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Abstract

Animals likely use a variety of strategies to solve laboratory tasks. Traditionally, combined analysis of behavioral
and neural recording data across subjects employing different strategies may obscure important signals and give
confusing results. Hence it is important to develop techniques that can infer strategy at the single-subject level. We
analyzed an experiment in which two monkeys perform a visually cued rule-based task. From the analysis of their
performance there is no indication that they used a different strategy. However, when we examined the geometry
of stimulus representations in the state space of the neural activities recorded in dorsolateral prefrontal cortex, we
found striking differences. Our purely neural results predict behavioral differences that we observed by analyzing
the reaction times. These analyses provide strong support that the animals employed different strategies. Finally,
we used a modeling study to correlate these strategies with the amount of training that the animals received.

Keywords: representational geometry; abstraction; disentangled representations; individual differences; behavioral differ-
ences; strategy; dorsolateral prefrontal cortex

Introduction

Although the tasks designed in a laboratory are rel-
atively simple and they are performed in highly con-
trolled situations, different animals can still adopt dif-
ferent strategies to solve the same task. It is surpris-
ingly difficult to reproduce the exact same behavior in
different laboratories, even when the training protocol,
the experimental hardware, software, and procedures are
standardized [1]. In many situations, it is also possible
that the behavioral performance is the same, but the
strategy used to perform the task is different. Consider,
for example, a task in which multiple stimulus properties
must be mapped onto appropriate behavioral responses.
Such a task can be accomplished by rote learning of this

map, but if the task involves structure across stimulus
attributes, such as irrelevant stimulus features, learning
can be simplified by adopting more “intelligent” strate-
gies that exploit this structure. All these strategies may
produce the same level of task performance, so how can
we distinguish among them?

Here we show that this can be done by examining the
geometry of stimulus representations in the state space
of recorded neural activities. The recorded neural re-
sponses are typically very diverse and seemingly disor-
ganized [2, 3, 4, 5]. However, when the neural activ-
ity is analyzed at the population level, it is often possi-
ble to identify interesting and informative “structures”.
In particular, the analysis of the geometry of the neu-
ral representations has recently revealed that some vari-
ables are represented in a special format which enables
generalization to novel situations [6]. The representa-
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tional geometry is defined by the set of distances be-
tween points that represent different experimental con-
ditions in the neural activity space. The set of points
of all the conditions of the experiment defines an ob-
ject that has specific computational properties [7] and
it is often preserved across subjects [8]. For example, if
the points define a high dimensional object (in this ar-
ticle we always consider the embedding dimensionality
[9] when we speak about dimensionality), then a linear
decoder can separate the points in a large number of dif-
ferent ways, permitting a downstream neuron to perform
many different tasks [2, 3]. If instead the points define a
low dimensional object, the representations allow a sim-
ple linear decoder of one variable to generalize across
the values of other variables [6]. These representations
have been called abstract because of their generalization
properties and they are known as disentangled repre-
sentations in the machine learning community [10, 11].
Abstract representations have been observed in several
brain areas [6, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
but it is still unclear whether they correlate with be-
havior. As pointed out by Krakauer et al. [23], a new
conceptual framework that meaningfully maps the neu-
ral data to behavior is necessary to better understand
the brain-behavior relationship, and to accomplish that,
the analysis of the behavior should be as fine-grained as
the analysis performed on the neural data.

Here we show that differences between neural repre-
sentational geometries across subjects predict significant
differences in their behavior, providing evidence that the
aspects of the representational geometry that we typi-
cally study can affect behavior. Thanks to these corre-
lations, the analysis of the representational geometry is
also an important tool for reliably predicting and inter-
preting individual differences in the behavior.

More specifically, we analyzed the activity of neurons
recorded in dorsolateral prefrontal cortex (PFdl) of two
monkeys performing a visually cued rule-based task [24].
The task required choosing between two spatial targets
based on the rule cued by a visual stimulus, either stay-
ing with the same response as in the previous trial (after
a stay cue) or shifting to the alternative response (after
a shift cue). The task average performance was the same
for the two monkeys.

We studied systematically specific aspects of the ge-
ometry of the neural representations. First, we looked
at the ability of a decoder to classify all the task relevant
variables (the shape of the visual cue, the rule, the cur-
rent and the past responses). Then we tried to decode
the variables that correspond to all the possible ways
of dividing the conditions into two groups of equal size
(balanced dichotomies). Some of these dichotomies cor-
respond to obvious task relevant variables, while some
others are still interpretable but do not have a sim-
ple label. For all these dichotomies, we also computed

the cross-condition generalization performance (CCGP)
by training a decoder on a subset of conditions and
testing on a different subset. These other conditions
are completely novel for the decoder, and hence a high
CCGP means that the geometry allows for generaliza-
tion. Studying which variables have an elevated CCGP
allowed us to identify which variables were represented
in an abstract format and therefore describe another im-
portant aspect of the representational geometry [6]. This
set of measures revealed that the representational geom-
etry is strikingly different for the two monkeys. This
finding brought us to reanalyze the behavior, and we
discovered that the reaction times actually reflect the
different geometries.

Our study shows that it is possible to find individual
differences in the strategy used to perform a task by
examining the representational geometry. Moreover, the
fact that the geometry is related to the observed behavior
indicates that the geometry is probably important for
performing the task.

Results

We analyzed single unit recordings in dorsolateral pre-
frontal cortex (PFdl) of two male rhesus monkeys. As
the main message of this work is that the representa-
tional geometry can explain the differences in behavior
of the two monkeys, we will present the neural and be-
havioral results for each monkey separately. We refer to
them as Monkey 1 and Monkey 2.

Both monkeys were trained to perform a visually cued
rule-based task (Figure 1A). The task was to choose one
of two targets, with a saccadic movement, according to
the rule instructed in each trial by one of four possible
visual cues (Figure 1B). Two cues instructed the mon-
key to “stay” with the target chosen in the previous
trial, while the other two cues instructed to “shift” to
the alternative target. In each trial, the visual cue was
randomly chosen. At the time of the recordings, both
animals were already trained and they were performing
the task with the same high accuracy.

