using the multivariate interaction

measure (MIM). (b) Directed FC reconstruction performance achieved using the

time-reversed Granger causality. Red and black lines indicate the mean and median,

respectively. The boxcar marks the 2.5th and 97.5th percentile.

show a perfect detection of ground-truth interactions (mean PR > 0.99).

Is FC detection more impaired by pink brain noise or white sensor noise?

In Experiment 3B, we tested the performance for BSR environments of 100%

sensor noise, 25% brain noise, 50 % brain noise, 75% brain noise, and 100%

brain noise. In Figure 6c and 6d, we show the performances for different

BSRs. We observe a slightly better performance for signals more strongly

contaminated by correlated brain noise than white sensor noise (mean MIM

PR 100% brain noise > 0.99) compared to the opposite case (mean MIM PR

0% brain noise = 0.97).

Note that in Experiments 1 to 3, for better comparison between the exper-

imental conditions and to avoid variation due to random factors besides the

experimental variation, we used the same generated data within an iteration

in every experiment and only varied the tested condition.
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(b) TRGC performance increases with SNR.
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(c) MIM performance increases with BSR.
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(d) TRGC performance increases with BSR.

Figure 6: FC estimation performance depends on the signal-to-noise ratio and brain

noise-to-sensor noise ratio (Experiment 3). (a/c) Undirected FC reconstruction

performance achieved using the multivariate interaction measure (MIM). (b/d) Directed

FC reconstruction performance achieved using the time-reversed Granger causality. Red

and black lines indicate the mean and median percentile rank (PR), respectively. The

boxcar marks the 2.5th and 97.5th percentile.
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3.4. Experiment 4

While we focused on a very simple scenario with only two interacting

region pairs so far, real brain activity likely involves multiple interacting

sources. To increase the complexity in our setup, we compared performances

for different numbers of interacting region pairs in Experiment 4. As ex-

pected, Figure 7 clearly shows that more simultaneous true interactions lead

to decreased ability to reliably detect them. While the detection is nearly

perfect for one interaction (mean MIM PR > 0.99; mean TRGC PR > 0.99),

the performance is much reduced for 5 interactions (mean MIM PR = 0.91;

mean TRGC PR = 0.93). This applies for both MIM and TRGC. Please

note however, that despite using a normalized version of the PR (see Section

2.6), the PR metric is not perfectly comparable for different numbers of true

interactions. That is, when calculating the PR on randomly drawn data, the

PR distribution is close to uniform when only one interaction is assumed,

but shows a normal distribution with increasing kurtosis for higher numbers

of interactions. However, the mean of the distribution equals to 0.5 for all

assumed interactions.

3.5. Experiment 5

While it is not entirely clear how large interaction delays in the brain

can be, they likely range between 2 and 100 ms, depending not only on

physical wiring, but also on cognitive factors (see Section 5). In Experi-

ment 5, we evaluated to which degree the performance drops when regions

interact with shorter time delays of 2, 4, 6, 8, and 10 ms. While the per-

formance for the MIM metric is already quite impaired for a delay of 10 ms

(mean PR = 0.90), performance drops drastically for 4 ms (mean PR = 0.73)
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Figure 7: FC reconstruction performance depends on the number of true interactions

(Experiment 4). (a) Undirected FC reconstruction performance achieved using the

multivariate interaction measure (MIM). (b) Directed FC reconstruction performance

achieved using the time-reversed Granger causality. Red and black lines indicate the

mean and median percentile rank (PR), respectively. The boxcar marks the 2.5th and

97.5th percentile.

and 2 ms (mean PR = 0.60) (Figure 8a). Detecting the direction of the in-

teraction with TRGC is already much more difficult at a true delay of 10 ms

(mean PR = 0.73) and is further reduced for a delay of 2 ms (mean PR = 0.56;

Figure 8b).

