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Abstract
Single cell and spatial technologies that profile gene expression across a whole tissue

are revolutionizing the resolution of molecular states in clinical tissue samples. Commercially

available methods that characterize either single cell or spatial gene expression are currently

limited by low sample throughput and/or gene plexy, lack of on-instrument analysis, and the

destruction of histological features and epitopes during the workflow. Here, we analyzed large,

serial formalin-fixed, paraffin-embedded (FFPE) human breast cancer sections using a novel

FFPE-compatible single cell gene expression workflow (Chromium Fixed RNA Profiling;

scFFPE-seq), spatial transcriptomics (Visium CytAssist), and automated microscopy-based in

situ technology using a 313-plex gene panel (Xenium In Situ). Whole transcriptome profiling of

the FFPE tissue using scFFPE-seq and Visium facilitated the identification of 17 different cell

types. Xenium allowed us to spatially resolve these cell types and their gene expression profiles

with single cell resolution. Due to the non-destructive nature of the Xenium workflow, we were

able to perform H&E staining and immunofluorescence on the same section post-processing

which allowed us to spatially register protein, histological, and RNA data together into a single

image. Integration of data from Chromium scFFPE-seq, Visium, and Xenium across serial

sections allowed us to do extensive benchmarking of sensitivity and specificity between the

technologies. Furthermore, data integration inspired the interrogation of three molecularly
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distinct tumor subtypes (low-grade and high-grade ductal carcinoma in situ (DCIS), and invasive

carcinoma). We used Xenium to characterize the cellular composition and differentially

expressed genes within these subtypes. This analysis allowed us to draw biological insights

about DCIS progression to infiltrating carcinoma, as the myoepithelial layer degrades and tumor

cells invade the surrounding stroma. Xenium also allowed us to further predict the hormone

receptor status of tumor subtypes, including a small 0.1 mm2 DCIS region that was triple positive

for ESR1 (estrogen receptor), PGR (progesterone receptor) and ERBB2 (human epidermal

growth factor receptor 2, a.k.a. HER2) RNA. In order to derive whole transcriptome information

about these cells, we used Xenium data to interpolate the cell composition of Visium spots, and

leveraged Visium whole transcriptome information to discover new biomarkers of breast tumor

subtypes. We demonstrate that scFFPE-seq, Visium, and Xenium independently provide

information about molecular signatures relevant to understanding cancer heterogeneity.

However, it is the integration of these technologies that leads to even deeper insights, ushering

in discoveries that will progress oncology research and the development of diagnostics and

therapeutics.

Introduction
High-throughput methods in single cell genomics have made it possible to cluster

thousands to millions of cells from a single experiment into distinct types based on whole

transcriptome gene expression and cell surface protein data, sparking ambitious collaborations

to profile every cell type in the human body (Zheng et al. 2017, Regev et al. 2017, He et al.

2020, Karlsson et al. 2021, Eraslan et al. 2022). Meanwhile, advances in spatial transcriptomics

have introduced unbiased gene expression analysis with spatial context for tissue sections,

combining genomics, imaging, and tissue pathology (Rao et al. 2020, Maynard et al. 2021). The

10x Genomics Chromium (single cell) and Visium (spatial) platforms are complementary in that

Chromium data have single cell resolution, but lack spatial context, while Visium data have

spatial context, but may require integration with single cell data to infer detailed information

about cell type composition. Both technologies require destruction of tissues during the

experimental workflow, necessitating that hematoxylin and eosin (H&E) and

immunofluorescence (IF) staining be performed prior or on serial sections. Although there has

been progress in integrating these datasets computationally downstream through transcript

distribution prediction and cell type deconvolution (Li et al. 2022), high resolution cell-cell and
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ligand-receptor interactions that comprise intercellular communication is lacking, as is the

definitive assignment of transcripts to a particular cell with spatial context at high gene plexy. An

ideal solution would provide high-plex, high throughput, multi-modal read outs with spatial

context and subcellular resolution, without compromising tissue integrity and be compatible with

both fresh frozen (FF) and formalin-fixed paraffin embedded (FFPE) tissues.

Here, we introduce the novel Xenium In Situ Technology, that offers the aforementioned

features, along with a large imageable area and integration of gene expression with histological

images (H&E and IF staining) in the same tissue section. The initial commercial Xenium kits will

support up to 400 gene plexy with up to 100 add-on custom RNA targets that can be spiked into

pre-designed panels, and a throughput of up to ~2.8 cm2 of imageable area per slide (up to ~17

cm2 per week). The platform is built to support an even higher throughput, gene plexy over

1000, and protein and RNA measurements on the same section. We also introduce RNA

templated ligation (RTL) technology for the Chromium platform (Fixed RNA Profiling) and apply

it to FFPE tissues (scFFPE-seq), which unlocks vast biobanks of samples while also improving

sensitivity. Using scFFPE-seq, Visium and Xenium on serial sections of a single

FFPE-preserved breast cancer tissue block (Fig. 1), we demonstrate how whole transcriptome

and targeted in situ data can be integrated to provide highly complementary and additive

biological information. scFFPE-seq and Visium allowed us to annotate the cell types in the

sample, which was further refined by mapping the transcripts to the Xenium data. Xenium

provides subcellular spatial resolution, which we show is particularly suited for studying tumor

invasion in ductal carcinoma in situ (DCIS), due to its high molecular complexity and close

proximity of different cell types. Furthermore, using Xenium, we identified a cell type positive for

the RNA of three breast cancer classifying receptors (estrogen, progesterone, and HER2) that

the other technologies did not detect. Integration of Visium and Xenium data allowed us to

derive high resolution spatially resolved whole transcriptome information for this group of cells,

revealing differentially expressed genes associated with the triple-positive tumor region. These

findings highlight the synergistic relationship between single cell and spatial data, conspiring to

provide a deeper understanding of the complex and diverse network of cells within the tumor

microenvironment.
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FIGURE 1

Figure 1. Experimental design. A single FFPE tissue block was analyzed with a trio of complementary
technologies. Top: the Chromium Fixed RNA Profiling workflow (scFFPE-seq), with the Miltenyi FFPE
Tissue Dissociation protocol. Middle: Visium CytAssist enabled whole transcriptome analysis with spatial
context, and was readily integrated with single cell data from serially adjacent FFPE tissue sections.
Bottom: The novel Xenium In Situ platform used a microscopy based read-out. A 5 μm tissue section was
sectioned onto a Xenium slide, followed by hybridization and ligation of specific DNA probes to target
mRNA, followed by rolling circle amplification. The slide was placed in the Xenium Analyzer instrument for
multiple cycles of fluorescent probe hybridization and imaging. Each gene has a unique optical signature,
facilitating decoding of the target gene, from which a spatial transcriptomic map was constructed across
the entire tissue section. The Xenium data could be easily registered with post-Xenium IF / H&E images
(as the workflow is non-destructive to the tissue) and integrated with scFFPE-seq and Visium data.
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Results

Single cell FFPE and Visium data collectively provide whole transcriptome information
with spatial context from human breast cancer FFPE tissue. Breast cancer is a complex

disease of multiple pathologies: each tumor subtype has unique features and significant cellular

and molecular heterogeneity. To better understand tumorigenesis and the cancer ecosystem, it

is necessary to dissect cellular components and molecular profiles within the spatial context of

the tumor landscape. Using discovery-based technologies, we characterized a breast cancer

sample with both single cell and spatial whole transcriptome data. First, we generated

Chromium scFFPE-seq data from 2 x 25 μm FFPE curls (see Methods) of a breast cancer block

(Stage II-B, ER+/PR−/HER2+) that were adjacent to the tissue sections used for Visium and

Xenium workflows. Analysis of the scFFPE-seq data yielded 17 well-segregated clusters based

on unsupervised clustering analysis, with a median of 1,480 genes identified per cell.

