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Animals use afferent feedback to rapidly correct ongoing movements in the presence of a
perturbation. Repeated exposure to a predictable perturbation leads to behavioural adap-
tation that counteracts its effects. Primary motor cortex (M1) is intimately involved in
both processes, integrating inputs from various sensorimotor brain regions to update the
motor output. Here, we investigate whether feedback-based motor control and motor adap-
tation may share a common implementation in M1 circuits. We trained a recurrent neural
network to control its own output through an error feedback signal, which allowed it to re-
cover rapidly from external perturbations. Implementing a biologically plausible plasticity
rule based on this same feedback signal also enabled the network to learn to counteract
persistent perturbations through a trial-by-trial process, in a manner that reproduced sev-
eral key aspects of human adaptation. Moreover, the resultant network activity changes
were also present in neural population recordings from monkey M1. Online movement
correction and longer-term motor adaptation may thus share a common implementation
in neural circuits.

Introduction
Animals, including humans, have a remarkable ability to rapidly correct their ongoing movements
based on perceived errors, even when feedback may be distorted, such as when reaching into a pond
to recover an object one has dropped. In the laboratory, these movement corrections and subsequent
adaptation can be evoked and studied systematically using the classic visuomotor rotation (VR)
perturbation paradigm1,2. In this paradigm, the subject receives distorted visual feedback (typically a
rotation about the centre of the workspace) of a reaching movement, thereby creating a perceived error
due to the mismatch of expected and observed hand trajectory. Humans can correct their ongoing
movements even during the very first trial after perturbation onset3, a process that is mediated by
primary motor cortex (M1) integrating multiple feedback signals arriving from various sensory and
motor brain regions4–17.

When repeatedly exposed to a predictable perturbation, animals progressively learn to use their per-
ceived errors to anticipate its effect. For the case of the VR paradigm described above, this leads
to a gradual reaiming of the reach, until it starts out in the correct direction2, thereby eliminating
the need for further online corrections. This requires some form of rapid learning along the sensori-
motor pathways, likely guided by trial-by-trial error information3,18,19. How and where in the brain
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this “motor adaptation” happens remains inconclusive1,20–45, and may depend on the characteristics
of the perturbation, such as whether it is a rotation of the visual feedback or a force acting on the
limb28,46–51.

Feedback-based movement correction and motor adaptation have been mostly studied in isolation and
are often assumed to involve different neural substrates2,11. What if that were not the case, but instead,
they shared a common implementation in neural circuitry? A recent behavioural study proposed that
movement correction and adaptation may indeed be tightly linked: fast feedback responses could act
as teacher signals that drive trial-by-trial adaptation21,52,53. Despite the conceptual beauty of this
idea, its feasibility and implementation details remain unexplored.

Here, we hypothesised that the neural circuitry for feedback control may be exploited to drive the
“plasticity” that enables successful motor adaptation. To address this hypothesis, we use a recurrent
neural network (RNN) model54–62 trained not only to produce a certain output, but to control it.
The key difference here is that this model should be able to flexibly correct its output in the case
of unexpected external perturbations. Having such a model allowed us to test whether feedback
signals used for motor control could guide plastic changes within the network that lead to successful
trial-by-trial learning.

We first show that an RNN can be trained to perform feedback-based motor control, even in the
presence of a relatively long, biologically plausible feedback delay. We then demonstrate how feedback
signals, modelled as inputs to the RNN, can guide synaptic plasticity within the network that drives
successful trial-by-trial adaptation. Intriguingly, this form of learning through feedback-driven plas-
ticity led to behavioural adaptation that was similar to that of a human in terms of time course63,64,
generalisation2, and sensitivity to perturbation variability65,66. Moreover, both effective control and
learning could be achieved with sparse feedback signals. Finally, comparison with neural population
recordings from monkey M1 (data from51) supports the plausibility of the proposed plasticity rule:
the temporally dissociable activity changes that followed adaptation in our model could also be found
in the actual neural activity. This work not only introduces the potential of a combined implementa-
tion of motor control and learning in recurrent circuits, but it also relates several aspects of human
adaptation behaviour to a single unifying neural process.