When we analyzed the geometry of the neural repre-
sentations recorded during the task, we found significant
differences between the two monkeys. The representa-
tional geometry is defined by the set of distances between
the points in the firing rate space that represent different
conditions (see e.g. [25]). This is a relatively large set of
variables, which are not defined in a unique way as there
are several reasonable measures of distances in the pres-
ence of noise. We found significant differences between
the two monkeys by focusing on two particular aspects of
the geometry that also have the advantage of being cross-
validated and interpretable: the first is the set of linear
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decoding accuracies for the task relevant variables and
all the other variables that correspond to balanced di-
chotomies of the conditions (i.e. all the possible ways of
dividing the conditions into two equal groups). The task
relevant variables are the previous response, the rule, the
current response, and the shape of the visual cue (Fig-
ure 1D). The latter identifies whether the visual cue is
a rectangle or a square, although the cue differs also be-
cause the rectangles are grey and the squares are colored
(yellow and purple). The second aspect of the geometry
is related to the ability of a linear classifier to generalize
across conditions when trained to decode the balanced
dichotomies (cross-condition generalization performance
or CCGP [6]).

The decoding accuracy is directly related to the dis-
tance between two groups of points, and in this respect,
it is a geometrical measure. It is better than the average
distance because it is cross-validated and it takes into
account the structure of the noise, similarly to the Ma-
halanobis distance [26]. Moreover, it is interpretable be-
cause it tells us something about the variables that are
represented. The second quantity, the CCGP, is more
sensitive to the angles between coding directions, an-
other aspect of the representational geometry: the abil-
ity of a linear classifier to generalize depends on the par-
allelism of the coding directions [6]. Say we consider two
binary variables x and y, and we train a decoder to re-
port the value of variable x from the patterns of neural
activity. If this decoder is trained only in the situations
in which y = y1, it is not guaranteed that it would work
right away for a different value of y, say y = y2. In order
to generalize to y = y2, it is necessary that the coding
direction of x (i.e. the direction from the points corre-
sponding to neural activities when x = x1 to x = x2)
for y = y1 is approximately the same as for y = y2.
CCGP also takes into account the noise structure and
it is cross-validated. Moreover, if a variable has high
CCGP it means that the variable is encoded in a special
format, that we formerly defined as “abstract”[6]. The
variable is encoded in an abstract format (or simply it is
abstract) because the coding direction does not depend
on the specific instance. This guarantees special general-
ization properties (cross-condition), which are the hall-
mark of abstraction.

Differences between the representational geome-
tries of the two monkeys

Our neural database consists of 289 and 262 neurons
from Monkey 1 and Monkey 2, respectively. To inves-
tigate which task variables can be decoded, we built
pseudo simultaneous trials (pseudo trials) for each mon-
key separately (see Methods). We defined the pseudo
trial as the combination of spike counts randomly sam-
pled from different trials of the same task condition [2].

For each neuron the spike count was estimated in a
200ms time bin. We considered only neurons recorded
for at least 5 complete and correct trials in each task con-
dition for a total of 205/289 (71%) neurons for Monkey
1 and 188/262 (72%) neurons for Monkey 2.

We found that, in Monkey 1, almost all the di-
chotomies can be linearly decoded during the cue presen-
tation (Figure 2A), but not all of them are in an abstract
format, i.e. with a high CCGP (Figure 2B). Shape is the
variable with the highest CCGP, followed by the current
response, while the previous response and the rule can
be decoded but do have a CCGP at chance and hence
are not in an abstract format. In Monkey 2, almost all
the dichotomies can be linearly decoded during the cue
presentation, except for the shape and the previous re-
sponse (Figure 2C). The CCGP analysis reveals that, in
Monkey 2, the rule is in an abstract format with the
highest CCGP, differently from Monkey 1 (Figure 2D).
In both monkeys, instead, during the cue presentation,
the current response is in an abstract format, while the
previous response is not.

To better highlight the differences in the representa-
tional geometry, we focused our analysis on the 300ms
time window in which the differences are large (from
200ms after the cue onset until the cue offset, grey verti-
cal shade in Figure 2). The beeswarm plots in Figure 3A
show the decoding accuracy and CCGP for all the pos-
sible dichotomies in the 300ms time window for Monkey
1 and Monkey 2. It is evident that Monkey 1, during
the cue presentation, represents the shape of the visual
cue in an abstract format (highest CCGP), while rule is
not abstract (CCGP at chance), even though it can be
decoded (Figure 3A, left). Rule becomes abstract only
later in the delay period after the cue offset (Figure 2B).
Instead, for Monkey 2, the rule is the variable with the
highest CCGP, while the shape of the visual cue is not
abstract (CCGP at chance) (Figure 3A, right). More-
over, both monkeys represent the current response in an
abstract format, but not the previous response. Inter-
estingly, in both monkeys the current response is not
abstract from the time when it can be decoded, but only
slightly later (see Figure 2). These results suggest that
Monkey 1 is grouping together the cues with the same
shape, and hence it is using a strategy based on the
identity of individual visual stimuli. Instead, Monkey 2
is using a more “cognitive” strategy because rule is the
variable with the highest decoding accuracy and CCGP,
and hence Monkey 2 is grouping together the visual cues
that correspond to the same rule, despite the fact that
they are visually very different.