Next, we generated Visium whole transcriptome data by collecting 5 μm tissue sections

adjacent to those used for scFFPE-seq. Sections were H&E stained prior to imaging, followed

by Visium CytAssist library preparation and sequencing. The CytAssist instrument facilitates the

transfer of analytes from standard glass slides to Visium slides, and uses an updated human

probe set, identical to those in the Chromium scFFPE-seq product (18,536 genes targeted by

54,018 probes in the Visium CytAssist probe set vs. 17,943 genes targeted by 18,630 probes in

the Visium for FFPE v1 probe set). Dimensionality reduction of the Visium data yielded 17

spatial clusters (coincidently, the same number of clusters as the scFFPE-seq data), with a

median of 5,712 genes identified per spot.

With these two discovery-based datasets in hand, and the guidance of existing human

breast cancer references (Karlsson et al. 2021), we annotated the scFFPE-seq clusters (Fig.

2A) and mapped cell types onto Visium data (Fig. 2B, C) using an iterative process. Ten Visium

clusters were annotated such that they could be unequivocally assigned to cell types or disease

states (Fig. 2B), while the other seven clusters had mixed cell type compositions. Visium

pinpointed the spatial location of three tumor domains that were revealed as distinct clusters by

scFFPE-seq, including two molecularly distinct types of ductal carcinoma in situ (DCIS), named

here DCIS #1 and #2, and invasive tumor (Fig. 2C). The Visium workflow also delineated the

general territory of immune and stromal cells and was able to recover transcripts from

adipocytes, a delicate cell type that can rupture and/or stick to plastic surfaces during

dissociation (Picon-Ruiz et al. 2020, Benitez & Shonida 2020; Fig. 2C).
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scFFPE-seq and Visium technologies resolved cellular heterogeneity at single cell level

and provided spatial insights, respectively. The integration of scFFPE-seq and Visium data was

instrumental to locating cell types and transcripts within the human breast cancer tissue section.

However, areas where cell types coexist in close proximity cannot be precisely spatially

segregated within the tissue. For example, we observed substantial overlap between DCIS,

myoepithelial, immune and stromal markers, and unannotated Visium clusters representing

mixtures of cell types. Thus, we next set out to further decipher the cellular composition of the

human breast cancer sample in particular, to resolve gene expression within the myoepithelial

layer thinly sandwiched between the glandular epithelial cells, the basement membrane and the

surrounding stroma.
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FIGURE 2

Figure 2. Chromium scFFPE-seq and Visium CytAssist data provide whole transcriptome
information with spatial context from FFPE tissues. A human breast cancer sample was obtained as
an FFPE block (annotated by pathologist as invasive ductal carcinoma) and processed for single cell
analysis and spatial transcriptomics as described in Fig. 1. (A) Dimension reduction of the scFFPE-seq
data yielded a t-SNE projection with 17 unsupervised clusters. Each point represents a cell and the
colors/labels show annotated cell types (derived from Wu et al. 2021 and Karlsson et al. 2021). (B) t-SNE
projection of Visium spots also identifies 17 clusters by unsupervised clustering. Based on differential
gene expression analysis, ten clusters could be unequivocally assigned to cell types, while the others
were mixtures of cell types. (C) H&E staining conducted pre-CytAssist is shown for reference alongside
the spatial distribution of clusters in (B). Cell type-specific marker genes are expressed as log2(normalized
UMI counts). The Visium data elucidated the spatial location of two molecularly distinct DCIS and invasive
subtypes and the general locations of immune, myoepithelial, adipocytes, and stromal cells. Additionally,
Visium CytAssist features mitochondrial probes (e.g., MT-ND1), and their spatial distribution correlates
with the invasive region of the tissue section.
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Xenium data provide spatially resolved expression of genes at single cell resolution. We

next used the Xenium workflow to produce extremely high resolution gene expression data for a

targeted panel of genes (Fig. 3). We used 280 genes from the Xenium Human Breast Panel

with 33 add-on genes for a total of 313 genes, selected and curated primarily based on single

cell atlas data for human breast tissues, including healthy and tumorigenic states (Pal et al.

2021, Bhat-Nakshatri et al. 2021, Karlsson et al. 2021) (Supp. Fig. 1). We visualized the raw

fluorescence image after one cycle of decoding, revealing the detailed structure of the tissue

with high resolution (Fig. 3A). Further interrogation of the tissue using the Xenium Explorer

software allowed us to select relevant genes from the panel to identify stromal, lymphocytes,

macrophages, myoepithelial, endothelial, DCIS, and invasive tumor cells (Fig. 3B). We also

conducted post-Xenium H&E using standard staining protocols (Fig. 3C), which demonstrates

that tissue integrity remains intact even after the full Xenium workflow.

Cell segmentation of Xenium data enables downstream integration and benchmarking
with Chromium and Visium data. The gene-cell matrix, or gene-spot matrix, is a standard

output format in single cell and spatial transcriptomics that can be input in a variety of

community developed tools, including those that integrate different data modalities (e.g. Seurat).

In order for Xenium data to be output in this format, it is first necessary to define cell boundaries

on the image(s) and then assign transcripts to cells (analogous to the cell-calling stages in

single cell transcriptomics). To accomplish this, nuclei were detected from DAPI and expanded

outwards until either 15 μm maximum distance was reached, or the boundary of another cell

was reached (see Methods). Cell segmentation boundaries can be visualized using the Xenium

Explorer software (Fig. 3D), and the on-instrument pipeline outputs Xenium data in standard

gene-cell matrix formats, in which transcripts are explicitly assigned to cells. In the section

analyzed here, we observed 167,885 total cells, 36,944,521 total transcripts (Q score ≥ 20; see

Methods), with a median of 166 transcripts per cell (Fig. 3E, F). When we downsampled the

scFFPE-seq data to the 313 genes on the Xenium panel, we observed a median 34 genes per

cell for scFFPE-seq compared to a median 62 genes per cell in the Xenium data (Supp. Fig. 2A,

B). Fifty percent of total transcripts observed contribute to 27 genes (i.e., complexity

measurement; Supp. Fig. 2C). Observed counts of negative controls were minimal (Supp. Fig.

2D). Negative control probes accounted for 0.026% of the total counts (Q ≥ 20). Decoding

controls accounted for 0.01% of the total counts (Q ≥ 20).
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Chromium scFFPE-seq data confirms that the Xenium gene panel represents major cell
types within human breast cancer tissue. To validate our 313-plex human breast Xenium

panel, we explored the relative expression of panel genes in expected cell types. The

scFFPE-seq and Xenium data were converted to the same gene-cell matrix format for

dimension reduction and t-SNE analysis. We transferred supervised scFFPE-seq annotations

(see Fig. 2A) to the Xenium data (Supp. Fig. 3). In 92% of the cases, cells were unambiguously

identified as a single cell type in Xenium data. We filtered the whole transcriptome (17,696

genes) scFFPE-seq data (Fig. 2A) to only the 313 genes used in the Xenium human breast

panel and found that the same cell type populations were identified (Fig. 3G), confirming that

the Xenium human breast panel faithfully captures biological heterogeneity.