Results
A recurrent neural network that performs feedback-based motor control
We used an RNN model to investigate whether the same feedback signals used to control ongoing
behaviour could also mediate motor adaptation. This work was divided into two phases: 1) training
the RNN to perform feedback-based motor control (using a gradient-based algorithm), and 2) using this
trained RNN to implement trial-by-trial motor adaptation via a local, biologically plausible learning
rule acting on the recurrent weights of the network. We validated our model by comparing it to several
behavioural and electrophysiological studies.

First, we trained an RNN to control its own output to produce the desired movement (Figure 1A,B).
Our goal was to have a model that, after training, could dynamically adjust the ongoing movement
according to incoming sensory feedback. Feedback control was based on an instantaneous position
error signal, ϵt, defined as the difference between the produced position, pt, and the target position, p∗

t ,
which we computed assuming a straight line between the start and end points (Figure 1C). This error
signal was fed back as an input to the RNN with a biologically realistic delay of 120 ms12 (Figure 1B).

After the initial training phase (Figure 1D, examples in Figure S1; Methods), we tested the RNN on
a standard centre-out reaching task with eight equally distributed targets. As expected due to our
training procedure, the model was readily able to produce the required straight movement trajectories
even without explicit training on this task (Figure 1E).
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Figure 1: Proposed recurrent neural network that controls its output based on feedback.
A. Afferent and efferent pathways act together to produce precise movements, and to flexibly correct
them in the presence of perturbations. B. A recurrent neural network (RNN) model to explore a
shared implementation of motor control and adaptation based on a common error feedback loop.
C. We defined the ongoing error during movement as the difference between the observed and the
optimal hand position. D. Initial RNN training included reaches of varying lengths and to different
locations (grey lines) with occasional random velocity “bump” perturbations (cf. Figure S1). E.
Hand trajectories produced by a trained RNN required to perform a standard eight-target centre-out
reaching task. F. Hand trajectories after introducing a 30◦ rotation of the RNN’s output, to mimic a
visuomotor rotation perturbation; note that feedback allowed the network to correct its output online
and reach to the target. G. Hand trajectories for a model without a feedback loop, which could not
counteract the same perturbation.

To test the network’s ability flexibly correct its output, we replicated the classic VR paradigm2. If the
RNN could indeed control its output, it should still be able to reach to the desired target by correcting
the produced movement to counteract the 30◦ rotations online. Inspecting the movement trajectories
after VR onset confirmed that the model could use the error signal to correct its ongoing output
(Figure 1F; the curved trajectories indicate ongoing correction). Importantly, successful correction
relied on the error signal being fed back into the model: trajectory correction only started after the
delayed feedback had had enough time to propagate to the model (Figure 1F), and an RNN trained
without feedback connections (Methods) could not reach to the targets (Figure 1G).

An error feedback signal used for feedback-driven motor control can drive trial-by-trial
adaptation
We have shown that an RNN that has learnt to use feedback signals to control its output can readily
counteract an external perturbation, exhibiting a behaviour upon VR onset that is very similar to
that of humans2 and monkeys (compare the monkey data from Ref. 51 in Figure 2A to the model
data in Figure 2D). However, when repeatedly exposed to a VR, both humans and monkeys learn to
adjust their initial “motor plan,” which results in their reach take-off angle pointing in the correct
direction after dozens of trials2,51 (Figure 2B,C). Can our relatively simple error feedback signal enable
persistent learning across trials?
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An error feedback signal can drive recurrent plasticity that enables trial-by-trial adaptation

Figure 2: Feedback signals can guide local synaptic plasticity that enables successful
motor adaptation. A. Example hand trajectories as a monkey reached to each of eight targets after
a 30◦ rotation of the visual feedback was introduced (first 30 trials after perturbation onset; data from
Perich et al.51). B. Example hand trajectories after the monkey had adapted to the perturbation by
reaiming the reach direction (last 30 trials of the perturbation phase for the same session as in A). C.
Angular reaching take-off error for the baseline (left, black), perturbation (middle, red), and wash-out
phases (right, black). Transparent lines, single trial errors; solid lines, smoothed mean error (Gaussian
filter, s.d., 10 trials). D-F. Simulation results for an RNN implementing the proposed feedback-driven
plasticity rule, by which recurrent weights are modified according to the error signal received by the
postsynaptic neuron. The first and last 80 trials of adaptation are shown; otherwise data is presented
as in A-C. Note the strong similarities between the behaviour of the network and that of the monkey.