3.6. Experiment 6

In our previous experiments, the FIXPC pipelines with two to four PCs

showed the best performance. But the ‘optimal’ number of PCs likely de-

pends on the number of (interacting and non-interacting) signals in the brain

as well as their relative strengths. To verify that the optimal number of PCs

depends on the number of true sources, we increased the number of active

voxels per region to two in Experiment 6. We then simulated two bivariate

interactions between two different source pairs originating from the same re-

gions.We show the results for pipelines FIXPC1 to FIXPC6. Interestingly,

we here see that pipelines FIXPC3 (mean MIM PR = 0.99; mean TRGC
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Figure 8: Performance for very small interaction delays and the default delay

(Experiment 5). (a) Undirected FC reconstruction performance achieved using the

multivariate interaction measure (MIM). (b) Directed FC reconstruction performance

achieved using the time-reversed Granger causality. Red and black lines indicate the

mean and median percentile rank (PR), respectively. The boxcar marks the 2.5th and

97.5th percentile.

PR = 0.99) and FIXPC4 (mean MIM PR = 0.99; mean TRGC PR = 0.99)

perform clearly better than FIXPC1 (mean MIM PR = 0.89; mean TRGC

PR = 0.93) or FIXPC6 (mean MIM PR = 0.98; mean TRGC PR = 0.98).

Based on these results, we confirm that the choice of the optimal number of

fixed PCs increases with the number of independently active processes within

one region (see Section 5 for further discussion).

4. Exploratory analysis of functional connectivity in left vs right

motor imagery

To illustrate how the recommended analysis pipeline can be used to anal-

yse real EEG data, we show an exploratory analysis of power and FC in

left vs. right motor imagery. In the Berlin arm of the so-called VitalBCI

study (Blankertz et al., 2010; Sannelli et al., 2019), 39 subjects conducted

an experiment in which they imagined a movement with either the left or

the right hand (Motor Imagery Calibration set; MI-Cb 1-3). Each trial con-
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Figure 9: Performance when two active sources per region are simulated (Experiment

6). (a) Undirected FC reconstruction performance achieved using the multivariate

interaction measure (MIM). (b) Directed FC reconstruction performance achieved using

the time-reversed Granger causality. Red and black lines indicate the mean and median,

respectively. The boxcar marks the 2.5th and 97.5th percentile.

#Exp. Tested parameter Result

1A FC metric MIM/TRGC yield best performance.

1B pipelines Fixed PC+FC yield best performance.

2 Inverse solution LCMV yields best performance.

3A SNR The higher the better.

3B BSR The less sensor noise the better.

4 #Interactions The lower the better.

5 Short interaction delays Longer delays yield better performance.

6 Two active sources Overall lower performance.

Peak performance at three to four PCs.

Table 1: Summary of the results of experiment one to six. A pipeline including robust

multivariate FC metrics like MIM or TRGC, a PCA with fixed number of selected

components, and LCMV source reconstruction yields the best performance.

42

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.05.510753doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510753
http://creativecommons.org/licenses/by-nc/4.0/


sisted of a visual stimulus showing a fixation cross imposed with an arrow

indicating the task for the trial (i.e., left or right motor imagery). After 4

sec, the stimulus disappeared, and the screen stayed black for 2 sec. Every

subject conducted 75 left and 75 right motor imagery trials. During the

experiment, EEG data were recorded with a 119-channel whole-head EEG

system with a sampling rate of 1000 Hz. For this study, we used a 90-channel

whole head standard subset of them. For our analysis, we selected only the

26 subjects for which previous studies have reported that the left vs. right

motor imagery conditions could be well separated using statistical and ma-

chine learning techniques (’Category I’ in Sannelli et al., 2019). Further

experimental details are provided in Blankertz et al. (2010); Sannelli et al.

(2019).

