






























 
 

16/26 

for brain and cerebral WM volumes at q = 0.5 are statistically significant under the significance level of 0.05 

(see Supplementary Table 4). In contrast, the linear coefficients for ventricles approach the borderline of 

significance (females ¦ =  .054, males ¦ =  .05). For most statistically significant coefficients, we recognize 

the standard error as at least one order of magnitude smaller than the corresponding coefficient. The results 

show negative correlations of the FWVF parameter with brain volume (females x = −0.304, males x =−0.484) and cerebral WM volume (females x = −0.277, males x = −0.393), while there is a positive 

correlation between the FWVF and the ventricles volume (females x = 0.471, males x = 0.539), all under 

the significance of 0.001. Besides, the experiment reveals stronger correlations for males than for females 

in all three cases. Apart from the previously confirmed more notable variability of the FWVF with age (see 

Fig. 1c), here we identify more variable volumes with age that are coupled with higher FWVF values. 
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Figure 4. a Visual inspection of DTI-based measures based on a standard single-component DTI representation with 

no FWVF assumption (i.e., � = 0) and with a FW compensated DTI. The MD/FA measures were calculated for a 

randomly chosen healthy male subject at the age of 69 and are shown in a selected axial plane. b The density plots 

presenting the sample variations in MD and FA estimated under the standard DTI and FW compensated DTI over the 

age intervals defined in Table 1. The experiment reports the qualitative MD and FA variations using only cross-sectional 

samples. The number of bins for each density plot were determined separately for each age interval using the formula 
built upon Doane's method. The population-based experiment uses only cross-sectional samples. c Estimated MD/FA 

measures using a standard DTI and with a FW compensation, and their trajectories across the adult lifespan modeled 

via the QR technique. The experiment uses cross-sectional and longitudinal samples. Each marker represents the 

median value of the measure calculated over the ROI in the subject’s native space. The solid lines show the quantile 

function �(0.5|���), the lower dashed-dotted lines indicate �(0.05|���), and the upper dotted lines present �(0.95|���), all three were computed for a standard DTI (blue lines) and FW compensated DTI (red lines). The regions 

between �(0.05|���) and �(0.95|���) were shaded for visualization purposes. The goodness-of-fit �^ at q = 0.5 was 

computed separately for a standard DTI and FW compensated DTI measures using the procedure introduced by 

Koenker and Machado (1999). 

 

 

Correcting the DTI representation for the free-water volume fraction leads to flattening trajectories 

of mean diffusivity and fractional anisotropy measures across the adult lifespan.  

In this final section, we study the effect of the FWVF on the DTI metrics across the adult lifespan. To that 

end, we explore the lifespan trajectories of MD and FA measures estimated from the two-component 

representation given by Eq. (3) and relate them to the standard DTI equivalents, where no FW is assumed. 

The variations in MD and FA are modeled again using the QR approach presenting now the conditional 

median of a DTI parameter given the explanatory variable ��� (see Model 1). For the sake of illustration, 

in Fig. 4a we visually demonstrate the variations of MD and FA parameters for a randomly chosen male 

subject at the age of 69. We observe considerable decreased (increased) values of the MD (FA) parameters 

in the FW compensated DTI scenario. The contours of the WM area become detectable with the FW 

corrected MD, while the FW compensation generally strengthens the FA measure. In Fig. 4b, we show the 

population density plots of MD and FA measures for WM, GCC and SCC, calculated from standard and 

FW compensated DTI representations, depicted over the age intervals previously defined (see more ROIs 

in Supplementary Fig. 6). The standard MD and FA parameters are typically more dispersed regardless of 

the age interval, with a positive (negative) shift of the peaks observed for the MD (FA) measure in elderlies. 

Notice that the population density plots in FW compensated DTI remain nearly unchanged in shape and 

displacement. 

Next, in Fig. 4c we represent the changes of MD and FA indices as a function of age for the whole 

WM and three selected regions, all illustrated with and without the FW compensation (see more ROIs in 

Supplementary Fig. 7). The coefficients of the models fitted under both variants can be found in 

Supplementary Table 5 and 6. In general, we observe a non-linear behavior of the standard DTI-based MD 

parameter over the WM (¦ <  .001 for all model coefficients, �^ = 0.172) with an increasing trend starting 

from the middle adulthood, and opposite to that for the FA parameter (¦ <  .01 for the quadratic model 

coefficient, �^ = 0.107), both consistent with previous reports (Westlye et al., 2010; Lebel et al., 2012; Beck 

et al., 2021). Once the FW correction is applied to the standard DTI, we recognize smaller (larger) values 

of FW compensated MD (FA) compared to standard DTI, i.e., ¦ <  .001 for all model coefficients and �^ =0.094 for the MD, and non-significant linear (¦ =  .196) and quadratic (¦ =  .191) model coefficients and 
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�^ = 0.006 for the FA measure. Besides, the heteroskedastic pattern of the FW corrected DTI measures 

with age is significantly reduced.  