Since the feedback inputs acting on the network correctly modulate each neuron’s activity to minimize
the ongoing motor error (Figure 1F), we hypothesised that they could also act as a “teacher signal”
for local, recurrent synaptic plasticity. To test this, we devised a local biologically-plausible synaptic
plasticity rule causing the connection weight from neuron i to neuron j to change in proportion to the
feedback signal received by neuron j (Methods). Implementing this plasticity rule led to behaviour
that was similar to that of monkeys’: the initially large errors in take-off angle became progressively
smaller over time, until they reached a plateau close to zero error (note the similarities between
Figure 2D-F and Figure 2A-C). Moreover, when the perturbation was turned off, the model underwent
a de-adaptation phase similar to the “wash-out” effect exhibited by monkeys (compare Figure 2C and
Figure 2F) and humans67. These results confirm our main hypothesis: an error feedback signal used
for online motor control can be leveraged to guide recurrent synaptic plasticity that drives successful
trial-by-trial motor adaptation.

Feedback-based learning recapitulates key features of human motor adaptation
The previous simulation results suggest that a relatively simple plasticity rule based on an error
feedback signal may mediate motor adaptation. Could this type of learning be implemented in actual
brains? To investigate the biological plausibility of our feedback-based plasticity rule, we tested
whether our model replicated various key observations from human and monkey motor adaptation
studies.
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Figure 3: Motor adaptation based on feedback-driven plasticity recapitulates key aspects
of human and monkey behaviour. A. Correlation between the take-off error in the current trial
and the amount of learning from this trial to the next for both simulation (Model) and behavioural
data (Monkey C and Monkey M; data from Perich et al.51). Individual circles, a different network
(Model) or experimental session (Monkey); numbers, proportion of networks or experimental sessions
exhibiting a significant correlation (P<0.05). B. Movement error after adaptation to VR perturbations
with different perturbation angle variability (cf. Ref. 65, 66 for human behaviour). C. As in human
experiments, the time course of adaptation in the model is well fitted by a dual-rate model63. Grey
line, single trial errors of simulated adaptation behaviour in an example simulation. Purple line, model
fit; dark brown line, fast process; light brown line, slow process. D. Fitted parameters of the dual rate
model (black) match those from a visuomotor adaptation study in humans64 (blue). Individual circles,
ten different networks; square and error bars, mean and 95 % confidence interval. E. Hand trajectories
produced by the model after visuomotor adaptation to a single target (“Adaptation target”, in red).
F. Take-off error after adaptation to visuomotor perturbations applied to a single target, as shown in
E (red), or to eight targets (dark grey) (cf. Ref. 2 for human behaviour). Lines and error bars, mean
and s.d. across ten networks.

We first addressed the finding that humans learn more from a given trial if they experience a larger
error52. Indeed, our model reproduced this trend; the measured correlations between movement error
and amount of learning in the next trial were comparable in magnitude and sign to those of monkeys
performing the same VR task (Figure 3A; data from Ref. 51). Moreover, as in human adaptation
studies65,66, our model’s ability to learn was also hindered when the perturbation was inconsistent
across trials, with greater perturbation variance leading to progressively less learning (Figure 3B).
Thus, the amount of trial-by-trial adaptation matched experimental observations well.
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When examining the timescale of learning during an experimental session, human motor adaptation
seems to be mediated by two simultaneous learning processes: one fast, and another slow63,64. Using
the same analysis as in Ref. 63, we found that the adaptation time course of our model is also
best described by a combination of two learning processes with different time constants (Figure 3C).
Even the parameters describing these processes were comparable to values reported in a human VR
adaptation study (Figure 3D; data from Ref. 64), indicating that, as in actual experiments, our
feedback-driven plasticity rule is dominated by fast learning early in adaptation and slow learning
later on.