The accurate assignment of transcripts to cells allows the same expected cell types to

be identified from the Xenium data as from the single cell data, albeit with much higher density

due to the greater number of cells analyzed in Xenium (Fig. 3H, I). We mapped the localization

of the cell types identified to generate a Xenium spatial plot (Fig. 3J), this data can be explored

interactively here (also see Data Sharing). Analysis of two serial sections demonstrated the

reproducibility of the technology, with the replicates having cell type proportions that were nearly

identical, and transcript counts that were highly correlated (r2 = 0.99) (Supp. Fig. 5).
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FIGURE 3

Figure 3. Xenium data provide extremely high resolution single cell information with spatial
localization from a targeted panel of genes. (A) Maximum intensity projection of raw fluorescence
signal in Cycle 1 from a 5 μm FFPE section. Fifteen of such images (unprojected, original z-stacks), one
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per cycle, were input into the on-instrument pipeline to decode 313 genes. (B) Selected genes
representing major cell types are shown: stromal (POSTN), lymphocytes (IL7R), macrophages (ITGAX),
myoepithelial (ACTA2, KRT15), endothelial (VWF), DCIS (CEACAM6), and invasive tumor (FASN). (C)
H&E staining performed post-Xenium workflow, highlighting the minimal impact of the Xenium assay on
tissue integrity. (D) Deep learning-based cell segmentation assigns individual transcripts to cells. (E)
Histogram showing the distribution of transcripts per cell (Q ≥ 20). Dotted lines: 10th percentile = 61 and
90th percentile = 372 median transcripts per cell. Solid line: 50th percentile = 166 median transcripts per
cell. (F) Log10(transcripts per cell) across the entire section. (G) t-SNE projection of scFFPE-seq data
using all 17,696 genes (left) then down-selected to 313 genes (right). (H) t-SNE projection of labeled
Xenium cells. Cell annotation was produced through supervised labeling from scFFPE-seq data. Cells
which were not unambiguously identified in the Xenium data (<50% of the nearest neighbors coming from
one cell type) were unlabeled (~8% of cells). (I) Heatmap representation of the t-SNE (H) showing the
relative expression of genes across different cell types found in the Xenium data. Scale bar is a z-score
computed across cell types for each gene, by subtracting the mean and dividing by the standard
deviation. See Supp. Fig. 4 for the corresponding scFFPE-seq heatmap. (J) Spatial plot with cell type
labels transferred.

Xenium detects RNA transcripts with high sensitivity and specificity. Xenium and

scFFPE-seq are new technologies, and therefore, it is prudent to benchmark their sensitivity

against each other and relative to existing Chromium technologies that use fresh or frozen

(rather than fixed) cells. We quantified sensitivity using median gene expression such that high

or low expressors would not bias our measurement. When sequencing depth was kept constant

across platforms (~10,000 reads per cell), the median gene sensitivity of scFFPE-seq was

higher than the existing 10x single cell platforms (Chromium 5' Gene Expression (GEX) and 3'

GEX (Supp. Fig. 6). To benchmark Xenium and scFFPE-seq, we compared the number of

transcripts per cell (Xenium) to the number of UMIs per cell (scFFPE-seq), downsampling to the

number of genes on the Xenium panel. We found that Xenium is 1.4x more sensitive than

scFFPE-seq (Fig. 4A).

Next, we compared Visium and Xenium data by registering the corresponding H&E

images to identify the common capture area (78% of the full Visium dataset) (Fig. 4B), which we

focused on for subsequent analyses. Since Visium probes the whole transcriptome and Xenium

probes 313 genes, Visium exhibited 3.6x more total transcripts within the shared region (Fig.

4B). Visium and Xenium exhibited concordant spatial expression (Supp. Fig. 7),  exemplified by

the tumor-associated epithelial marker TACSTD2 (Fig. 4C, D). We mapped Xenium expression

data onto the Visium capture area using the H&E registration information, and calculated

pseudobulk counts within each Visium spot (Fig. 4E). The median gene sensitivity of Xenium

across all genes on the human breast probe panel compared to Visium was 8.4x higher (Fig.

4F). To examine specificity we compared TACSTD2 transcript counts for Visium and Xenium

and observed strong correlation (r2 = 0.88) (Fig. 4G), despite the increased sensitivity of the

Xenium platform. While comparing individual genes allows us to benchmark the Xenium
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workflow, the real power of in situ analysis is the ability to spatially localize multiple genes

simultaneously at high resolution. This is especially useful in cases where many cell types

coexist in close proximity such that they are not resolvable by other scRNA-seq and current

capture-based spatial transcriptomics methods. When we examined a region of atypical ductal

hyperplasia (ADH) in this tissue, we were able to clearly localize key markers for eight different

cell types (Fig. 4H-J; Supp. Fig. 8).
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FIGURE 4
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Figure 4. Xenium, Visium and scFFPE-seq are benchmarked for specificity, sensitivity, and
resolution. (A) Chromium scFFPE-seq data down-selected for only the 313 genes that appear on the
Xenium gene panel. Violin and scatter plots showing the total number of transcript counts per cell
detected in the Xenium data vs. UMIs per cell in the scFFPE-seq data. (B) Registration of Visium and
Xenium H&E allows for the isolation of a common area between the two platforms. The number of total
transcripts within this common area is reported. (C-E) Tumor epithelial marker TACSTD2 gene expression
is shown as (C) Xenium transcript localization plot (decoded at Q ≥ 20), (D) Visium spatial plot
(counts/spot), and (E) pseudobulk Xenium expression counts mapped to Visium spots. Resolution
improvements from Visium are notable in the Xenium data, even at low magnification (compare C and D).
(F) Sensitivity scatter plot expressed as pseudobulk counts per spot, quantified for all 313 genes on the
Xenium panel. Dotted line represents X=Y; solid line is 10X = Y. (G) Comparison of Xenium and Visium
data (counts per spot) showing high spatial correspondence (r2 = 0.88). (H) One small region of interest
(ADH; atypical ductal hyperplasia) with a high diversity of cell types in close proximity is viewed with H&E
staining. (I) Xenium spatial plot showing decoded transcripts for selected genes. Corresponding Visium
spatial plots of the same genes are available in Supp. Fig. 8. (J) Closer view to reveal detailed resolution
of Xenium nuclei (gray) and selected transcripts.

The Xenium workflow preserves epitopes, allowing RNA and protein to be visualized
simultaneously in the same tissue section. Although there are some technologies available

that analyze RNA and protein expression together, few methods allow for simultaneous

visualization of both analytes on the same section at scale. Xenium on-instrument biochemistry

and decoding cycles preserve protein epitopes, allowing for downstream IF (Fig. 5). The

decrosslinking protocol for FFPE aids not only in RNA accessibility for the DNA probes, but also

serves as an antigen retrieval step. Autofluorescence quenching (see Methods) substantially

improves the signal-to-noise ratio. We demonstrated that protein epitopes are preserved by

conducting standard immunofluorescence staining, after the Xenium workflow, on the same

section. HER2 (tumor) and CD20 (B cell) antibodies were detected with fluorophore-conjugated

secondary antibodies and their expression was compared to their cognate RNA (Fig. 5A, B).