Shape cannot be decoded in Monkey 2 using a linear
classifier. We were wondering whether it is not encoded
at all, or it could be decoded using other decoders. We
decided to consider pairs of conditions separately, which
is equivalent to consider non-linear decoders for all the
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Fig. 1: Behavioral task, visual cues, recording site, and task conditions. A) Example of two consecutive
trials of the visually cued rule-based task with temporal ordering of task events from left to right. The
dark gray rectangle represents the video screen as viewed by the monkey. The target of the monkey’s gaze
is indicated by dashed lines. In this example, the trial N is a stay trial instructed by the yellow square,
requiring the monkey to choose the same right target chosen in the previous trial N-1. Fb, Feedback. B)
Visual cues presented to the monkey. Each visual cue instructed the rule to be applied: the vertical and
yellow square instructed the stay rule; the horizontal rectangle and purple square instructed the shift rule.
C) Recording area in dorsolateral prefrontal cortex. AS, Arcuate Sulcus; PS, Principal Sulcus. D) List of
the eight task conditions defined as the combination of the four main uncorrelated dichotomies: previous
response (green), rule (blue), current response (red), shape (orange). The color code of the four dichotomies
is conserved across all the figures.
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points. Indeed, if two conditions are sufficiently sepa-
rated, i.e. the distance between the corresponding points
is large enough compared to the noise, then a linear de-
coder should work. This is true even when the dichotomy
is not linearly separable, for example in the case of XOR
for four points that define a low dimensional object like
a square: a linear decoder would not be able to separate
the two points on the diagonal from the other two, but
it would separate all pairs of points, if taken one pair at
the time. In addition to considering pairs of points, we
denoised the data by projecting the neural activity of a
single pseudo trial into a lower dimensional space (3D)
using the multi-dimensional scaling technique described
in the Methods. Using this procedure, we found that the
shape can be decoded in both monkeys. In particular,
in Monkey 1 (Figure 3B, left) the shape can be decoded
for both rule conditions with high accuracy. This was
expected as the shape was already linearly decodable for
all the points without denoising (decoding accuracy in
Figure 3A, left). Shape could be decoded also in Mon-
key 2, in both rule conditions (Figure 3B, right). These
results show that both monkeys PFdl neurons encode the
shape of the visual stimulus as required to perform the
task with high accuracy, but with different geometries,
making the shape linearly separable and in an abstract
format only in one of the monkeys.

To visualize the different geometries of the two mon-
keys, we used Multi-Dimensional Scaling (MDS) trans-
formation to reduce the dimensionality of the original
representations. More specifically, we used MDS on the
dissimilarity matrix containing the Euclidean distances
between the average activity of two task conditions nor-
malized by the variance along the direction that goes
from one condition to the other (see Methods). Each
point in the MDS plots is the average firing rate of
each task condition in a 300ms time window during the
cue presentation (Figure 4). For each monkey, we high-
lighted the different dichotomies (groups of conditions)
by drawing lines between the conditions that are in the
same group. In particular, shape and the current re-
sponse are in an abstract format in Monkey 1, while rule
and current response are abstract in Monkey 2. For both
monkeys, the current response is in an abstract format,
while none of the two has the previous response in an
abstract format.

Behavioral differences between monkeys reflect
differences in the geometry

The differences in the representational geometry are
so striking that they induced us to reanalyze the behav-
ior to look for more subtle individual differences. We
analyzed 65 and 77 sessions for Monkey 1 and Mon-
key 2, respectively. As already mentioned, we did not
find any significant difference in the overall behavioral

performance between the two monkeys (chi-square test,
p-value=0.93; Figure 5A left). However, a significant
difference emerged in the average reaction times (Mann-
Whitney U test, p-value=10−15; Figure 5A right) when
the conditions were grouped as suggested by the differ-
ences in the representational geometry. Indeed, the neu-
ral analysis revealed that the shape is in an abstract
format for Monkey 1 and the rule is abstract for Mon-
key 2. We computed the average behavioral performance
for each condition separately, and then we grouped the
correct trials according to shape (rectangle and square)
and rule (stay and shift). There is not a significant dif-
ference in the behavioral performance between different
shapes (chi-square test: p-value=0.78 in Monkey 1, Fig-
ure 5B left; p-value=0.06 in Monkey 2, Figure 5D left)
and rules (chi-square test: p-value=0.11 in Monkey1,
Figure 5B right; p-value=0.22 in Monkey 2, Figure 5D
right) in both monkeys. Nevertheless, a significant dif-
ference in reaction times emerged across conditions in
each monkey. In particular, Monkey 1, with the shape
in an abstract format, has an average reaction time that
significantly changes with the shape of the visual cue
(Mann-Whitney U test: p-value = 0.002; Figure 5C, left)
regardless of the rule (Mann-Whitney U test: p-value =
0.05; Figure 5C, right). On the opposite, Monkey 2, with
the rule in an abstract format, shows an average reac-
tion time that significantly changes with the rule (Mann-
Whitney U test: p-value = 10−10; Figure 5E right) re-
gardless of the shape (Mann-Whitney U test: p-value =
0.28; Figure 5E left).

The differences in reaction times are significant and
they nicely reflect the geometry, but they are relatively
small. So we decided to further investigate the behav-
ior to see whether these differences could be predicted
by looking at the recent series of events and monkey re-
sponses. In particular, we fitted a multi-linear regression
model to predict the reaction time on a trial by trial ba-
sis using three factors: the previous response, the shape
of the visual stimulus, and the rule. We also considered
all the interaction terms (see supplementary Figure 1).
We found that the rule factor has a stronger weight in
predicting reaction times in Monkey 2 than in Monkey
1 (Mann-Whitney U test: p-value=10−34; Figure 5F).
Viceversa, the shape is a stronger factor in predicting
the reaction time of Monkey 1 (Mann-Whitney U test: p-
value=10−34; Figure 5F). Supplementary Figure 1 shows
that the strongest factor in predicting the reaction time
is the interaction of the previous response and the rule
in both monkeys, because the combination of these two
factors is essential to choose the correct response.