Finally, animals, including humans, have a remarkable ability to generalise what they have learned
to novel situations, yet, the amount of generalisation seems to depend on the similarity between
the current and the past situation. During a VR experiment, participants who have adapted to a
perturbation applied on a single reach direction generalize when reaching to neighbouring targets, to
an extent that decreases as the angle between the new and adapted direction increases2. Repeating
this single target adaptation experiment in our model revealed the same kind of generalization: the
model readily anticipated perturbations applied on adjacent targets and adaptation decreased as the
angle between the probed target and the adapted target increased (Figure 3E-F). In summary, our
model reproduced key features of primate motor adaptation, supporting our unified view of how rapid
motor learning could be implemented in the brain by leveraging signals mediating online feedback
correction.

Sparse feedback is sufficient for both motor control and adaptation
The fact that our model recapitulates many aspects of human and monkey adaptation behaviour
supports the hypothesis that a similar feedback-based learning process may be implemented in actual
neural circuits. Yet, in the model we have examined so far, every unit received a feedback signal,
whereas only a relatively large subset of primary motor cortical neurons seem to be modulated by
sensory feedback ( 73% of neurons in M1 respond to either visual or proprioceptive feedback16). Thus,
to further probe the plausibility of our model, we explored how our results were influenced by feedback
connection density.

We quantified model performance in terms of both control accuracy and degree of learning for feedback
projection densities ranging from 1% to 100%. Critically, the model could control its output effectively
with density as low as 25%; even the extremely sparse 1% projection density decreased endpoint error
considerably compared to a model without feedback (compare the solid and dashed lines in Figure 4A).
Likewise, the model did learn substantially for all feedback projection densities (compare the solid
and empty markers in Figure 4B), and, although the amount of learning decreased almost linearly
as feedback projections became sparser, as few as 1% of the neurons receiving feedback sufficed to
drive meaningful learning that reduced take-off errors by 30%. Notably, these results were robust to
changes in RNN connectivity, as control accuracy and degree of learning were similar for recurrent
connection probabilities of 50% and 80% (Figure S2).

Finally, to understand how feedback inputs enabled successful behaviour, we compared their contri-
bution to that of the recurrent inputs, both early in the perturbation block (Figure 4C,D), where
feedback is crucial to correct the output, and after successful adaptation (Figure 4E,F), where we
expected feedback to only play a minor role. Even at perturbation onset, the network activity was
mostly driven by recurrent inputs, with the feedback making up only a minor part of the overall input
(compare the blue and red traces in Figure 4C,D, respectively); this was the case for all feedback den-
sities. Thus, feedback signals did not directly drive accurate movements; instead their contribution
was amplified through recurrent dynamics —note the different temporal patterns of recurrent input
between before and after adaptation (Figure 4C and Figure 4E, respectively). This likely explains
why movement accuracy remained stable across a broad range of feedback projection densities (Fig-
ure 4A). As expected, after successful adaptation, feedback inputs were much smaller than recurrent
inputs, regardless of the feedback projection density (Figure 4E,F). Combined, these results suggest
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Figure 4: Both feedback-based motor control and adaptation can be achieved with sparse
feedback signals which are small compared to recurrent signals. A. Angular error between
produced and target position at the end of the reach immediately after onset of visuomotor rotation for
networks with different percentages of neurons receiving afferent feedback (black markers), including
no feedback (dashed line). Lines and error bars, mean and s.d. across ten networks. B. Take-off
error at visuomotor rotation onset (solid circles), and after adaptation (empty circles) for networks
with different percentages of neurons receiving afferent feedback. Lines and error bars, mean and
s.d. across ten networks. C. Average recurrent (blue) and feedback (red) inputs to an RNN neuron
before adaptation. Average input strength is defined as the mean across incoming signals and neurons.
Legend, percentage of neurons receiving feedback. D. Average magnitude of the peak input strength
of the recurrent (blue) and feedback (red) inputs before adaptation. Same colour scheme as in C. Lines
and error bars, mean and s.d. across ten networks. E. Average recurrent (blue) and feedback (red)
inputs to an RNN neuron after adaptation. Data presented as in C. F. Average magnitude of the peak
input strength of the recurrent (blue) and feedback (red) inputs after adaptation. Data presented as
in D.