Their spatial expression was highly correlated, further highlighting the specificity of Xenium

probes, optimized biochemistry, and decoding. Next, we registered the two maximum intensity

projection DAPI images (Xenium on-instrument and immunofluorescence Zeiss microscope) to

each other and overlaid protein and RNA data together (Fig. 5C-E). Because both images were

taken from the same section, we were able to obtain a high degree of concordance and

registration between the RNA and protein expression profiles.
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FIGURE 5

Figure 5. RNA from Xenium and protein immunofluorescence can be visualized simultaneously in
the same tissue section. (A) After 15 cycles of imaging on the Xenium instrument, sections were
immunostained for HER2 and CD20 proteins using fluorescent secondary antibody detection in the 594
and 488 channels, respectively. (B) Comparing the equivalent Xenium RNAs (ERBB2 and MS4A1),
spatial correlation to protein expression was nearly identical. (C-E) Region of interest outlined with yellow
box in (A) and (B). Because RNA and protein data were obtained from the same section, the two DAPI
images were registered and overlaid with RNA and protein expression. HER2 and CD20 protein
immunofluorescence are shown registered with (C) KRT14 RNA (myoepithelial), (D) SFRP4 RNA
(stromal), and (E) APOC1 RNA (macrophages).

Chromium and Xenium integration explores the FFPE tumor microenvironment through
cell type composition and differential gene expression analysis. Ductal carcinoma in situ

(DCIS) is a non-obligate precursor of invasive ductal carcinoma, which can develop into

invasive disease, the treatment of which often involves surgical removal of the lesion and

radiotherapy (Wilson et al. 2022). Because not all DCIS lesions progress to invasive disease,

there is great interest in understanding the molecular mechanisms underpinning invasiveness in

DCIS, which are currently not well known (Wilson et al. 2022, Rebbeck et al. 2022), but could

help to guide better therapeutic strategies. Our goal was to use Xenium and scFFPE-seq data
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to identify different tumor subtypes and supplement H&E imaging and pathology with molecular

targets. First, we used scFFPE-seq data to map three different tumor epithelial cell subtypes

and two myoepithelial subtypes to our Xenium data. We selected three regions of interest

(ROIs): DCIS #1, DCIS #2, and invasive tumor (Fig. 6A). We verified these regions with expert

pathologists who observed that 1) post-Xenium H&E exhibited high quality morphology

comparable to standard H&E, and 2) ROIs were either morphologically distinct or were

surrounded by a unique microenvironment. The pathologist annotation showed that DCIS #1

ROI had a smaller and round intermediate nuclear grade ductal hyperplasia of solid type with

cells that showed mild to moderate variability in size, shape and placement, variable coarse

chromatin, and variably prominent nuclei. DCIS #2 ROI had invasive carcinoma lesions

scattered throughout the stromal connective tissue, surrounding a large aggregate of highly

proliferative ductal carcinoma in situ with two central comedo necrotic formations.

We used scFFPE-seq data to determine proportions of 15 cell types within ROIs in the

Xenium data, including lymphocytes, macrophages, stromal, myoepithelial, and invasive cells.

We identified four major differences in cell type composition across ROIs (Fig. 6B). ACTA2+

myoepithelial cells were found to be prominent in DCIS #2 ROI, uncommon in DCIS #1 ROI,

and absent in the invasive ROI, invasive tumor cells were found within DCIS #2 ROI, and

endothelial cells were found in slightly larger numbers within the invasive ROI. We verified these

findings (Fig. 6C) to illustrate how Xenium and scFFPE-seq data can uncover molecular

differences which are not apparent with H&E pathology alone. The DCIS #2 ROI contained

many more invasive cells than the DCIS #1 ROI,   and also more KRT15+ myoepithelial cells,

suggesting that DCIS #2 ROI is more invasive than DCIS #1 ROI. The invasive ROI had an

extremely high incidence of invasive cell types, and the myoepithelial cell types were entirely

absent. The high resolution of Xenium enables interactions among neighboring cells to be

captured. This is well illustrated in the DCIS #2 ROI with the thin boundary of ACTA2+

myoepithelial cells encircling invasive cells (Fig. 6C).

Finally, we graphed the expression of canonical markers representing seven major cell

types and differentially expressed genes between the tumor subtypes to provide insight into

whether the DCIS ROIs were progressing to an invasive state (Fig. 6D). These analyses

revealed that MZB1 is an exclusive marker of the DCIS #1 ROI and cell type, GJB2+ stromal

cells were found in the DCIS #2 ROI, ALDH1A3, KRT15, and KRT23 were highly expressed in

myoepithelial cells of the DCIS #1 ROI, and the macrophage marker MMP12 was absent from

the invasive ROI.
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FIGURE 6

Figure 6. Integrating scFFPE-seq and Xenium data deciphers differences in cell type composition
and molecular markers between DCIS subtypes and invasive tumor regions. (A) With pathology and
scFFPE-seq guidance, we selected three ROIs capturing DCIS #1, DCIS #2, and invasive tumor cell
types, and all other cell types in their proximity. (B) We determined the proportions of 15 cell types within
these ROIs, not including self-identifying labels (e.g., excluding the DCIS #1 epithelial cell type label from
DCIS #1 ROI). We identified four major differences in cell type composition across the ROIs: *ACTA2+
and KRT15+ myoepithelial cell populations are distinct in DCIS #1 and DCIS #2 ROIs, but completely
absent from invasive tumor ROI;❖invasive tumor cells are found within the DCIS #2 ROI; ⌘ endothelial
cells are found in slightly larger numbers within the invasive ROI. (C) Validation of the finding in (B). (D)
Dot plots showing canonical markers of cell types as well as differentially expressed genes between the
tumor subtypes.

Visium and Xenium integration derive whole transcriptome information from biological
regions of interest. The hormone receptor status of a tumor is important biologically and has

clinical relevance. The hormones estrogen and progesterone play a role in the development of

breast epithelium during puberty, and exposure to ovarian steroids correlates with breast cancer

risk (reviewed by Pal et al. 2021). Clinically, breast cancers are classified based on the

expression of the estrogen receptor (ER / ESR1), progesterone receptor (PR / PGR), and
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human epidermal growth factor receptor 2 (HER2 / ERBB2) (Wu et al. 2021). These

classifications typically define treatment strategies; for example, endocrine therapies are

commonly used to treat patients with ER+ breast cancers (Coates et al. 2015). The tissue block

used in this study was annotated as HER2+/ER+/PR−. The Xenium data shows mostly regions

of ERBB2+ (HER2+) and double positive ERBB2+/ESR1+ (HER2+/ER+) gene expression (Fig.