We also asked whether there is a relation between re-
action time and neural results for other dichotomies.
We focused on the four uncorrelated dichotomies that
correspond to task relevant variables (shape, rule, cur-
rent and previous response). In Figure 6 we plotted the
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Fig. 2: Decoding accuracy and CCGP as a function of time. Time is aligned to the cue onset (time 0) and
the presentation lasts 500ms (until the time of the cue offset indicated by the vertical black arrow). The
horizontal dashed lines are ±2 standard deviations of 100 cross validations distribution obtained from null
models. The grey vertical shade indicates the time bin starting at 200ms after cue onset until cue offset, in
which we found a maximal difference between the neural representations of the two monkeys. A) Decoding
accuracy of all the possible 35 dichotomies (i.e. all variables that correspond to grouping the conditions
into two equal size groups) in Monkey 1. During the cue presentation, most of the dichotomies can be
decoded, in particular all the main task variables indicated with different colors. The shape of the visual
stimulus (orange) can be decoded with the highest accuracy, followed by the previous response (green), the
current response (red), and the rule (blue). B) CCGP of the 35 dichotomies in Monkey 1. During the
cue presentation, shape (orange) is in an abstract format with the highest CCGP, followed by the current
response (red). Rule (blue) is not abstract during the cue presentation, but it becomes significantly different
from chance after the cue offset. The previous response (green) is not in an abstract format. C) Decoding
accuracy for Monkey 2. During the cue presentation, the rule (blue) and the current response (red) can be
decoded. D) CCGP for Monkey 2. Differently from Monkey 1, rule (blue) is in an abstract format with
the highest CCGP during cue presentation, followed by the current response (red). Shape (orange) and
previous response (green) are not in an abstract format.
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differences in reaction time between the two values of
each variable as a function of the decoding accuracy and
CCGP during the last 200ms of the stimulus presenta-
tion (notice that this time interval is different from that
analyzed in the previous figures). Although in this time
interval the monkeys have still to initiate their motor re-
sponse, it is likely that they already made a decision. We
chose this interval because it is the one that most clearly
shows the relation between the neural geometry (the de-
coding accuracy and CCGP for four dichotomies) and
reaction time. We found that in both monkeys, there is
a trend: as the decoding accuracy and CCGP increase,
the difference in reaction time also increases (see Fig-
ure 6). Interestingly, for both monkeys the dichotomy
with the largest CCGP/decoding accuracy corresponds
to the variable encoding the current response. This is re-
flecting a bias in the reaction time for the left and right
responses (Monkey 1: (300 ± 1)ms and (328 ± 1)ms
for right and left, respectively; Monkey 2: (297 ± 1)ms
and (325 ± 1)ms for right and left, respectively; (mean
± SEM)). Interestingly, the bias is the same for the two
monkeys. The other dichotomies, that in this interval are
less strongly encoded, are ranked as in previous intervals,
and reveal again the main difference between the geome-
tries of the representations recorded in the two animals.
Indeed, shape (orange circle) and rule (blue circle) vari-
ables are flipped in the rank in the two monkeys. This
observation confirms what we already noticed in the pre-
vious analyses, but it also shows that there is a hierarchy
of dichotomies that all seem to affect some aspect of the
behavior.

The representational geometry in an artificial
neural network at different learning stages

To better understand the origin of the differences in
representational geometry between the two monkeys, we
trained a two layers feed-forward neural network to per-
form the visually cued rule-based task, and we analyzed
the activations of the units in the second hidden layer
during training. We know from previous studies that
these simple feed-forward networks can easily generate
abstract representations [6, 27]. The input to the net-
work is the visual cue encoded by two one-hot vectors of
three units each, and the previous response encoded by
one one-hot vector of two units (Figure 7A). This input
is passed through two hidden layers with 100 Rectified
Linear units each, and the output of the network is the
current response encoded by one one-hot vector of two
units. We applied the same analysis framework used to
study the neural data to the activations of the units of
the second hidden layer. After ∼50 training epochs, the
network performed the task with 100% accuracy (black
curve, Figure 7B). At this training stage, all the main
task variables can be decoded with high accuracy (Sup-

plementary Figure 2). It is now interesting to focus on
the changes of the representational geometry of the main
task variables revealed by the CCGP analysis (colored
curves, Figure 7B). We selected two training periods: Pe-
riod 1 is defined as the set of epochs where the training
performance is between 90% and 100%; Period 2 is the
range of epochs from 70 to 100 where the training perfor-
mance is constantly at 100% (vertical grey bars in Fig-
ure 7B). We observed that in Period 1, during the early
phase of the high performance period, all dichotomies
can be decoded but only shape is in an abstract for-
mat with the highest CCGP followed by the previous
response (Figure 7C left). It is worth noticing that, al-
beit the rule and the current response can be decoded,
they are not in an abstract format. Shape is abstract
from the very beginning, indicating that it is abstract
already in the input. This is due to the assumption that
shape is abstract in the input because it is encoded by a
population of highly specialized neurons. This is not an
unreasonable assumption given that the monkeys most
likely had already been familiar with numerous different
shapes and that they created an abstract representation
before the beginning of the recordings. CCGP and de-
coding accuracy increase because initially the weights
are random, and the signal that can reach the second
intermediate layer is relatively weak. It is only with
learning that the signal increases, though initially the
change in the geometry is modest, mostly due to the
stretched distances between different conditions. In Pe-
riod 2 all dichotomies can be decoded but now rule is
in an abstract format along with previous and current
response (Figure 7C right). Shape, instead, is decoded
with high accuracy but it is not in an abstract format
any longer. The representational geometry in Period 1
resembles the neural representation of Monkey 1 where
shape is in an abstract format with the highest CCGP,
while the representational geometry in Period 2 resem-
bles the neural representation of Monkey 2 where rule is
in an abstract format. The model also captured that the
CCGP of shape goes from above chance to significantly
below chance along training. The previous response, in-
stead, is a variable that is represented in the model in
a different way, since in both monkeys it is not in an
abstract format. This is probably due to our simplifying
assumption that previous response is a variable that is
completely disentangled from the visual cue.