that actual brains may perform effective motor control and adaptation even with a relatively small
number of feedback connections, and feedback signals may make relatively small contribution to the
overall neural activity.
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Two temporally dissociable adaptation-related activity changes in the model can be
uncovered in monkey primary motor cortex
Our previous simulations suggest that sparse feedback projections may suffice to enable effective motor
control and adaptation (Figure 4A,B), and that feedback inputs account for only a minor portion of a
unit’s overall input (Figure 4C,D). Combined, these observations indicate that identifying a “signature”
of feedback-driven plasticity in neural recordings or even in the RNN activity may be difficult. Our
approach to tackle this was to focus on the within-trial timing: we devised an analysis to isolate
activity changes related to the two temporally distinct processes that we expected to occur during
feedback-driven adaptation: 1) an early feedforward change, reflecting updated pre-planned movement
intent, and 2) a change in feedback signals later in the trial, as the error decreased over trial-by-trial
learning.

To measure feedback related changes (Figure 5A; green) we focused on the activity changes from the
baseline epoch (box A in Figure 5A) to right after perturbation onset (box B in Figure 5A), by simply
taking the difference between the single neuron activities in those two epochs. Similarly, the learning
related changes (Figure 5A; blue) represent the activity changes between the baseline epoch and the
late adaptation epoch (box C in Figure 5A), where we expect the feedback component to have reached
baseline levels again as the model no longer needs to correct its movement online. The adaptation
related change (Figure 5A; dark grey) is defined as the difference between early and late adaptation
epochs, respectively.

Inspecting the RNN activity changes during adaptation indeed revealed two distinct peaks in the aver-
age activity change during adaptation (Figure 5B), assigned to learning (blue) and feedback (green),
respectively. To confirm that these early and late “activity change peaks” did reflect feedforward
and feedback processes, respectively, we trained a different set of models that used simple gradient
descent instead of feedback-driven plasticity to achieve motor adaptation (Methods). As expected,
these models also exhibited a change in activity early during the movement (compare the blue traces
in Figure 5B and Figure 5C), confirming that it does represent learning. In contrast, the second peak
(green trace in Figure 5B) was absent from these models without feedback-driven plasticity, confirming
its source.

Having uncovered a signature of feedback-driven adaptation in our model, we sought to identify
a similar change in neural population recordings from monkey M1 (Figure 5D; data from Ref. 51;
Methods). Figure 5E shows the average change in M1 activity during a representative VR adaptation
session, qualitatively confirming our prediction of a feedback signal during early adaptation trials
(circle in Figure 5E). Reassuringly, this feedback signal occurred 300 ms after peak speed (which
happened 500 ms after the go cue), as it did in other studies exploring feedback-based movement
corrections12,16. To further compare the monkey data to our model, we calculated the ratio of the
adaptation-related activity change at the “feedback peak” (green circle in Figure 5B,C,E) and the
learning-related “feedforward peak” (blue star in Figure 5B,C,E) (Methods). For both monkeys, there
was a substantial change in neural activity at the feedback peak during adaptation (Figure 5G),
as predicted by our model (Figure 5F). Moreover, the value of this ratio was similar across both
monkeys and sessions, and best matched, in terms of mean and variability, that of models with high
feedback projection densities (Figure 5F,G). The fact that models with dense feedback projections
best replicated the experimental data is in good agreement with observations suggesting that as many
as 73% of M1 neurons are driven by feedback16. The similarities in the activity changes during
adaptation between our model and monkey M1 suggest that error feedback signals in M1 may indeed
guide local plasticity relevant for rapid motor learning.