7A). However, there is a small DCIS region located within an adipocyte region that is triple

positive ERBB2+/ESR1+/PGR+ (HER2+/ER+/PR+). Zooming in on this triple positive ROI with

Xenium, H&E, and cell type labeling, we found a predominantly DCIS #1 tumor epithelium

without a KRT15+ myoepithelial cell layer (Fig. 7B-D). Next, we compared expression of the

three hormone receptor genes between the Xenium and scFFPE-seq data (Fig. 7E-F). While

few PGR+ cells were found in the scFFPE-seq data, they did not seem to coincide with ESR1 or

ERBB2 expression. In the Visium data, this region is represented by only 5-6 spots (Fig. 7G),

which may have gone unnoticed. However, to derive whole transcriptome information from this

triple positive region Visium proved critical, allowing us to identify the triple positive region as

part of cluster 12, with five spots found in the adipocyte region (Fig. 7H). Using the spot

interpolation methods (Supp. Fig. 9), we visualized the cell type proportions within this triple

positive region, and selected the six spots that contain the DCIS #2 cell type (Fig. 7I). We then

performed whole-transcriptome differential gene expression analysis of these six spots

compared to all other Visium spots. This allowed us to identify 94 differentially expressed genes

(log2FC >1.5; p-value < 0.05); four are shown here (Fig. 7J).
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FIGURE 7

Figure 7. Visium and Xenium integration derive differentially expressed genes in a triple-positive
receptor ROI. (A) Xenium spatial plot for ERBB2 (HER2 - gray), ESR1 (estrogen receptor - green), and
PGR (progesterone receptor - magenta) decoded transcripts. (B) Closer view of triple-positive ROI. (C)
Corresponding H&E image. (D) Cell types contained within ROI reveal that this is a DCIS #2 tumor
epithelium. (E) Individual Xenium spatial plots from (B). (F) Chromium scFFPE-seq yields only about 30
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cells that are positive for PGR, but these cells do not express ERBB2 or ESR1. (G) Triple-positive region
is identified in Visium (given a priori knowledge from Xenium) and is (H) part of a distinct cluster (see Fig.
2B). (I) Spot interpolation (see Supp. Fig. 9) provides cell type frequencies within each Visium spot. Color
code legend is shown in (D). (J) Visium H&E and four representative differentially expressed genes in the
tumor epithelium (94 genes; log2FC >1.5; p-value < 0.05) revealed by Visium data across the
whole-transcriptome.

Discussion

Resolving the complexities of the tumor microenvironment is necessary for a

comprehensive understanding of cancer biology. This is illustrated in our study using an FFPE

block from a patient breast biopsy that contains both ductal carcinoma in situ and invasive

ductal carcinoma. In this model, DCIS refers to neoplastic epithelial cells that remain confined

within the ducts, and DCIS is therefore considered nonlethal (Allred 2010, Rebbeck et al. 2022,

Wilson et al. 2022). DCIS can be (albeit is not always) the immediate precursor of potentially

lethal invasive ductal carcinoma, when the ductal morphology is broken down and cancerous

cells invade the stroma. Understanding why some DCIS regions become invasive, while others

do not, remains an open question in the field. Attempts to answer this question often begin with

clinical classifications of FFPE blocks by receptor type (e.g., HER2+/ER+/PR+) and degree of

invasiveness and proliferation, but this taxonomy is insufficient to describe heterogeneity within

the sample. Despite that the block used in our study was annotated by a pathologist as

HER2+/ER+/PR−, we found a region of DCIS that was positive for the RNA of all three

receptors, in just one 5.5 mm x 7.5 mm section of the much larger biopsy (Fig. 7). Furthermore,

the FFPE block was annotated as 25% DCIS, but this did not capture the fact that at least two

molecularly distinct DCIS regions were observed. One DCIS region showed an absence of

myoepithelial markers along with the presence of cells already expressing an invasive molecular

signature (Fig. 6), suggesting a progression to advanced invasive cancer.

Previous attempts to unmask such tumor heterogeneity, using bulk and single-cell

next-generation sequencing (NGS) approaches and immunofluorescence, often target specific

genes associated with an invasive/metastatic prognosis and treatment regime (Risom et al.

2022, Zhong et al. 2020, Garczyk et al. 2015). Our results are consistent with several published

examples, albeit with higher resolution and gene plexy. For example, low keratin15 (KRT15)

expression has been previously suggested to be associated with poor prognosis for patients

with invasive carcinoma (Zhong et al. 2020). Our comparison of two DCIS regions with Xenium

in situ data reveals reduced myoepithelial markers KRT15, KRT23, and ALDH1A3 which could
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potentially be associated with increased invasiveness suggested by the higher expression of

invasive markers found in DCIS#2 (Fig. 6). ALDH1A3 (a.k.a. RALDH3), which catalyzes the

formation of retinoic acid (RA), is pinpointed by Xenium to be highly expressed and spatially

localized to the myoepithelial layer. Given the classical capacity for RA to behave as

morphogen, it would be important to understand where ALDH1A3 produces RA locally within

the tissue. Although RA has varied roles in cancer, there is some evidence in cell lines that it

increases senescence and adhesion to the basement membrane in breast myoepithelial cells,

thereby decreasing the invasive capacity of tumor epithelium (Berardi et al. 2015). Xenium

identified AGR3 as a tumor epithelial marker associated with DCIS ROIs but not the invasive

ROI (Fig. 6). Likewise, Garczyk et al. (2015) found that AGR3 protein expression in breast

tumors is significantly associated with estrogen receptor α and lower tumor grade, suggesting

that AGR3 could serve as a biomarker for prognosis and early detection. This ability of Xenium

to map the localization and expression level of key genes at high resolution holds great promise

to transform, diagnose, prognose and guide more effective treatment management.

Female breast cancer is the most commonly diagnosed cancer globally, with ~2.3 million

new cases reported in 2020 (Sung et al. 2021), and the prevalence of cancer as a leading

cause of premature death is ever-increasing worldwide, particularly in developing nations (Bray

et al. 2021). How can single-cell, spatial, and in situ technologies scale to deal with this

challenge? The key to this question is the ability of these technologies to glean high quality data

from FFPE tissues. FFPE methods for preservation of samples are well established in clinical

practice as they allow for a high degree of morphological detail to be maintained, and as such,

there are large numbers of FFPE specimens in biobanks that are potentially available for

genomics research (Villacampa et al. 2021). Using carefully designed probe sets and RTL

technology, we are able to overcome the formalin-induced obstacles of strand cleavage and

cross-linking that have plagued researchers for decades.

In this study, we used these three independent but complementary genomics

technologies to explore the biology of a single FFPE-preserved tissue block. Our results typify

how the integration of these technologies is an iterative process, and suggest how discoveries

in one data modality can rapidly inspire explorations in another. What did each technology bring

to the table, and what did we learn from integrating them that we could not have learned from a

single technology individually? scFFPE-seq is the most sensitive of the three, particularly for

lowly expressed genes. We found that scFFPE-seq sensitivity is up to 1.4x higher than

Chromium 5′ and 3′ GEX data from patient-matched dissociated tumor cells (Supp. Fig. 6). Of

the three FFPE-compatible assays presented here, scFFPE-seq is the only one offering whole
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transcriptome data at single cell resolution, making it well suited for establishing a baseline of

disease, annotating cell types (Fig. 2A), and designing or validating targeted Xenium gene

panels. Like scFFPE-seq, Visium also provides whole transcriptome data. Although Visium

lacks true single cell resolution at this time, it provides a spatial context that cannot be explored

with single cell technologies. Integrating scFFPE-seq and Visium data was straightforward due

to the identical probe set used in both technologies, and allowed for accurate deconvolution of

cell types that composed the Visium spots (Supp. Fig. 9).