Discussion

Traditionally, studies on the primate brain focused on
the features of the recordings that are conserved across
monkeys. It is uncommon to report and discuss dif-
ferences between monkeys and other animals often be-
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Fig. 5: Behavioral performance, reaction times of the monkeys and a multi-linear regression behav-
ioral model reflecting differences in the geometries. A) Left: average behavioral performance across
sessions for Monkey 1 and Monkey 2. Both monkeys performed the task with high accuracy. The error
bars indicate the confidence interval at 95% of confidence level. Right: average reaction time across sessions
for Monkey 1 and Monkey 2. A significant difference emerged in the average reaction time between the
two monkeys. The error bars are the standard error of the mean. n.s. not significant: chi-square test,
p-value>0.05. **: Mann-Whitney U test, p-value<0.01. B) Mean behavioral performance across sessions
for Monkey 1 computed separately for each rule and shape. The x-axis indicates rule, and y-axis is the
mean performance averaged across sessions. The visual cue of each condition is indicated at the bottom of
the plot. On the left(right) the visual cue order reflects shape(rule). n.s. not significant: chi-square test,
p-value>0.05. C) Mean reaction time across sessions for Monkey 1. As in B), the x-axis indicates rule,
and y-axis is the reaction time averaged across sessions. The error bar are the standard error of the mean.
n.s. not significant: Mann-Whitney U test, p-value>0.05; **: Mann-Whitney U test, p-value<0.01. D)
The same as in B) but for Monkey 2. E) The same as in C) but for Monkey 2. F)Weights of the three
independent factors predicting the reaction time of single trial in a multi-linear regression model. Weights
are normalized to the maximum weight that is the previous response and rule interaction term in both
monkeys (see Supplementary Figure 1). The error bars are the 2 standard deviations of weights across of
100 models. The variance explained (r-squared) by the models is 12% and 18% for Monkey 1 and Monkey
2, respectively. ***: Mann-Whitney U test, p<0.001.
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Fig. 6: Reaction times versus neural results for four uncorrelated dichotomies that correspond to
task relevant variables. A) Top: Decoding accuracy versus difference in reaction times (∆ RT) for each
of the four uncorrelated dichotomies in Monkey 1. The decoding accuracy is computed in the last 200ms
before the cue offset, notice that this is not the same time interval as the one studied in Figure 3A. As the
decoding accuracy increases, the difference in reaction time also increases. Bottom: CCGP versus difference
in reaction time in Monkey 1. B) Top: decoding accuracy versus difference in reaction times for Monkey
2. There is a trend between the two variables, and the main difference with Monkey 1 comes from shape
(orange circle) and rule (blue circle) which are now flipped in the rank. Bottom: CCGP versus difference
in reaction times for Monkey 2.

cause it is difficult to study and interpret them. Here
we showed that it is possible to find clear differences
between the representational geometry of two monkeys,
and that they correlate with subtle but significant dif-
ferences in the behavior. One of the advantages of our
approach, based on the analysis of the representational
geometry, is that it allowed us to study systematically
many different interpretable aspects of the geometry of
the representation that potentially cause different be-
haviors. To characterize the representational geome-
try, we considered the decoding accuracy and the cross-
condition generalization performance for every possible
dichotomy of the experimental conditions. The number
of dichotomies grows rapidly with the number of con-
ditions, almost exponentially for balanced dichotomies
(using Stirling approximation ∼ 2C/

√
2πC where C is

the number of conditions). Even though some of the di-
chotomies are correlated (the full characterization of the

geometry requires only ∼ C2 numbers), we can still ex-
amine systematically a large number of potentially dif-
ferent behaviors. Moreover, the dichotomies are inter-
pretable and, often, they correspond to some of the task
key variables. This is the case in our analysis, in which
the dichotomies with the largest decoding accuracy and
CCGP during the cue presentation correspond to shape
for one monkey and rule for the other. These dichotomies
suggested a way to compute the reaction time for differ-
ent groups of conditions, and revealed significant differ-
ences in the behavior, which were not detectable from
the initial analysis of the bare performance.

The analysis of the geometry revealed that there is
an interesting “structure” in the arrangement of the
points that represent different conditions in the firing
rate space: for one monkey shape is an important ab-
stract variable (a more “visual” monkey) and for the
other it is the rule (a more “cognitive” monkey). This
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essentially means that for the first monkey the points
corresponding to different conditions in the firing rate
space are grouped according to shape if one projects the
activity on the coding direction of shape (notice that it
is only in this subspace that the points cluster, as in
the original space the points are still distinct and allow
for the encoding of other variables). Analogously, the
points are grouped according to the rule in the other
more “cognitive” monkey. Both geometries, and even
one in which the points are at random locations in the
firing rate space (e.g. when the animal is basically us-
ing a lookup table strategy) allow for high performance.
This is probably why we cannot see significant differ-
ences in the overall performance of the two monkeys.
However, these geometries have different computational
properties that would be revealed only in novel tasks
that involve generalization or learning of new rules. For
example, the more “cognitive” monkey for which rule is
in an abstract format, would probably learn rapidly a
novel task in which the rules are the same but the vi-
sual cues change. The new visual cues could be “linked”
to the pre-existent groups that represent in an abstract
format the two possible rules. The other more “visual”
monkey is probably in a different learning stage, and the
grouping, which is useless for performing the task or for
generalizing to new similar tasks, is mostly dictated by
the representations of the sensory inputs, as in the early
stages of learning of the simulated network.

Indeed, simulations of a simple artificial neural net-
work trained to perform the task used in the experiment,
reveal that the two monkeys could be in a different learn-
ing stage. In the simulations, the representation of the
rule and shape changes as learning progressed. In partic-
ular, when the network is in an early phase of training,
shape is represented in an abstract format, while the rule
is not, although the performance is already high. Later,
the performance only slightly increases, but the geom-
etry changes more dramatically, with shape that is no
longer abstract while rule becomes an abstract variable,
reflecting what is probably a significant change in the
cognitive strategy. Similarly, Tsuda et al. [28] recently
showed that the different strategies of monkeys and hu-
mans in solving a working memory task (monkeys seem
to apply a recency-based strategy while humans a tar-
get selective strategy [29, 30]) could correspond to two
different learning stages of a simple recurrent neural net-
work.

In our experiment, the explanation of the model is
in line with the history of the monkeys’ training, for
which we do not have data, but only some notes: Monkey
2, whose strategy is more “cognitive” and would corre-
spond to a later learning stage of the simulated network,
went through a longer training period than Monkey 1
because of its tendency not to switch between rules, per-
sisting with the same response across trials.

Although the model suggests that the differences are
due to the training duration, it is also possible that the
monkeys would have adopted different strategies even at
the same learning stage. We know from machine learn-
ing studies on curriculum learning that artificial neural
networks can solve the same task in different ways de-
pending on the order of presentation of the samples and
more generally, on the details of the learning process
[31, 32]. Differences in strategies have been described
in experimental studies, in particular in the informa-
tion representations of the reward [33], in the strategies
adopted by two monkeys to solve the same task [34],
and in some abstraction tests [35]. A recent study, using
a more complex task as the well know pac-man game,
has even shown that different strategies can be flexibly
switched based on different task demands [36].