Discussion
Both the rapid correction of ongoing movements and progressive adaptation to changing conditions
are key landmarks of behaviour that are often studied separately. Here, we have shown that an RNN
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Figure 5: Two temporally dissociated activity changes may indicate feedback-driven plas-
ticity in monkey M1 during visuomotor adaptation. A. Epochs used to identify feedback-
related (green) and learning-related (blue) activity changes. B. The average RNN activity change
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and feedback-related (green circle) activity changes for an example network. Black trace, activity
change between perturbation onset and successful adaptation; green, activity change between base-
line and perturbation onset; blue, activity change between baseline and successful adaptation. Note
that the peak timings are chosen based on ten different network simulations. C. An RNN without a
feedback loop has only feedforward-related activity changes. Data presented as in A. D. Approximate
location of the recording array for each of monkey (legend). E. The average activity change of mon-
key M1 neurons between perturbation onset and successful adaptation resembles that of the network
(compare with A). Data from one representative session from Monkey C, presented as in B. F. Com-
parison between the ratio of the feedback-related (green circle in B,C,E) to feedforward-related (blue
star in B,C,E) activity changes from perturbation onset until successful adaptation for networks with
different feedback densities. Individual markers, individual networks. Horizontal line, mean. G. Same
as F, but for monkey M1 (data shown for each monkey separately). Individual markers, individual
sessions. Horizontal line, mean. FB, feedback; FF, feedforward.

that can dynamically control its output based on feedback inputs can use those same inputs to achieve
motor adaptation through recurrent connectivity changes. Interestingly, this form of feedback-driven
plasticity recapitulated key aspects of primate adaptation behaviour2,63–66, and led to identifiable
activity changes in the model that we subsequently discovered in neural recordings made in the primary
motor cortex of two monkeys. These results, which were robust across a broad change of model
parameters (Figure 4, Figure S2), support the hypothesis that online movement correction and motor
adaptation may share a common implementation in neural circuits.
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Implementation of feedback-based motor control in neural circuitry
Most modelling studies on motor control have focused on understanding it at an abstract compu-
tational level, mostly ignoring neurons and connections between them52,63,68. One potential reason
is the challenge of mapping the abstract concepts of optimal feedback control theory into brain re-
gions5,17. Our work differs from those previous attempts in that it approaches the problem from a
bottom-up, not a top-down perspective: instead of explicitly training neural networks to match the
behavioural components predicted by optimal feedback control theory, such as a forward model or
a controller69, we let error minimization guide the emergence of an efficient control strategy, poten-
tially mimicking how brain connectivity developed over evolutionary timescales70–72. Given that this
bottom-up approach led to a feedback-based learning process that recapitulated key aspects of human
behavioural adaptation (Figure 2,Figure 3), we believe that our model could help map specific func-
tions that have been formalized in optimal feedback control onto neural circuits, adding to existing
approaches15,17,73–76.

While in this paper we have compared the network activity to recordings from monkey M1, our
model (Figure 5) does not necessarily encompass only M1 function. On the contrary, it is likely that
it captures functions mediated in part through multi-region interactions with a variety of cortical
and subcortical regions77,78, such as feedback processing, or sensory gating. Extending our work to
modular, multi-region RNNs whose activity is compared to neural population recordings across the
sensorimotor network (such as in Ref. 59, 61, 62) may shed light into the distributed implementation
across brain circuits of the different computations underlying feedback control.

Early studies proposed the cerebellum as the key structure for motor adaptation5,22,25,31,41,79–84.
Their central premise was that the cerebellum stores both “forward” and “inverse” internal models
of the sensorimotor system which are used to generate and update predicted outcomes of motor com-
mands, respectively50,85–87. The importance of internal models in the cerebellum received additional
support from evidence of adaptation deficits in cerebellar patients88, although this view has recently
been challenged by a proposal that adaptation is better described by a direct update of a control pol-
icy53. Our study does not contradict this work; it illustrates an alternative, perhaps parallel learning
process relevant for motor adaptation. Moreover, the cerebellum could readily fit into our model as
the brain region responsible for calculating error estimates based on the sensory feedback, which we
simply assumed to exist. Interestingly, the fact that cerebellar patients have impairments in motor
control as well as learning25,89 also fits with our model, since both processes are critically dependent
on the availability of an accurate error signal. Combining our bottom-up model of feedback-based
learning in M1 with previous models of the cerebellum22,76 might provide a fruitful route to uncover
how each of these two brain regions contributes to motor adaptation.