We filtered the data (1 Hz high-pass filter, 48-52 Hz notch filter, and

45 Hz low-pass filter, all zero-phase forward and reverse second-order digital

high-pass Butterworth filters), and then sub-sampled them to 100 Hz. We

then rejected artifactual channels based on visual inspection of the power

spectrum and the topographical distribution of alpha power (between zero

and five per participant, mean 1.19 channels) and interpolated them (spheri-

cal scalp spline interpolation). A leadfield was computed using the template

head model Colin27 5003 Standard-10-5-Cap339 that is already part of the

EEGLAB toolbox. We then epoched the data from 1 to 3 sec post-stimulus

presentation start and separated left from right motor imagery trials.

We used the pop roi activity function of the newly developed ROIcon-

nect plugin for EEGLAB to calculate an LCMV source projection filter, apply

it to the sensor data, and calculate region-wise power (see Appendix A for
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a more detailed description). We then normalized the power with respect to

the total power between 3 and 7 Hz as well as 15 and 40 Hz, and averaged

it across frequencies between 8 and 13 Hz. The statistical significance of the

differences between right and left hand motor imagery power was assessed

with a paired t-test in every region. In Figure 10a, we show the negative

log10-transformed p-values, multiplied with the sign of the t-statistic. As ex-

pected, the results show a clear lateralization for the activation of the motor

areas.

To estimate inter-regional FC, we used the pop roi connect function to

calculate MIM based on the three strongest PCs of every region. Again, MIM

was averaged across frequencies between 8 and 13 Hz. To reduce the region-

by-region MIM matrix to a vector of net MIM scores, we summed up all

MIM estimates across one region dimension. Subsequently, we assessed the

statistical difference between the net MIM scores of the left vs. right hand

motor imagery condition by again using a paired t-test for every region. In

Figure 10b, we show the negative log10-transformed p-values, multiplied with

the sign of the t-statistic. Again, as expected, the results show a lateralization

for the undirected net FC of the motor areas.

Matlab code of the analyses presented in this section is provided under 3.

5. Discussion

Estimating functional connectivity between brain regions from recon-

structed EEG sources is a promising research area that has generated a

3https://github.com/fpellegrini/MotorImag
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(a) Comparison of power in left vs. right hand

motor imagery tasks. Depicted are negative

log10-transformed p-values, multiplied with the

sign of the t-statistic.

(b) Comparison of net MIM functional

connectivity scores in left vs. right hand motor

imagery tasks. Depicted are negative

log10-transformed p-values, multiplied with the

sign of the t-statistic.

Figure 10: Results of the exploratory analysis of power and functional connectivity in

left and right hand motor imagery tasks. Positive values indicate higher power or FC in

the left hand motor imagery trials.

number of important results (e.g. Hipp et al., 2011; Schoffelen et al., 2017;

Babiloni et al., 2018). However, respective analysis pipelines consist of a

number of subsequent steps for which multiple modeling choices exist and

can typically be justified. In order to identify accurate and reliable analysis

pipelines, simulation studies with ground-truth data can be highly informa-

tive. However, most existing simulation studies do not evaluate complete

pipelines but focus on single steps. In particular, various published studies

assume the locations of the interacting sources to be known a-priori, while,

in practice, they have to be estimated as well. To this end, it has become

widespread to aggregate voxel-level source activity within regions of an atlas

before conducting FC analyses across regions. Multiple ways to conduct this

dimensionality reduction step have been proposed, which have not yet been
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systematically compared using simulations. The main focus of our study

was thus to identify those EEG processing pipelines from a set of common

approaches that can detect ground-truth inter-regional FC most accurately.

We observe that a pipeline consisting of an LCMV source projection, PCA

dimensionality reduction, the selection of a fixed number of principal compo-

nents for each ROI, and a robust FC metric like MIM or TRGC results in the

most reliable detection of ground-truth FC (see Table 1). Consistent with

results reported in Anzolin et al. (2019), LCMV consistently yielded higher

FC reconstruction performance than eLORETA. Thus, we here answer the

question that Mahjoory et al. (2017) left open, namely which source recon-

struction technique is most suitable for EEG FC estimation. Our results are

also in line with a larger body of studies that highlighted the advantages of

robust FC metrics compared to non-robust ones (e.g. Nolte et al., 2004;

Haufe et al., 2013; Vinck et al., 2015; Winkler et al., 2016; Schoffelen and

Gross, 2019).