In our study we did not test whether abstract repre-
sentations could lead to the generalization to new stim-
uli. Introducing a generalization test would have al-
lowed, for example, to test whether the abstract format
of the rule, in the second monkey, generated a faster gen-
eralization to a new set of rule cues than in the first mon-
key. Future studies on abstraction should be planned to
test whether the task variables encoded in an abstract
form, as opposed to those that are not, would facilitate
the generalization of the rules to new items or conditions.
The ability of generalization has been reported by sev-
eral studies on macaques [37, 38, 39, 35]. For example,
Falcone et al. [39] have shown that monkeys can trans-
fer the nonmatch-to-goal rule from the object domain to
the spatial domain in a single session, and Sampson et
el. [35] have shown that abstraction can allow generaliz-
ing to new conditions, such as new foods, of the rule to
choose the worst between two options.

Moving to chronic recordings surely offers the oppor-
tunity to follow in time, by recording before, during,
and after a task is fully learned, the formation of neural
representational geometries already during the training
phases. Planned behavioral generalization tests to new
task conditions are critical to test the correlation be-
tween the geometry of the representation of a given vari-
able and the animal performance in generalization tasks.
These future studies will probably highlight even more
individual differences, and will allow us to define more
precisely what a strategy is, how it is represented in the
brain, and to predict and test behavioral consequences
in a number of novel situations.
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Materials and Methods

Subjects
All the details about the experiment are reported in the
original article [24]. Here we give only a brief description
of these details.

Two male rhesus monkeys (Macaca mulatta, 10–11kg
in weight) were trained to perform a visually cued rule-
based task. All experimental procedures were in agree-
ment with the Guide for the Care and Use of Laboratory
Animals and were approved by the National Institute of
Mental Health Animal Care and Use Committee.

Each monkey, while performing the task, sat in a pri-
mate chair, with the head fixed in front of a video mon-
itor 32cm away. An infrared oculometer (Arrington Re-
search, Inc., Scottsdale, AZ) recorded the eye positions.

Data collection and histology
Up to 16 platinum iridium electrodes (0.5–1.5MΩ at
1kHz) were inserted into the cortex with a multielec-
trode drive (Thomas Recording) to record single-cell ac-
tivity from dorsolateral prefrontal cortex (Figure 1C).
The recording chambers (18mm inner diameter) were
positioned and angled according to magnetic resonance
images (MRI). The single-cell potentials were isolated
off-line (Off Line Sorter, Plexon), based on multiple cri-
teria, including principal component analysis, the mini-
mal interspike intervals, and close visual inspection of
the entire waveforms for each cell. Eye position was
recorded with an infrared oculometer (Arrington Re-
search). The recording sites were localized by histologi-
cal analysis and MRI (see Tsujimoto et al. [24] for more
information).

The behavioral task
A sequence of the task events of the visually cued rule-
based task is shown in Figure 1A [24, 40, 41, 42]. For
clarity, previous works’ authors referred to this task as
the visually cued strategy task. The stay and the shift
rules were designed as strategies because they repre-
sented a simplification of the repeat-stay and change-
shift strategies used in previous neurophysiological stud-
ies [43, 44]. These two strategies were identified by
Bussey et al. [45] studying the behavior of monkeys dur-
ing the learning of visuomotor associations. The mon-
keys in their study adopted spontaneously the strategies
to facilitate learning. As opposed to the previous studies
of this task, here we refer to “strategy” as a possible way
adopted by the monkey to solve the task, and to “rule”
what is instructed to the monkey to perform the task.
In each trial, the monkey was required to make a sac-
cade towards one of the two spatial targets, according to

a shift or stay rule cued by a visual instruction (Figure
1B). The appearance of a fixation point (a 0.6◦ white
circle) located at the center of the video screen, with
2 peripheral targets (2.0◦ white square frames) placed
11.6◦ to the left and right of the fixation point, rep-
resented the beginning of a trial. The monkey had to
maintain fixation on the central spot for 1.5s; after that,
a cue period of 0.5s followed. During the cue period, a
visual cue appeared at the fixation point. In each trial,
one visual cue was chosen pseudorandomly from a set
of four visual cues: a vertical (light gray) or horizontal
(light gray) rectangle with the same dimensions (1.0◦×
4.9◦) and brightness, or a yellow or purple square with
the same size (2.0◦× 2.0◦) (Figure 1B). Each visual cue
instructed either the stay or shift rule. The stay rule,
instructed by the vertical rectangle or the yellow square,
cued the monkey to choose the same target chosen in
the previous trial (as shown in the two consecutive tri-
als’ example in Figure 1A). Conversely, the horizontal
rectangle or the purple square instructed the shift rule,
which required the monkey to choose the target not cho-
sen in the previous trial. The end of one trial and the
beginning of the next one were separated by an intertrial
interval of 1s. The first trial required a random choice
of the target since no previous response could be inte-
grated with the information on the current rule. More-
over, in the first trial, the monkey was always rewarded.
The monkey had to maintain the fixation on the central
point during the whole fixation period (1.5s) and the cue
period (0.5s) as well as during a subsequent delay period
of 1.0, 1.25, or 1.5 s, pseudorandomly selected. The fix-
ation window was a ±3◦ square area centered on the
fixation point. Both monkeys maintained fixation ac-
curately and rarely made a saccade within the fixation
window [24, 40]. Any fixation break during the fixation,
cue, or delay periods led to abortion of the trial. The
fixation point and the two peripheral targets were kept
on the screen for the whole duration of the delay period.
The disappearance of the fixation spot represented a go
signal, instructing the monkey to choose one target by
making a saccade to one of them. When the monkey
fixated one of the targets, both squares became filled.
The entry of the gaze into the response window was la-
beled as target acquisition. The monkey had to maintain
the fixation on the target for 0.5s (pre-feedback period).
Any fixation break during the pre-feedback period led
to abortion of the trial. After the pre-feedback period,
in the case of correct response, feedback was provided
as a liquid reward (0.2ml drop of fluid) or, in case of
incorrect response, as red squares over both targets. In
the case of an error, the same cue was presented again in
the following trial, called “correction trial”. Correction
trials were presented until the monkey responded cor-
rectly. Usually, after an error, there was not more than
a correction trial [24, 40].
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Neurons and trials sample selection, pseudo-
simultaneous population trials, and task condi-
tions definition
We analyzed the neural activity of each monkey sepa-
rately, only in complete and correct trials, from 400ms
before the cue onset until 500ms after the cue offset.
Linear decoders were trained and tested on pseudo-
simultaneous population trials (pseudo trials). We de-
fined a pseudo trial as the combination of spike counts
randomly sampled from every neuron in a specific time
bin and task condition [2]. The task condition is one of
the eight possible combinations of task variables listed in
Figure 1D. We analyzed the activity of neurons recorded
in at least five trials per task condition.