Biologically plausible learning rules
Our proposed feedback-driven learning rule adds to recent efforts to implement biologically plausible
learning in RNNs90–96 —a challenging temporal credit assignment problem. Most of these learning
rules share the same basic idea: the weight change is proportional to the error signal arriving at the
postsynaptic neuron times the activity history of the presynaptic neuron. What makes those learning
rules biologically plausible is that both pieces of information could in principle be locally available at
a synapse.

The crucial difference between our model and previous studies is that the error signal is a direct
input to the neuron, which allows it to simultaneously guide weight update and affect the ongoing
network dynamics. This feature is desirable because it avoids the need to have two distinct pathways
for error signals and ongoing network dynamics, respectively97–99. Moreover, our approach makes
weight update dependent on the error signal in two ways: directly, through the error term in the
plasticity rule, and indirectly, through the change in ongoing dynamics, which influences the activity
of the presynaptic neuron. This could be beneficial for learning and should be compared to standard
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learning algorithms like gradient descent.

Finally, our feedback-driven plasticity rule led to an adaptation time course that replicated the simul-
taneous fast and slow processes found in human behavioural studies (Figure 3C;63,64). This seems
puzzling given that the fast process is often assumed to be explicit64,100, a component not possible in
our RNN implementation. Therefore, the observation of a fast component despite adaptation being
mediated purely by an error feedback signal suggests that, in principle, error minimisation alone can
give rise to learning at multiple timescales.

Conclusions
We have shown how the same error feedback signal that mediates ongoing motor corrections can
drive trial-by-trial motor adaptation by guiding synaptic plasticity using a relatively simple, bio-
logically plausible plasticity rule. Crucially, this bottom-up model of a shared implementation of
feedback-based motor control and rapid learning recapitulated key observations from behavioural and
neurophysiological adaptation studies in humans and monkeys. Thus, these two landmarks of animal
behaviour may be unified in their implementation by the same neural circuitry.

11

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.06.511108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511108
http://creativecommons.org/licenses/by-nd/4.0/


Methods
Recurrent Neural Network model
Neural activity x was simulated using the following dynamical equations,

xj(t + 1) = xj(t) + dt
τ

(
−xj(t) +

∑
i

WjiΦ(xi(t)) +
∑

i

W in
ji si(t) +

∑
i

Fjiϵi(t − ∆) + bj

)

rj(t) =
T∑

t′<t

Φ(xj(t′))

vk(t) =
∑

i

W out
ki Φ(xi(t)) + bout

k

pk(t) = pk(t − 1) + dt · vk(t)
ϵk(t) = p∗

k(t) − pk(t)
where the network output v represents velocity, and p position, of the simulated planar hand movement
(cf. definitions in Table 1). The instantaneous error signal ϵ is given by the difference between the
target p∗ and the produced position p, and is fed back to the network with a time delay ∆. How we
constructed the network input s and the target position p∗ are described in the “Reaching datasets
for model training and testing” section below. Each trial was initialized by setting all xj to random
numbers uniformly distributed between -0.2 and 0.2. All simulations were performed on RNN models
consisting of 400 neurons, which were connected all-to-all. Varying the recurrent connection probability
did not change the results (Figure S2).

Model training procedure

The first step was to train the RNN to control its own output, that is, to minimize the position error,
ϵ. This training was performed using standard gradient descent to find the right set of parameters.
The initial training procedure was implemented in Pytorch101 using the Adam optimizer with learning
rate α = 0.001 (β1 = 0.9, β2 = 0.999)102. The weights (W ,W in,W out,F ) and biases (b,bout) were
initialized by drawing random, uniformly distributed numbers between −1/

√
l and 1

√
l, where l is

either the number of neurons in the network (for W ,W in,F ,b) or the dimensionality of the output (for
W out,bout). The gradient norm was clipped at 0.2 prior to the optimization step. The loss function
used for this initial training phase was defined as