In the early stages of data exploration, Visium and H&E data were used to annotate

three tumor cell types within the scFFPE-seq data by noting that the differentially expressed

genes in specific scFFPE-seq clusters were mapping to the invasive tumor domain, or one of

two spatially distinct DCIS regions in the H&E image (Fig. 2). Hence, Visium alone identified that

there were three spatially distinct tumor subtypes, which was not captured in the pathologist

annotations. We then integrated Xenium and Visium to derive differentially expressed genes

from a tumor region containing cells expressing RNA of three receptors

(ERBB22+/ESR1+/PGR+). Neither Visium nor scFFPE-seq identified these cells initially

because they were so sparse, and required the high resolution spatial information gained by

Xenium. Using spot interpolation methods (Supp. Fig. 9), we identified the relevant tumor

epithelial cells in the Visium data and derived whole transcriptome information. Visium and

Xenium data were also able to recover adipocytes (Fig. 2), which typically are lost during the

sample preparation protocols necessary for single cell analysis. Xenium is particularly suited for

investigations of intricate tissues with a high diversity of cell types in a small area, including

immune and myoepithelial cells (Fig. 4, Supp. Fig. 8), that may elude the other two

technologies. Another advantage is that because the Xenium workflow has a relatively low

impact to the tissue, H&E and IF can be performed after the gene expression data are collected

(Figs. 3C, 4H, Fig. 5). The importance of having pathology information associated with the

molecular information from the same section cannot be overstated. Even 5-10 μm serial

sections can change drastically enough that, at a single cell level, the hematoxylin-stained and

DAPI-stained nuclei cannot be easily overlain. H&E staining is well established among

pathologists due to excellent contrast, color, and texture between various cell features, so

having both H&E and molecular information is valuable. Similarly, the incorporation of an

additional protein molecular layer on the same section as the RNA readout provides richer

phenotypic data.

High resolution in situ analysis of complex tissues will revolutionize how we understand

biology, providing insights not previously possible with other technologies. As the Xenium
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platform capabilities are built out further, they will include increased gene plexy, more

tissue-specific gene panels, decoding of RNA and protein from the same tissue section,

detection of single nucleotide polymorphisms and isoforms (Lebrigand et al. 2022), and

continually improving analysis and software tools. This will afford an even greater understanding

of molecular profiles as they relate to the tissue architecture, and how cells interact with other

cells and non-cellular components in their local tissue environment. Our findings here

demonstrate that the highest resolution and richest biological information are gleaned through

the combination of complementary technologies. While each technology independently

elucidates high quality gene expression data from FFPE tissues, it is the integration that

illuminates biology with more rigor and refinement than a single technology alone. The

resolution and breadth of the platforms we describe have promising implications across the

biological sciences, but particularly in the future of translational and clinical research, and

ultimately, in advancing human health.

Data Sharing / Accessibility

Downloadable datasets
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast

Interactive data explorer
https://www.10xgenomics.com/products/xenium-in-situ/human-breast-dataset-explorer
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Methods

Samples and sample collection

A single formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue block (TNM stage

T2N1M0, ER+/HER2+/PR−) was collected on 2021-07-26 and obtained from Discovery Life

Sciences. Corresponding dissociated tumor cells, fresh frozen in liquid nitrogen, were also

sampled from the same biopsy (patient matched). 5 μm sections were taken from the FFPE

tissue using a microtome (Thermo Scientific HM355S; MX35 blades). For the Chromium Fixed

RNA Profiling (scFFPE-seq) workflow, 25 μm FFPE curls were collected into a tube prior to

serial sectioning for Visium CytAssist and Xenium (two replicates of 5 μm sections for each

spatial platform), then an additional 25 μm FFPE curl was collected into the same tube reserved

for scFFPE-seq. These pooled 25 μm curls (50 μm total) were treated as a single replicate.

Chromium 3′ and 5′ Single Cell Gene Expression (GEX)

We collected Chromium 3′ and 5′ GEX data from dissociated tumor cells to benchmark

performance against the scFFPE-seq data. Dissociated tumor cells were recovered following

Demonstrated Protocol CG000233. For the 3′ and 5′ workflows, cells were loaded on to the

Chromium X instrument following the library preparation protocols in the Chromium Next GEM

Single Cell 3' Reagent Kits v3.1 User Guide (CG000204) and Chromium Next GEM Single Cell

5' Reagent Kits v2 (Dual Index) User Guide (CG000331), respectively. Libraries were

sequenced on an Illumina NovaSeq with paired-end dual-indexing (28 cycles Read 1, 10 cycles

i7, 10 cycles i5, 90 cycles Read 2). All of the 3′ and 5′ flowcells were demultiplexed with

bcl2fastq (Illumina). FASTQ files were processed with Cell Ranger v7.0.1 (10x Genomics), using

the cellranger count pipeline on each GEM well with the GRCh38-2020-A reference to produce

gene-barcode matrices and other output files, followed by aggregation of GEM wells with the

cellranger aggr pipeline.
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Chromium Fixed RNA Profiling (scFFPE-seq)

Our goal in producing scFFPE-seq data was to precisely define the cell types present in serial

tissue sections to enable downstream integration of data types. 50 μm FFPE curls were

dissociated with the Miltenyi Biotech FFPE Tissue Dissociation Kit. Approximately 600,000 cells

were washed, counted and resuspended, loading 16,000 cells per each of four GEM wells

(targeting 10,000 recovered cells) on a single Chromium X chip. Sequencing libraries were

generated following the Chromium Fixed RNA Profiling for Singleplexed Samples User Guide

(CG000477). Libraries were sequenced on an Illumina NovaSeq with paired-end dual-indexing

(28 cycles Read 1, 10 cycles i7, 10 cycles i5, 90 cycles Read 2). Sequencing libraries were

demultiplexed with bcl2fastq (Illumina). FASTQ files were processed with Cell Ranger v7.0.1

(10x Genomics) using the multi pipeline and the GRCh38-2020-A reference.

Visium CytAssist

Whole transcriptome spatial data. Our goal in producing Visium CytAssist data was to obtain

whole transcriptome, spatially-barcoded sequence data in serial sections. The histology

workflow was performed using the Visium CytAssist Spatial Gene Expression for FFPE

(Demonstrated Protocol CG000520). The tissue was sectioned as described in Visium CytAssist

Spatial Gene Expression for FFPE – Tissue Preparation Guide (Demonstrated Protocol

CG000518). 5 µm sections were placed on a Superfrost™ Plus Microscope Slide

(Fisherbrand™) and H&E-stained following deparaffinization. Sections were imaged,

decoverslipped, followed by hematoxylin destaining and decrosslinking (Demonstrated Protocol

CG000520). The glass slide with tissue section was processed with a Visium CytAssist

instrument to transfer analytes to a Visium CytAssist Spatial Gene Expression slide with a 0.42

cm2 capture area. The probe extension and library construction steps follow the standard Visium

for FFPE workflow outside of the instrument. Libraries were sequenced with paired-end

dual-indexing (28 cycles Read 1, 10 cycles i7, 10 cycles i5, 90 cycles Read 2). Sequencing

libraries were demultiplexed with bcl2fastq (Illumina). The Space Ranger pipeline v2022.0705.1

(10x Genomics) and the GRCh38-2020-A reference were used to process FASTQ files.
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Xenium In Situ Workflow

Gene Panel Design. The Xenium In Situ technology uses targeted panels to detect gene

expression. 313 genes for cell type identification (280 of which are included in the Xenium

Human Breast Panel) were selected and curated primarily based on single cell atlas data for

human breast tissue (Pal et al. 2021, Bhat-Nakshatri et al. 2021, Karlsson et al. 2021). The

probes were designed to contain two complementary sequences that hybridize to the target

RNA and a third region encoding a gene-specific barcode, so that the paired ends of the probe

bind to the target RNA and ligate to generate a circular DNA probe. If the probe experiences an

off-target binding event, ligation should not occur, suppressing off-target signals and ensuring

high specificity.

