New Results
Benchmarking Automated Cell Type Annotation Tools for Single-cell ATAC-seq Data
View ORCID ProfileYuge Wang, Xingzhi Sun, View ORCID ProfileHongyu Zhao
doi: https://doi.org/10.1101/2022.10.05.511014
Yuge Wang
1Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
Xingzhi Sun
2Department of Statistics and Data Science, Yale University, New Haven, CT, United States
Hongyu Zhao
1Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
3Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States

- Supplementary Figures[supplements/511014_file02.docx]
- Supplementary Tables[supplements/511014_file03.xlsx]
Posted October 10, 2022.
Benchmarking Automated Cell Type Annotation Tools for Single-cell ATAC-seq Data
Yuge Wang, Xingzhi Sun, Hongyu Zhao
bioRxiv 2022.10.05.511014; doi: https://doi.org/10.1101/2022.10.05.511014
Subject Area
Subject Areas
- Biochemistry (10360)
- Bioengineering (7675)
- Bioinformatics (26336)
- Biophysics (13528)
- Cancer Biology (10686)
- Cell Biology (15440)
- Clinical Trials (138)
- Developmental Biology (8497)
- Ecology (12821)
- Epidemiology (2067)
- Evolutionary Biology (16857)
- Genetics (11399)
- Genomics (15478)
- Immunology (10617)
- Microbiology (25217)
- Molecular Biology (10223)
- Neuroscience (54468)
- Paleontology (401)
- Pathology (1668)
- Pharmacology and Toxicology (2897)
- Physiology (4342)
- Plant Biology (9247)
- Synthetic Biology (2558)
- Systems Biology (6781)
- Zoology (1466)