Pseudo trials were generated as follows: given one time
bin t and task condition p, for every neuron we ran-
domly picked a trial of task condition p, and we com-
puted the spike count in the time bin t. The single
pseudo trial γ, for condition p at time bin t, is then
γp(t) = (γp

1 (t), γ
p
2 (t), ..., γ

p
N (t)), where N is the number

of recorded neurons, and γp
i (i is the neuron identity,

i = 1, ..., N) is the spike count. We repeated this pro-
cedure 100 times, ending up with 100 pseudo trials per
task condition and time bin.

Since we did not know a priori which task variables
are represented by the neural ensemble, and in order not
to introduce any bias in the selection of the task vari-
ables to decode, we defined a dichotomy as each pairing
of the task conditions in group of four, for a total of 35
dichotomies [6]. Each dichotomy is a variable that could
be decoded. Four of the 35 dichotomies overlap with the
task variables. All the other dichotomies cannot be ex-
plicitly interpreted in terms of any of the task variables,
but rather as a combination of task variables which we
referred to as other dichotomies. In particular, the four
dichotomies which overlap with the task variables are
the previous response, rule, current response, and the
shape of the visual cue (Figure 1D). The latter identifies
whether the visual cue was a rectangle or a square, that
could also be interpreted as grey colored and non grey
colored cue.

Decoding of the neural population activity
For each dichotomy, that is a binary variable, we trained
a Support Vector Machine (SVM) classifier with a linear
kernel [46] to classify the spike count into either of the
two values of the dichotomy. In all the SVM classifiers
we set a regularization term equal to 103. We tried a
range of regularization terms from 1 up to 103, without
any significant change in the final results. We decoded
the neural activity in a 200ms time bin stepped by 20ms
along time from 400ms before the cue onset until 500ms
after the cue offset. The linear classifier was trained
on pseudo trials built from randomly selected trials. In

more details, for every neuron we selected the 80% of the
trials as training set, and the remaining 20% as testing
set to build the pseudo trials. We cross validated the
linear decoder 100 times, by randomly choosing the 80%
of the pseudo trials as training set, and the remaining
20% as testing set. We showed the final accuracy of the
linear decoder as the ratio between the number of cor-
rect predictions to the total number of predictions on
the testing set averaged across the cross validations. To
evaluate the statistical significance of the neural signal,
we built a null model by randomly shuffling the task con-
dition labels among the pseudo trials. For each shuffle,
we trained a linear decoder on the shuffled training set
and we assessed its accuracy on the shuffled testing set.
We repeated the shuffle procedure 100 times obtaining a
null model distribution. We defined the chance interval
as the interval between 2 standard deviations of the null
model distribution around the chance level at 50%.

The data were extracted by custom MatLab functions
(The MathWorks, Inc., Natick, MA, USA). All decoding
analyses were performed by using scripts of the scikit-
learn SVC package along with custom Python scripts
[46].

Neural representation of variables in an abstract
format and the Cross Condition Generalization
Performance
After assessing which task variables are decoded, we
asked in what format they are represented. In partic-
ular, we asked whether they are represented in an ab-
stract format. A variable could be defined to be in an
abstract format when a linear decoder trained to classify
the value of the variable can generalize to new task condi-
tions never used for training. To assess to what extent a
variable is in an abstract format, we computed the Cross
Condition Generalization Performance (CCGP), that is
the performance of a linear decoder in generalizing to
new task conditions not previously used for training [6].
The difference between the traditional cross-validated
linear decoder and the cross condition generalization is
in the data used for training and testing the classifier. In
the traditional-fashioned decoding analyses, a decoder is
trained on a sub-sample of trials randomly picked from
each (experimental) condition, and tested on the held-
out trials retained from each condition. At the end, the
decoder is trained and tested on all the conditions, and
the generalization is only across trials. The CCGP, in-
stead, is computed by training a linear decoder only on a
fraction of trials from a subset of conditions, and tested
on trials belonging to new conditions not used for train-
ing. The generalization is now not only across trials, but
also across conditions.

We assessed the CCGP for each of the 35 dichotomies
as follows. Given a dichotomy, defined as a pairing of
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task conditions in group of four, we trained the decoder
to classify the value of the dichotomy using trials from
three task conditions from each side of the dichotomy,
and tested it on the one held out condition from each
side. Since each side of the dichotomy has four task con-
ditions, there are 16 possible ways of choosing the train-
ing and testing condition set. For each choice of training
and testing, we applied 10 cross validations, randomly
choosing the 80% of training trials and 20% of testing
trials. We reported the average performance across all
the 16 possible choices of training and testing conditions
and the 10 cross validations for each dichotomy. To as-
sess the statistical significance of the CCGP, we built a
null model where the geometrical structure in the data
was destroyed, but keeping the variables still decodable
[6]. To do that, we applied a discrete rotation to the
noise clouds (the trials firing rate of each condition) by
permuting the axes of the firing rate space, and ran-
domly assigning neural activity to neurons. We repeated
this procedure for each cluster separately. We generated
100 null models and for each of them we computed the
CCGP for all dichotomies, as done on real data. We de-
fined the chance interval for the CCGP measure as the
interval between 2 standard deviations of the null model
distribution around the chance level at 50%.