 

Discussion 

The free-water fraction has become a relevant biomarker in neuroimaging, especially for modeling various 

types of brain damage (Ofori et al., 2015; Bergamino et al., 2021; Carreira Figueiredo et al., 2022). With its 

proven importance in age-related pathologies and aging processes (Chad et al., 2018; Edde et al., 2020, 

Berger et al. 2022), the evolution of this parameter across the adult lifespan has not been studied in detail. 

Most works that evaluate the microstructural changes in the brain with age based on diffusion MRI simply 

use a single component DTI approach, where the FWVF is not taken into account (Burzynska et al., 2010; 

Bennett et al., 2010; Westlye et al., 2010; Lebel et al., 2012; Cox et al., 2016; Beck et al., 2021). The present 

study investigates precisely how the FWVF varies across the adult lifespan in the healthy human brain WM, 

as well as its interference with DTI-based metrics. To that end, we employ the spherical means technique 

(Tristán-Vega et al., 2022) that robustly estimates the water fraction for complex neural architectures, such 

as fiber crossings, and a two-component dMRI signal representation to retrieve the FW compensated DTI 

measures. 

Although previous studies have already determined that the FWVF changes with age (Metzler-

Baddeley et al., 2012; Cox et al., 2016; Chad et al., 2018; Kubicki et al., 2019), in this study, we uncovered 

a positive trend with age and revealed a non-linear gain in the parameter after the sixth decade of life over 

most WM areas (Fig. 1c, Supplementary Fig. 1b,d, Supplementary Fig. 3). Our findings suggest a 

heteroskedastic nature of the FWVF with age that had not been described previously, the existence of a 

posterior-anterior gradient and the region-specific nature of the changes of the water fraction across the 

adult lifespan. Additionally, the FWVF showed a linear correlation with volumetric parameters such as the 

brain volume, cerebral WM volume and ventricles volume (Fig. 3d-f). Finally, we confirmed that the DTI 

scalar measures do change with age, following a U-shaped trajectory as previously observed by other 

authors (Westlye et al., 2010; Lebel et al., 2012; Beck et al., 2021). However, in this work, we have detected 

that those trajectories were deeply influenced by the FW component. Once the FWVF is removed, scalar 

measures demonstrate a significantly reduced variability over the adult lifespan compared to those 

calculated from standard DTI (Fig. 4b,c, Supplementary Fig. 6. Supplementary Fig. 7). 

 

The first contribution, then, is to uncover the non-linear behavior and the heteroskedastic nature of 

the variation of the free-water component with age. As indicated above, this variation of the FWVF with age 

was already known and it had been previously studied by other authors. However, those studies differ from 

ours in two main aspects: (1) the regions considered for the study; and (2) the way in which the behavior is 

modeled. Regarding the former, some studies are limited to the WM skeleton or to specific regions (Metzler-

Baddeley et al., 2012; Chad et al., 2018), while our study covers the whole WM in a region-specific manner. 

Regarding the modeling, our study employs a polynomial approach with a QR optimization to represent the 

changes in the FWVF as a function of age. This allows us to consider that the variability of the parameters 

being investigated across the lifespan may change with age, i.e., they follow a heteroskedastic  pattern. To 

our best knowledge, the heteroskedastic modeling of the dMRI parameters has not been properly handled 

in the literature before.  

 

Some previous endeavors considered a linear approach with homoskedastic assumptions on the 

FWVF and/or are limited to a selected period of life (Metzler-Baddeley et al., 2012; Chad et al., 2018). 
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Additionally, even when a non-linear model is used to represent the trajectory of FWVF (Kubicki et al., 

2021), it is optimized via the non-linear least squares approach where no heteroskedastic assumptions are 

possible on the dependent variable ���. Despite the fact that this polynomial model is well-accepted in the 

community to account for the variations in diffusion parameters of the brain (Westlye et al., 2010; Beck et 

al., 2021; Kiely et al., 2022), some studies suggest more avant-garde models such as a Poisson curve to 

account for different changing rates in childhood and aging life stages (Lebel et al., 2012; Kubicki et al., 