Inverse solutions

For some inverse solutions, the choice of the regularization parameter

has been shown to influence the accuracy of source reconstruction (Hincapié

et al., 2016; Hashemi et al., 2021). While the parameter is of little impor-

tance for methods like LCMV and DICS, which are fitted separately to each

source and thus solve low-dimensional optimization problems, it should be

carefully chosen for full inverse solutions like Champagne and eLORETA,

which estimate the activity at each source voxel within a single model. To

avoid a performance drop due to unsuitable regularization parameter choice

in eLORETA and Champagne, we used the spatial cross-validation method
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described in (Habermehl et al., 2014; Hashemi et al., 2021). This method

automatically sets the parameter based on the data at hand and has been

shown to improve the source reconstruction (Hashemi et al., 2021).

As hypothesized, DICS resulted in poor directionality determination per-

formance, while LCMV and TRGC performed well. This can be explained by

the difference between LCMV and DICS: while LCMV estimates the inverse

solution in the time domain, DICS estimates the source projection for every

frequency separately (Gross et al., 2001). This can lead to inconsistencies

across frequencies. Since directionality estimation requires the aggregation of

phase information across multiple frequencies, such inconsistencies may lead

to failure of detecting true interactions and their directionalities. Therefore,

we recommend to avoid using DICS source reconstruction when analysing

directed FC. For undirected FC measures, this seems to be less of a problem.

Still, in our simulation, LCMV consistently performed (even if only slightly)

better than DICS. This can be explained by the lower effective number of data

samples that are available to DICS at each individual frequency compared to

LCMV, which uses data from the entire frequency spectrum. However, there

may be cases when using DICS could result in more accurate localization.

For example, this could be the case when the noise has a dominant frequency

that is different from the signal.

Robust functional connectivity metrics

In this study, we observed a strong benefit of using robust FC metrics

over non-robust metrics in detecting genuine neuronal interactions. Overall,

the performance of coherence is highly impaired by the volume conduction

effect (see Figure 2, c.f. Nolte et al., 2004). The TRGC metric performed well

47

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.05.510753doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510753
http://creativecommons.org/licenses/by-nc/4.0/


for the investigation of the interaction direction, but also satisfyingly well for

the interaction detection. However, the computation time for calculating

TRGC exceeds that of MIM by far. Thus, we recommend using MIM to

detect undirected FC in case the direction of the effect is not of relevance. If

TRGC is calculated for estimating the direction of interactions, the absolute

value of TRGC can be used to detect interactions as well.

Interestingly, GC without time reversal did not perform much worse than

TRGC. This is in line with previous results (Winkler et al., 2016) demon-

strating that the calculation of net GC values already provides a certain

robustification against volume conduction artifacts. Concretely, it has been

shown that net GC is more robust to mixed noise than the standard GC; how-

ever not as robust as TRGC (Winkler et al., 2016). We generally recommend

using robust FC connectivity metrics like iCOH, MIM/MIC, or TRGC.

Aggregation within regions

When comparing different processing pipelines, we found that employing

an SVD/PCA and selecting a fixed number of components for further process-

ing performs better than selecting a variable number of components in every

ROI. When further investigating this effect, we found that, for MIM and MIC,

the final connectivity score of the VARPC pipelines was positively correlated

with the number of voxels of the two concerning ROIs (90%: MIM: r = 0.50,

MIC: r = 0.32; 99%: MIM: r = 0.70, MIC: r = 0.41). This indicates

that the flexible number of PCs leads to a bias in MIM and MIC depending

on the size of the two involved ROIs. This could be expected, as the degrees

of freedom for fitting MIM and MIC scale linearly with the number of voxels

within a pair of regions. These in- or explicit model parameters can be tuned
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to maximize the FC of the projected data, which may lead to over-fitting.