Multi Dimensional Scaling analysis
We used the Multi Dimensional Scaling (MDS) transfor-
mation to seek a low-dimensional representation of the
data. We computed the metric MDS, where the dissim-
ilarity matrix was built as follows. The neural activ-
ity was first averaged across pseudo trials within each
task conditions, and then we constructed a pc × pc ma-
trix (with pc indicating the number of conditions) which
stored the Euclidean distance between the average fir-
ing rate between each paired condition. In order to keep
information regarding the noise cloud of each task condi-
tion, we normalized the Euclidean distance matrix by the
squared root of the sum of the variance of each condition
along the distance direction between the two clouds. For
the analysis based on single pseudo trial (Figure 3B), the
dissimilarity matrix was defined as a pt×pt matrix, with
pt indicating the total number of pseudo trials across
all conditions. This dissimilarity matrix stored the Eu-
clidean distance between the firing rate of each pair of
pseudo trials, and it was normalized as described above.

Behavioral analyses
We computed the behavioral performance and reaction
times of each monkey separately, combining all the ses-
sions we considered for the neural analyses. We com-
puted the reaction time (RT) only in complete and cor-
rect trials. The RT is defined as the time difference be-

tween the go signal and target acquisition in each trial.
In order not to bias the results due to outliers, we re-
moved those trials with RT larger than 3 standard devi-
ations from the mean. Since the neural analyses revealed
that the difference between the two monkeys comes from
different representational geometry of the rule and the
shape of the visual cue, we grouped trials per rule (stay-
shift) and shape (rectangle-square), for a total of four
conditions. We compared the distribution of RTs of tri-
als with different rules and shapes, separately. To test
whether the RTs distributions were significantly differ-
ent, we run the Mann-Whitney U-test (p-value<0.05).

Moreover, for each of the previous four task condi-
tions, we computed the average performance across
the sessions. The error bar of the estimated average
performance was assessed by applying the following
formula [47]:

σ+/− =
Pn+ k2

2 ± k
[
P (1− P )n+ k2

4

] 1
2

n+ k2
,

(1)

where n is the number of trials used to compute the per-
formance across sessions, P is the average performance,
and k is the confidence level in terms of standard de-
viation that we fixed equal to 2. To assess whether
the performance was statistically different between dif-
ferent conditions, we applied the chi-squared test (p-
value<0.05).

Multi-Linear Regression Model for behavior
To better investigate the behavioral differences between
the two monkeys, we fitted a multi-linear regression
model on a single trial basis. We included in the model
only complete and correct trials, and we discarded those
trials with reaction time larger than 3 standard devia-
tions from the mean as done in the behavioral analysis.
For each trial, we took three independent binary input
factors to the model: rule (+1/-1), previous response
(+1/-1), and shape (+1/-1). We also included all the in-
teraction terms. The output of the model is the reaction
time, and the multi-linear model is defined as follows:

RT =ω1 × [rule] + ω2 × [previous] + ω3 × [shape]+

ω4 × [rule ∗ previous] + ω5 × [previous ∗ shape]+
ω6 × [rule ∗ shape] + η,

(2)

where ω1,...,6 are the weights of each factor, and η is a
constant term. We fitted 100 models, each time ran-
domly subsampling trials from each task conditions, in
each monkey separately. The number of trials per task
condition was set to the minimum number of trials across
conditions. We fitted each model by using the ordinary
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least squares method [48]. For each factor, we com-
pared the weights’ distributions across models between
the two monkeys using the Mann-Whitney U test (p-
value<0.05).

Representational geometry in an artificial neu-
ral network trained to perform the visually cued
rule-based task
We trained a two layers feed-forward neural network to
perform the visually cued rule-based task. The inputs to
the network are the features of the visual cue and previ-
ous response, because they are the information provided
to the monkeys to perform the task. In more details, the
features of the visual cue are defined by two one-hot vec-
tors, with three units each encoding whether the visual
cue is a vertical, or horizontal rectangle, or a square, and
the color of the cue, i.e. yellow, purple,or gray. The pre-
vious response (right, left) is encoded by a one one-hot
vector with two units. We added a gaussian noise to the
input patterns (µ = 0, σ = 1). For each training epoch
we generated 4000 trials, 500 trials per task condition.
The input is passed through two hidden layers of 100
Rectified Linear units each. The output of the network
is the current response (right,left) encoded by a one-hot
vector of two units.
To train the network, we used the PyTorch framework

[49]. Each layer’s weights were randomly initialized from
uniform distribution U(-k, +k), where k = 1√

nfeatures
,

and nfeature is the number of layer’s units. We trained
the network with back-propagation using the Adam algo-
rithm as optimizer (“Adam” in PyTorch), with learning
rate equal to 0.001. Training proceeded for 300 epochs of
500 mini-batches each. We used the Mean Squared Error
as loss function (“MSELoss” in PyTorch), and rectified
linear function (’ReLu’ in PyTorch) as activation func-
tion for each unit. We analyzed the representational ge-
ometry of the activation of the units in the second hidden
layer along the training epochs, using the same analytic
tools we used to analyze the neural data.
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Fig. 1: Multi-Linear regression analysis results. Mean of the distribution of the weights of 100 multi-linear
regression models. The reaction time is predicted on a single trial using three factors: previous response,
rule, and shape along with the interaction terms. The interaction of previous response with rule has the
strongest factor in both monkeys, since the combination of these two factors is essential to elaborate the
correct response. The error bars are the 2 standard deviations of weights across of 100 models. n.s.: not
significant; *** Mann-Whitney U test: p<0.001.
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Fig. 2: Decoding accuracy of the main four task variables along the training of an artificial neural
network. Decoding accuracy of task variables in the second hidden layer of a two layers feed-forward
neural network during the training to perform the visually rule-based task. After ∼50 training epochs, all
the variables are decoded with high accuracy until the end of the training epochs. The shaded area around
the mean signal is the standard error of the mean across 10 models.
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