2019). Nonetheless, compared to our study, these reports used a quadratic cost function in a non-linear 

fitting procedure and do not allow for modeling the heteroskedastic nature of the parameters, which 

implicitly assume that the variability of the parameters being investigated across the lifespan does not 

change with age. Our study provides evidence to suggest that this is not the case. The polynomial approach 

enables us to handle this phenomenon and to model different quantiles, providing a measure of uncertainty 

of the parameters. Moreover, the linear QR, contrary to the non-linear models, enabled us to evaluate the 

significances of the corresponding age-related terms. The current study goes much further and enables us 

to handle both cross-sectional and longitudinal data. The preceding studies in dMRI parameters alterations 

with age merely juxtaposed young and older subjects (Burzynska et al., 2010; Bennett et al., 2012), 

evaluated the cross-sectional data (Westlye et al., 2010; Lebel et al., 2012; Metzler-Baddeley et al., 2012; 

Cox et al., 2016; Chad et al., 2018; Kiely et al., 2022) or longitudinal measurements (Ofori et al., 2015), 

with rudimentary studies considering both (Maillard et al., 2019; Beck et al., 2021). 

Another major contribution of this work is to unveil how the DTI related metrics are affected by the 

free water component with age. This part of the study gathers two previously known effects that have been 

studied separately: (1) the change of diffusion metrics with age: when single-component DTI is considered, 

diffusion measures in the healthy WM of the human brain present a curvilinear U-form across the lifespan. 

FA shows a rapid growth in childhood and adolescence and then a systematic decline, while MD reveals 

the opposite trend (Westlye et al., 2010; Lebel et al., 2012; Beck et al., 2021); (2) the effect of the FWVF 

on DTI-based measures has also been studied previously (Pasternak et al., 2009; Metzler-Baddeley et al., 

2012; Chad et al., 2018; Rydhög et al., 2017; Kubicki et al., 2019), with some preliminary research on 

differences with age (Metzler-Baddeley et al., 2012; Chad et al., 2018; Kubicki et al., 2021), and under the 

impact of neurodegenerative diseases (Bergamino et al., 2021; Carreira Figueiredo et al., 2022).  

In this work, in order to study the two effects jointly, we examined the variability in the MD and FA 

across the adult lifespan under two different scenarios: standard DTI and the FW compensated DTI. Our 

results show that the FW component significantly affects the DTI measures with age. When standard DTI 

is considered, FA and MD shows the U-form behavior across the lifespan, compatible with findings in 

Westlye et al. (2010), Lebel et al. (2012), and Beck et al. (2021). On the other hand, when the two-

component representation given by Eq. (3) is assumed and the influence of the FW is removed, we observe 

a flattening effect of the MD and FA measures compared to the standard DTI (see Fig. 4b,c, Supplementary 

Fig. 6, Supplementary Fig. 7). The flattening effect of the MD parameter has previously been noticed in the 

fornix with adult subjects (Metzler-Baddeley et al., 2012) and suggested in MD and FA measures over the 

WM skeleton through a significant decrease in the absolute correlation coefficient with age (Chad et al., 

2018). This study has not confirmed the FW corrected FA behavior over the brain WM what others had 

found in the fornix area (Metzler-Baddeley et al., 2012), i.e., an increase in the elevation of the parameter 

with age. Instead, we observe a reduced dynamics of the FA measure under a FW compensation 

(compatible with Chad et al. (2018)) under all regions illustrated except for the SCR, PCR and SCP, 

reflected in an increase in �^ parameter. Interestingly, the opposite behavior of the FA measure is observed 

after the correction, i.e., the non-convex trajectory changes to a convex one (see WM and cingulum 

(hippocampus) in Fig. 4c). The variability reduction in DTI-based measures under the FW compensation 
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has been previously observed by Albi et al. (2017) and explained as an increase in reproducibility. However, 

our results explain that the FW correction reduces the variability of the MD/FA measures across lifespan 

but does not necessarily imply an improvement in their reproducibility. 

Different authors have studied the variation of the FA across the lifespan without considering the 

FWVF and, therefore, they have tried to explain this effect differently. Vernooij et al. (2008) explained the 

age-related decrease in FA by atrophy and lesion formation. This hypothesis was rejected by Westlye et 

al. 2010, where authors pointed out that such pathological factors cannot have a significant impact on 

healthy young subjects. Alternatively, they hypothesized that the formation of redundant myelin and water 

compartments may increase volume and decrease FA with age. Bennett et al. (2010), Burzynska et al. 

(2010) and Lebel et al. (2012) also relate FA alterations with changes of myelination and/or axonal density. 

Our experiments have shed some light over the interpretation of the results: the origins of these variations 

may be strongly associated with the FWVF, although other biological effects must also be taken into 

account.  