For finite data, this leads to a systematic overestimation of FC, to the degree

of which it correlates with the number of voxels. Although representing a

multivariate technique as well, similar behavior was not observed for TRGC.

Here it is likely that a potential bias of the signal dimensionalities would

cancel out when taking differences between the two interaction directions as

well as between original and time-reversed data.

An interesting and so far unsolved question is how many fixed components

should be chosen for further processing. In Experiment 6, we observed a clear

performance peak around three to four components (Figure 9). In the default

version with only one active source per ROI, we saw a similar pattern, but not

as pronounced as in Experiment 6. This points towards a data-dependent

optimal number of components. Future work should investigate how this

parameter can be optimized based on the data at hand.

Short time delays

In Experiment 5, we investigated to what extent the performance drops

when the true interaction occurs with a very small time delay of 2 to 10 msec,

which might be a realistic range for a number of neural interaction phenom-

ena in the brain. Precise data on the typical order of the times within which

macroscopic neural ensembles exchange information are, however, hard to

obtain, as these transmission times depend not only on the physical wiring

but also on cognitive factors that are not straightforward to model. Previous

work has shown that delays can range from 2 to 100 msec, depending on the

distance and number of synapses between two nodes (e.g. Fries, 2005; Oswal

et al., 2016; Shouno et al., 2017; Miocinovic et al., 2018). For example, Oswal
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et al. (2016) studied interaction delays between the subthalamic nucleus and

the motor cortex and found interaction delays of 20 to 46 msec. The satis-

factory performance observed in our study for undirected FC at delays of 8

and 10 msec may therefore be of particular importance for clinical scientists

that aim at investigating such long-range interactions. Note that the range

of delays that can be detected with robust connectivity metrics strongly de-

pends on the frequency band in which the interaction takes place. If the

delay is very short compared to the base frequency of the interaction, then

the phase difference it induces is close to either 0 or ±π, making it less and

less distinguishable from a pure volume conduction effect as it approaches

these limits. In addition, the directionality of an interaction can only be re-

solved by analyzing multiple frequencies. Here, wider interaction bands lead

to better reconstructions of the directionality of interactions with shorter

delays, whereas higher frequency resolutions (that is, longer data segments)

lead to better reconstructions of the directionality of interactions with longer

delays. Here, we have demonstrated that alpha-band interactions with phys-

iologically plausible transmission delays can be detected at 0.5 Hz frequency

resolution, depending on the underlying SNR as well as additional modeling

assumptions (see Limitations below).

Limitations

While this study investigates a large range of processing pipelines, FC

metrics, and data parameters, it is far from being exhaustive. Other works

have shown that many other parameters like channel density (Song et al.,

2015), the location of interacting sources (Anzolin et al., 2019), data length

(Astolfi et al., 2007; Van Diessen et al., 2015; Liuzzi et al., 2017; Sommariva
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et al., 2019), referencing (Van Diessen et al., 2015; Chella et al., 2016; Huang