Xenium Sample Preparation. The Xenium workflow (using in-development chemistry and a

prototype instrument) began by sectioning 5 um FFPE tissue sections onto a Xenium slide,

followed by deparaffinization and permeabilization to make the mRNA accessible. The mRNAs

were targeted by the 313 probes described above and two negative controls: 1) probe controls

to assess non-specific binding and 2) genomic DNA (gDNA) controls to ensure the signal is from

RNA. Probe hybridization occurred at 50° C overnight with a probe concentration of 10 nM. After

stringency washing to remove un-hybridized probes, probes were ligated at 37° C for two hours.

During this step, a rolling circle amplification (RCA) primer was also annealed. The circularized

probes were then enzymatically amplified (for one hour at 4° C followed by two hours at 37° C),

generating multiple copies of the gene-specific barcode for each RNA binding event, resulting in

a strong signal-to-noise ratio. After washing, background fluorescence was quenched

chemically. The biochemistry is designed to mitigate autofluorescence, which is a known issue

due to the presence of lipofuscins, elastin, collagen, red blood cells, and formalin-fixation itself

(Davis et al. 2014). Sections were placed into an imaging cassette to be loaded onto the

Xenium Analyzer instrument.

Xenium Analyzer Instrument. The Xenium Analyzer is fully automated and includes an imager

(imageable area of about 12 x 24 mm per slide), sample handling, liquid handling, wide-field

epifluorescence imaging, capacity for two slides per run, and an on-instrument analysis pipeline.

The imager is a fast area scan camera featuring a high numerical aperture, a low read noise

sensor, and ~200 nm per-pixel resolution. On the Xenium Analyzer, image acquisition was

performed in cycles. The reagents, including fluorescently labeled probes for detecting RNA,
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were automatically cycled in, incubated, imaged, and removed by the instrument. Following the

binding of fluorescent oligos to the amplified barcode sequence, the sample underwent 15

rounds of fluorescent probe hybridization, imaging, and probe removal. The Z-stacks were taken

with a 0.75 μm step size across the entire tissue thickness.

Image pre-processing. The Xenium Analyzer captured a Z-stack of images every cycle and in

every channel, which needed to be processed and stitched to build a spatial map of the

transcripts across the tissue section. Stitching was performed on the DAPI image, taking all of

the stacks from different FOVs and colors to create a single seamless image representative of

one ROI.

Puncta detection. A punctum (plural: puncta) is a point source in microscopy, smaller than a

pixel, and is measured in units of observed photons. The pipeline detected every punctum, in

every cycle, every image, every color, in order to observe all potential mRNA. First, puncta were

localized by fitting a Gaussian distribution to the observed emitted light to determine the center,

size, and intensity of the point sources. Next, the puncta in different cycles were registered to

one another so they are occupying the same space (the same mRNA molecule emitting light).

Decoding and quality scores. In each cycle, fluorescently-labeled oligonucleotides are bound to

amplified barcodes and the fluorescent intensity in each of the four Xenium color channels is

measured. Using the fluorescent intensity detected over the 15 Xenium cycles, an optical

signature unique for each gene is generated and used to identify a target gene. Each decoded

transcript was assigned a raw Q-score, a phred-scaled Quality Value which indicates the

probability that the detected object exists and was correctly identified by the decoding algorithm.

The Q-score is influenced by many technical factors such as signal brightness, spot localization

accuracy, and signal purity. Negative control codewords built into the system ensure that the

reported Q-score is accurately calibrated. All Xenium spatial gene plots shown are transcripts

passing Q ≥ 20.

Cell segmentation. In order to assign mRNAs to cells, and thus enable downstream analysis

and integration with Chromium and Visium data, the spatial boundaries of cells relative to mRNA

transcripts must be defined. First, DAPI images were used to detect nuclei using a neural

network. Then each nucleus was expanded outwards until either 15 um max distance was

reached or the boundary of another cell was reached.
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Output file export. A variety of output files were produced by the on-instrument pipeline. The

essential files used downstream were the feature-cell matrix (HDF5 and MEX formats identical

to those output by Cell Ranger and Space Ranger for Chromium and Visium data, respectively),

the transcripts (listing each mRNA, its 3D coordinates, and a quality score), and the cell

boundaries CSV file. These files were then transferred for downstream analysis off-instrument.

Post-Xenium Histology

H&E and IF staining. The post-Xenium H&E staining followed Demonstrated Protocol

CG000160. For post-Xenium IF staining, sections were washed with PBST, then incubated in a

blocking buffer (ScyTek AAA999) for 30 minutes at room temperature. The primary antibody in

the blocking buffer was added and incubated in the dark at 4 C overnight. The following day, the

sections were washed three times (10 minutes each) with PBST then incubated with secondary

antibodies and DAPI in a blocking buffer, in the dark at room temperature, for two hours. Next,

the sections were washed three times (10 minutes each) with PBST. Sections were imaged in a

proprietary Xenium imaging buffer and imaged on a Zeiss Axioimager with a 40x dipping

objective. The Zen Blue software was used for tiling, image acquisition, and exporting TIFF files.

Post-Xenium H&E and IF images were registered to Xenium data using a custom script.

Downstream analysis & integration

Chromium & Visium post-processing. The 3′, 5′, and scFFPE-seq data were filtered with scanpy

1.19. Cell filtering parameters included largest gene fraction ≤ 0.2, mitochondrial fraction ≤ 0.15,

and number of genes observed ≥ 500. We performed t-distributed stochastic neighbor

embedding (t-SNE) on Chromium and Xenium data using the monet package (Wagner 2020). A

principal component  analysis (PCA) was performed on the feature-cell matrix, and the top 50

components were input to the t-SNE. We subsampled the whole transcriptome Chromium and

Visium data to only the 313 genes used in the Xenium panel. The Xenium t-SNE coordinates

were initialized with the scFFPE-seq cluster centers. The Visium t-SNE was generated in Loupe,

and expression is either reported as log2(counts) when shown stand-alone, or as raw counts

when comparing directly with Xenium transcript counts.
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Supervised labeling & label transfer. We annotated the scFFPE-seq data by first conducting a

differential gene expression (DGE) analysis across unsupervised clusters in Loupe. Annotations

were built upon this DGE analysis and literature review (Wu et al. 2021, Karlsson et al. 2021).

We performed a log-normalization step of the data, and then calculated a z-score across cells. A

PCA was performed and the top 50 PCs were selected. From the in situ data, we determined

the 30 nearest neighbors for each cell after normalization and projection into PC space, and if at

least 50% were one cell type, then that is the cell type that was assigned. If that criteria was not

met, then the cell was classified as “unlabeled”.