All in all, our results indicate that the changes in the FW component constitute a major factor to 

explain the variability of DTI metrics with age. This issue must be taken into account when using these 

metrics for clinical studies. Depending on the ages of the participants, data can present some bias due to 

the lifespan related changes. Fortunately, if the dMRI acquisition comprises at least two different shells, the 

estimation of the FWVF is feasible and it is possible to correct the age-related bias. In addition, when 

comparing scalar measures like FA and MD in healthy and pathological subjects, it is tempting to explain 

the differences between groups as the result of underlying biological effects: the reduction of myelin, 

changes of the axonal density and so on. In the light of our experiments, we should be more cautious in 

explaining microstructural processes from the results obtained from diffusion measures, since there may 

be unconsidered factors at play, such as the FWVF. 

This study presents several limitations that must be noted. First, a relatively small sample size was 

employed (� = 287), and the distribution of the samples across the age intervals is non-uniform. However, 

compared to the previous studies modeling the free-water fraction variations across the lifespan (Metzler-

Baddeley et al., 2012; Cox et al., 2016; Chad et al., 2018), our population sample has been spread over 

the whole adult life, including subjects from early adulthood until senescence. Moreover, the sample 

includes a mixed cross-sectional and longitudinal design that enables us to model the FWVF over the 

lifespan, including changes over time, suppressing the effect of inter-subject variability. Secondly, as with 

most image-based population studies, the current study is limited by the registration procedure. The 

approach used in our study follows the well-accepted standard community pipeline, i.e., we non-linearly 

register the FA to the FSL template “FMRIB58_FA” and then inversely warp the atlas ROIs to the subjects' 

native spaces using the FSL software suite. A proper registration procedure and template selection are 

critical for ROI-based studies as the misalignment might bias the representative values. Recently, (Wu et 

al., 2022) proposed a new FA template that meets the requirements of lifespan studies and reduces 

possible misalignment artifacts in elderly brains. Here, however, each ROI had been morphologically 

eroded before all analyses took place to exclude potential outliers exposed to the partial volume effect. In 

fact, the ROI-based analysis might be considered a deficiency as such. Nonetheless, some previous 

lifespan studies in diffusion MRI (Tamnes et al., 2010; Kiely et al., 2022) follow this line since it is 

standardized, as mentioned above.  

Additionally, we limited the scope of the water component to the simplest form of diffusion 

representation, DTI, although one can extrapolate the study and incorporate more advanced dMRI signal 

representations such as diffusion kurtosis imaging (DKI) (Jensen et al., 2005) or the propagator-based 

metrics (Özarslan et al., 2013; Tristán-Vega and Aja-Fernández, 2021). For instance, the DKI includes 
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information beyond the standard DTI appearing at a higher b-value regime (Jensen et al., 2005), while the 

propagator-based measures can catch the axial or planar diffusion profiles (Özarslan et al., 2013). The 

proper water-correction of these dMRI signal representations might lead us to new insights into modeling 

the non-Gaussian diffusion profiles and unbiased indicators of restrictive diffusion and cellularity across the 

lifespan.  

Finally, another limitation of the study is related to the method made use of to estimate the FWVF. 

The method in Tristán-Vega et al. (2022) adapts the general formulation from Tristán-Vega and Aja-

Fernández (2021) by fixing the parallel diffusivity in Eq. (2) over the white matter area to )*+, = 2.1 ⋅10A�  mm�/s. This way, the FWVF can be estimated from just two different acquired shells. However, as 

recently shown by Tristán-Vega and Aja-Fernández (2021), the parameter )*+, can be constant over the 

WM tissue without the repercussions of further inferences. Guerrero et al. (2019) has additionally shown 

that the parallel diffusivity used in the NODDI does not vary appreciably with age unless the population 

group includes infants or adolescent subjects and has no sex effects. Finally, we notice, as the FW and 

restricted water follow different signal decays, that they can be separated using dedicated MRI machines 

equipped with high-strength gradients (Afzali et al., 2022). However, using ultra-strong gradients (up to 300 

mT/m) exceeds the current technical capabilities in versatile population studies, imposing a clinical scanner 

with a common gradient strength, as about 40 mT/m employed in this study.  

Modern and successful brain aging research requires more than standard group-based 

comparisons, and new directions related to trajectory-based tracking of diseases are expected to gain 

interest in the near future. This raises new challenges in the neuroimaging field with a particular emphasis 

on capturing the onset of neurodegenerative disease and predicting further alterations of the brain. This 

paper lays the foundations for the analysis of the evolution of FWVF in the healthy human brain WM across 

the lifespan changes, also gaining insight on the effects of the compensation of DTI measures for FW in 

these analyses. 
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