et al., 2017), and co-registration (Liuzzi et al., 2017) can influence FC detec-

tion. Besides, we here used the same head model for generating the sensor

data and estimating the inverse solution. However, we expect worse perfor-

mance when the head model has to be estimated, and previous work has

shown that the quality of head model estimation also influences FC detec-

tion (Mahjoory et al., 2017). Likewise, there exist many other inverse so-

lutions, like MNE, wMNE, LORETA, sLORETA, and MSP, just to name a

few. The same holds for dimensionality reduction techniques. For example,

some works selected the source with the highest power within a region or the

source that showed the highest correlation to the time series of other sources

in the ROI to be representative for all time series of the ROI (Hillebrand

et al., 2012; Ghumare et al., 2018). Others have presented a procedure of

optimizing a weighting scheme before averaging all time series within a ROI

(Palva et al., 2010, 2011). And finally, we also did not investigate all exist-

ing FC metrics. Especially frequently used are the directed transfer func-

tion, the cross-correlation, partial directed coherence, and the phase locking

value. It is, however, important to mention that all of the above-mentioned

measures would be considered non-robust to volume conduction and source

leakage effects, and thus be prone to the spurious discovery of interactions

in a similar way as coherence and GC. A higher repeat-reliability that has

been attested to non-robust as compared to robust FC metrics (Colclough

et al., 2016) can, therefore, not be expected to also translate into higher FC

reconstruction accuracy. Furthermore, our results are tied to intra-frequency

phase–phase coupling, and make no claims about non-linear interaction met-
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rics quantifying phase-amplitude or amplitude-amplitude coupling within or

across frequencies (De Pasquale et al., 2010; Hipp et al., 2012; Colclough

et al., 2015). Notable FC metrics that are deemed robust but were omitted

here include the weighted phase lag index and the phase slope index, which

are both closely related to iCOH. For a detailed overview of the taxonomy of

FC metrics we refer to the works of (Bastos and Schoffelen, 2016; Schoffelen

and Gross, 2019; Marzetti et al., 2019). In this study, we focused on the

inverse solutions, dimensionality reduction techniques and FC metrics using

methods that are commonly used and most promising according to previous

work.

A further limitation of our study—and simulation studies in general—is

that assumptions need to be made that are hard, if not impossible, to con-

firm. Here, our goal was to generate pseudo-EEG data comprising realistic

effects of volume conduction using a physical model of a human head. In

terms of the generated time series, we focused on alpha-band oscillations as

carriers of the modeled interactions. By adding pink brain noise, uniformly

distributed across the entire brain, as well as white sensor noise, we obtained

simulated sensor-space EEG data that resemble real data in crucial aspects

such as spectral peaks and the general 1/f shape of the power spectrum. On

the other hand, numerous additional assumptions were made regarding the

linear dynamics of the interacting sources, the conception of the interaction

as a pure and fixed time delay, the number of interactions, the signal-to-noise

ratio, and the stationarity of all signal and noise sources. Several of these

experimental variables were systematically varied to provide a comprehen-

sive picture of the performance of each pipeline in a wide range of scenar-
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ios. However, a remaining question is how realistic the individual studied

parameter choices are. Considering that FC analyses are predominantly per-

formed on ongoing (e.g., resting-state) activity rather than averaged data,

the assumptions of only few interacting source pairs standing out against

non-interacting background sources with relatively high SNR can certainly

be questioned. And we also used a small number of interacting sources that

is a clear simplification. However, these assumptions were made here for the

practical purpose of enabling a comparison between approaches rather than

with the ambition of claiming real-world validity.

Future simulation studies should nevertheless strive to further increase

the realism of the generated pseudo-EEG signals. In this regard, (Anzolin

et al., 2021) presented a toolbox that mimics typical EEG artifacts like eye

blinks. Besides linear dynamics, biologically inspired models building on

known anatomical connections, such as the COALIA model (Bensaid et al.,

2019) or models implemented within the virtual brain toolbox (Sanz Leon

et al., 2013), could serve as ground truth for FC validation. Moreover, the

ability of FC estimation pipelines to disentangle bidirectional interactions

(c.f., Vinck et al., 2015) should be tested.

As a further limitation, our simulations are to some extent restricted to

EEG data. However, it can be expected that, qualitatively, the results of this

paper could be transferred to MEG data. MEG analyses also suffer from the

source leakage problem (Pizzella et al., 2014; Colclough et al., 2016) and ben-

efit from disentangling signal sources with source reconstruction (Marzetti

et al., 2019; Schoffelen and Gross, 2019). Moreover, the same FC metrics are

typically used in EEG and MEG analyses (Schoffelen and Gross, 2009, 2019).
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Nevertheless, differences exist, which would be worth studying. In contrast

to EEG, which records secondary neuronal return currents, MEG records the

magnetic field that is induced by electrical activity and arises in a circular

field around an electric current (Hämäläinen et al., 1993). Therefore, MEG

cannot record radial neuronal currents (Huang et al., 2007). This must be

taken into account when estimating the inverse solution from the leadfield,

i.e. it is advised to reduce the rank of the forward model from three to two

by applying an SVD at each source location (Westner et al., 2021).