Xenium Differential Gene Expression (DGE). We drew a region of interest (ROI), a polygon

around morphological features (individual cells, groups of cells, etc.) and performed DGE across

these ROIs with scanpy v1.19. ROI selection was performed in the Xenium Explorer software

(development version, 10x Genomics), and significance was assessed with the Wilcoxon test on

log-normalized count data. The DGE was performed for each cell type across ROIs.

Benchmarking sensitivity. Because mean sensitivity is biased by high expressors, we calculated

median gene sensitivity by first computing the sensitivity of each gene separately (the mean of

the counts per cell), then calculating the median across all genes. Because sensitivity is

dependent on sequencing saturation, the 3′ and 5′ GEX data were downsampled to 10,000

mean reads per cell to match the sequencing depth of 10,000 reads per cell (also the

recommended depth) for scFFPE-seq.

Image registration. For registration of IF images to the Xenium morphology images, which are

both DAPI images, we used a SIFT registration with the cv2 4.5.4 package in python v3.9.7,

which produces the transformation between IF and Xenium. For registration of Visium to Xenium

data, serial sections were rotated 2.58 degrees relative to each other, then a manual-defined

keypoint registration between the corresponding H&E images (serial sections) was used. Over

100 landmark features were identified on commonly shared microstructures. Using RANSAC,

we determined the subset of coordinates that matched, and performed the transformation

between coordinates with the FindHomography() function in the cv2 package.

Visium / Xenium Spot interpolation and deconvolution. Using the registration of Xenium to

Visium, we binned cells (by centroid) and transcripts from Xenium into the Visium spots. This

was done by proximity. The closest spot to a cell or transcript was identified as the spot a cell or
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transcript lies within. Robust Cell Type Decomposition (RCTD) with spacexr 2.0.1 (Cable et al.

2021) in R was used to deconvolve Visium spots into cell types using the unsupervised

scFFPE-seq reference.

Supplemental Material

Supplemental Figures

Supplemental Figure 1

Supplemental Figure 1. Xenium Gene Panel Design. The Xenium In Situ technology uses targeted
panels to detect gene expression. The 280 gene pre-designed Xenium human breast panel was
combined with 33 add-on genes, selected based on single cell data of human breast tissue (Pal et al.
2021, Bhat-Nakshatri et al. 2021, Karlsson et al. 2021) and manual curation. The heatmap shows the
relative expression of genes across different cell types found in the references used to build the panel.
The gene markers chosen are generally mutually exclusive for their cell type. Z-score computed across
cell types for each gene.
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Supplemental Figure 2

Supplemental Figure 2. Xenium Quality Control Metrics. (A, B) Bar plot showing the number of genes
detected per cell for (A) Xenium compared to (B) scFFPE-seq (downsampled to the 313 genes on the
Xenium panel). See Fig. 3E for transcripts per cell. (C) Complexity measurement showing the cumulative
distribution plot of total transcripts contributing to genes. Dotted line at y = 0.5 signifies that 50% of the
total transcripts observed contribute to 27 genes. (D) Knee plot showing observed counts (Q ≥ 20) of
genes and negative controls: 1) probe controls to assess non-specific binding to RNA, 2) decoding
controls to assess misassigned genes, and 3) genomic DNA (gDNA) controls to ensure the signal is from
RNA.
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Supplemental Figure 3

Supplemental Figure 3. All cell types pictured in Fig. 3J are shown here individually. The highlighted cell
type is filled black, and all other cells are filled white.
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Supplemental Figure 4

Supplemental Figure 4. Relative expression of genes across cell types comparing Xenium and
scFFPE-seq. (A, B) Heatmap representation of the t-SNEs in Fig. 3H (Xenium) and Fig. 3G (scFFPE-seq,
down-selected to 313 genes), demonstrating that the cell type representation is generally similar. Z-score
computed across cell types for each gene, by subtracting the mean and dividing by the standard
deviation. (C) Comparison of cell type proportions in Xenium versus scFFPE-seq.

35

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.06.510405doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.510405


Supplemental Figure 5

Supplemental Figure 5. Serial section Xenium replicates are highly correlated. (A) Cell types for
each replicate from the same ROI. (B) Cell type proportions across the whole section. (C) Scatter plot
comparing transcripts per cell for each gene across replicates (r2 = 0.99). (D) ROI showing all transcripts,
color coded by cell type, for each replicate.
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Supplemental Figure 6

Supplemental Figure 6. Benchmarking scFFPE-seq sensitivity against Chromium 3’ and 5′ GEX
from patient matched dissociated tumor cells. (A, B) Scatter plots of UMIs per cell in comparisons
between (A) scFFPE-seq and 3′ GEX and (B) scFFPE-seq and 5′ GEX. Sequencing depth is constant
(10,000 reads per cell) for all three platforms. Dotted line represents X=Y.

Supplemental Figure 7

Supplemental Figure 7. Comparison of Chromium, Visium, and Xenium FFPE technologies for key
genes. A human breast cancer FFPE block was sectioned and processed for Chromium scFFPE-seq,
Visium, and Xenium. (A) Human breast cancer oncogene CEACAM6 is expressed in a subset of ERBB2+
(HER2+) tumor epithelial cells in the scFFPE-seq data. The Xenium spatial plot showing decoded
transcripts reveals that CEACAM6 is expressed exclusively in ductal carcinoma in situ (DCIS) regions, but
is excluded from invasive cancer domains. Visium data validate this observation, albeit at lower
resolution, with high spatial correlation to the Xenium data. (B-D) Other exemplary markers for B cells
(MS4A1), T cells (CD3E), and stromal cells (POSTN) are shown across all three technologies,
demonstrating cell type representation and spatial concordance.
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Supplemental Figure 8

Supplemental Figure 8. Comparison of Visium and Xenium for an ROI with high proximity and
variety of cell types. Continuation of Fig. 4. (A) One small region of interest (ADH; atypical ductal
hyperplasia) with a high diversity of cell types in close proximity. (B) Xenium spatial plot showing an
overlay of eight selected gene markers. (C-J) All genes pictured in the overlay are shown individually for
the same ROI with Visium (vis) on the left and Xenium (xen) on the right.
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Supplemental Figure 9

Supplemental Figure 9. Xenium and scFFPE-seq assign cell type frequencies to individual Visium
spots. (A-C) Registration of Visium and Xenium H&E images (see Fig. 4B) allows for the interpolation of
cell type proportions within Visium spots using Xenium transcript counts. (D) Annotated cell types (see
Supp. Fig. 3) from Xenium are overlaid on a Visium heatmap expressed as a proportion (fraction of one)
of that cell type within each spot (see scale bar in F). (E) Interpolation of Visium spots allows for mixed,
unannotated cell clusters from Fig. 3B to be resolved into cell type frequencies. (F) We deconvolved
Visium spots into cell types with spacexr (Cable et al. 2021) using the scFFPE-seq data as the single cell
reference. (F-H) Comparison of the spot interpolation method using Xenium and the deconvolution
method using scFFPE-seq. Cell type proportions are expressed as a fraction of one.
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Supplemental Information
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of technologies used in High resolution mapping of the breast cancer tumor microenvironment
using integrated single cell, spatial and in situ analysis of FFPE tissue
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