6. Conclusion

This work compared an extensive set of data analysis pipelines for the pur-

pose of extracting directed and undirected functional connectivity between

predefined brain regions from simulated EEG data. While several individ-

ual steps of such pipelines have been benchmarked in previous studies, we

focused specifically on the problem of aggregating source-reconstructed data

into region-level time courses and, ultimately, region-to-region connectivity

matrices. Thereby, we close a gap in the current literature validating FC

estimation approaches. We show that using non-robust FC metrics and the

eLORETA inverse solution greatly reduces the ability to correctly detect

ground-truth FC. Moreover, the use of inverse solutions that are frequency-

specific, such as DICS, may hamper the correct identification of the direction-

ality of interactions. Finally, unequal dimensionalities of signals at different

ROIs may bias certain connectivity measures, such as MIC and MIM, de-

grading their ability to identify true interactions from a noise floor. Thus,

dimensionality reduction techniques should be applied such that the number
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of retained signal components is the same for all regions. In summary, we

recommend using a pipeline consisting of LCMV source reconstruction, ag-

gregation of time series within ROIs using a fixed number of strongest PCs,

and using a robust FC metric like MIM or TRGC. We expect that following

these recommendations may greatly enhance the correct interpretation and

comparability of results of future connectivity studies. In practice, low SNR,

high numbers of interactions, and small interaction delays may, however,

reduce the performance even of the best performing pipelines.
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Appendix A. ROIconnect toolbox

ROIconnect is a freely available open-source plugin to the popular MATLAB-

based open-source toolbox EEGLAB for EEG data analysis. It adds the

functionality of calculating region-wise power and inter-regional FC on the

source level. Moreover, it provides functions to visualize power and FC.

All functions can be accessed by the EEGLAB GUI or the command line.

ROIconnect uses core EEGLAB functions for importing and preprocessing

EEG data, and calculating the leadfield and source model: we refer users

to other EEGLAB functions to preprocess data before applying ROIconnect

functions. The ROIconnect plugin can be downloaded through github 4 or

installed via the EEGLAB GUI extension manager.

Key features

The features of ROIconnect are implemented in three main functions:

pop roi activity, pop roi connect, and pop roi connectplot.

pop roi activity takes an EEG struct containing EEG sensor activ-

ity, a pointer to a headmodel and a source model, the atlas name, and the

number of PCs for dimensionality reduction as input. It then calculates a

source projection filter (default: LCMV) and applies it to the sensor data.

Power is then calculated with the Welch method for every frequency on the

voxel time series and then summed across voxels within regions. The result

is saved in EEG.roi.source roi power. To estimate region-wise FC, the

pop roi activity function reduces the dimensionality of the time series of

every region by employing a PCA and selecting the strongest PCs (as defined

4https://github.com/arnodelorme/roiconnect
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in the input) for every region. The resulting time series are then stored in

EEG.roi.source roi data.

pop roi connect calculates FC between regions. It builds on the output

of pop roi activity. That is, it takes the EEG struct as input, as well as the

name of the FC metrics that should be calculated. The function calculates

all FC metrics in a frequency-resolved way. That is, the output contains FC

scores for every region–region–frequency combination. To avoid biases due

to different data lengths, pop roi connect estimates FC for time windows

(‘snippets’) of 60 sec length (default), which subsequently can be averaged

(default) or used as input for later statistical analyses. The snippet length

can be flexibly adjusted by the user. The output of this function is stored

under the name of the respective FC metric under EEG.roi.

The pop roi connectplot function enables visualizing power and FC in

the following modes:

• Power as region-wise bar plot.

• Power as source-level cortical surface topography.

• FC as region-by-region matrix.

• Net FC, that is, the mean FC from all regions to all regions, as cortical

surface topography.

• Seed FC, that is, the FC of a seed region to all other regions, as cortical

surface topography.

For plotting, a specific frequency or frequency band can be chosen by the

user. For matrix representations, it is also possible to just plot one of the
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hemispheres or only regions belonging to specific brain lobes.
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Gómez-Herrero, G., Atienza, M., Egiazarian, K., Cantero, J. L., 2008. Mea-

suring directional coupling between EEG sources. Neuroimage 43 (3), 497–

508.

Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M., 2010. OpenMEEG:

opensource software for quasistatic bioelectromagnetics. Biomedical engi-

neering online 9 (1), 1–20.

Granger, C. W., 1969. Investigating causal relations by econometric models

and cross-spectral methods. Econometrica: journal of the Econometric

Society, 424–438.

63

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.05.510753doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510753
http://creativecommons.org/licenses/by-nc/4.0/
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Hincapié, A.-S., Kujala, J., Mattout, J., Daligault, S., Delpuech, C., Mery,

D., Cosmelli, D., Jerbi, K., 2016. MEG connectivity and power detections

with minimum norm estimates require different regularization parameters.

Computational intelligence and neuroscience 2016.

65

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.05.510753doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510753
http://creativecommons.org/licenses/by-nc/4.0/


Hipp, J. F., Engel, A. K., Siegel, M., 2011. Oscillatory synchronization in

large-scale cortical networks predicts perception. Neuron 69 (2), 387–396.

Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M., Engel, A. K., 2012.

Large-scale cortical correlation structure of spontaneous oscillatory activ-

ity. Nature neuroscience 15 (6), 884–890.

Huang, M.-X., Song, T., Hagler Jr, D. J., Podgorny, I., Jousmaki, V., Cui,

L., Gaa, K., Harrington, D. L., Dale, A. M., Lee, R. R., et al., 2007.

A novel integrated MEG and EEG analysis method for dipolar sources.

Neuroimage 37 (3), 731–748.

Huang, Y., Zhang, J., Cui, Y., Yang, G., He, L., Liu, Q., Yin, G., 2017.

How different EEG references influence sensor level functional connectivity

graphs. Frontiers in neuroscience 11, 368.

Idaji, M. J., Zhang, J., Stephani, T., Nolte, G., Mueller, K.-R., Villringer, A.,

Nikulin, V., 2021. Harmoni: a method for eliminating spurious interactions

due to the harmonic components in neuronal data. bioRxiv.

Jaiswal, A., Nenonen, J., Stenroos, M., Gramfort, A., Dalal, S. S., Westner,

B. U., Litvak, V., Mosher, J. C., Schoffelen, J.-M., Witton, C., et al., 2020.

Comparison of beamformer implementations for MEG source localization.

NeuroImage 216, 116797.

Korhonen, O., Palva, S., Palva, J. M., 2014. Sparse weightings for collapsing

inverse solutions to cortical parcellations optimize M/EEG source recon-

struction accuracy. Journal of neuroscience methods 226, 147–160.

66

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.05.510753doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510753
http://creativecommons.org/licenses/by-nc/4.0/


Liuzzi, L., Gascoyne, L. E., Tewarie, P. K., Barratt, E. L., Boto, E., Brookes,

M. J., 2017. Optimising experimental design for MEG resting state func-

tional connectivity measurement. Neuroimage 155, 565–576.

Mahjoory, K., Nikulin, V. V., Botrel, L., Linkenkaer-Hansen, K., Fato,

M. M., Haufe, S., 2017. Consistency of EEG source localization and con-

nectivity estimates. Neuroimage 152, 590–601.

Marzetti, L., Basti, A., Chella, F., D’Andrea, A., Syrjälä, J., Pizzella, V.,
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