L = 1
2BT

B∑
b

T∑
t

∑
k=x,y

ϵ2
k(t, b) + β

∑
M=(W,W in,W out,F,b,bout)

||M ||2 + γ
1

NBT

B∑
b

T∑
t

N∑
j

Φ(xj(t, b))2

where B is the batch size, T the number of time steps, N the number of neurons, β the regularization
parameter for the weights and bias terms and γ the regularization parameter for the activity in the
network (cf. definitions in Table 1). The network was trained for 1100 epochs, divided into three
blocks of different lengths (100, 500, 500). For the first 100 epochs, the feedback weights F were kept
fixed while the remaining parameters where allowed to change. This ensured that the model learnt
to self-generate the appropriate network dynamics to produce a variety of reaching trajectories. In
the next 500 epochs, the feedback connections were also allowed to change. In the last 500 epochs,
we introduced perturbations on the produced output (see “Reaching datasets for model training and
testing”), with all parameters plastic, to make the model learn to use the feedback inputs to compensate
for ongoing errors.

A feedback-driven plasticity rule to drive trial-by-trial learning

Having set up the model to control its own output, we next examined how feedback inputs ϵ could guide
learning, implemented through synaptic plasticity within the recurrent weights W of the network. To

12

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.06.511108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511108
http://creativecommons.org/licenses/by-nd/4.0/


Parameter Definition Value
dt Time step 10ms
τ Time constant 50ms
∆ Feedback delay 120ms
N Number of neurons 400
Φ Nonlinearity ReLU

Φ(x) Neural activity -
s Stimulus -
ϵ Position error -
r Eligibility trace -

W Recurrent weight matrix -
b Recurrent offset -

W in Input weight matrix -
W out Output weight matrix -
bout Output offset -
F Feedback weight matrix -
v Velocity (2D) -
p Position (2D) -
α Gradient Descent: Learning rate 0.001
B Gradient Descent: batch size 20
β Gradient Descent: weight regularization 0.001
γ Gradient Descent: activity regularization 0.002
η Feedback-driven plasticity: learning rate 0.000001
T Reach trajectories: number of time steps in a trial 300

Table 1: Simulation parameters.

this end, we devised the following feedback-driven plasticity rule:

dWji(t) = dt η
∑

k=x,y

Fjkϵk(t)ri(t)

Wk+1 = Wk +
∑

t

dW (5t)

The weight update dW was calculated online and summed up taking into account every fifth time step
until the end of a trial k. After each trial, we applied this accumulated weight change and updated
the recurrent weights W accordingly.

Reaching datasets for model training and testing

The network model was trained to produce a broad set of synthetic planar reaching trajectories
following an instructed delay phase. The x and y positions of the starting (pstart) and ending points
(pend) of those trajectories were randomly drawn from a uniform distribution ranging from -6 cm to
6 cm. To simulate natural reaching behaviour, we interpolated between these points using a sigmoid
function

f(t) = 1
1 + exp(−t · κ)

where κ=10/s. The manually constructed reach trajectories were thus given by

p∗
t = pstart + f(t)(pend − pstart)

which resulted in bell-shaped velocity profiles.

Each trial lasted 3 s and included an instructed delay period, randomly drawn from 0 s to 1.5 s.
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The network received an input signal consisting of a two-dimensional target signal and a one-dimensional
timing signal. The target signal was defined as (pend − pstart). It was delivered to the network 0.2 s
after trial onset, and was fixed until the end of the trial. The timing signal was given in form of a
constant, and was switched to zero at the time corresponding to the “go” signal, which varied be-
tween 0.2 s and 1.7 s for the random reaching task used during training (that is, when the network
generated reaches of random direction and lengths up to 8.5cm), and between 1.2 s and 1.7 s for the
centre-out-reaching task.

As mentioned above, during the last phase of the initial training phase we included brief “bump”
perturbations to the output of the network so it had to learn to use the feedback input to correct its
output online. In 75 % of the trials, we added a pulse of 0.1 s duration and amplitude 10 cm/s on the
velocity output of the model, either in x or y direction. This pulse occurred randomly between 0.2 s
and 1.9 s after trial onset, to mimic perturbations at various movement periods.

After training, we tested the model on a centre-out-reaching task with eight targets equally distributed
on a circle of 5 cm radius. In this task, the go signal occurred randomly between 1.2 s and 1.7 s, as
before.

To probe online feedback correction and motor adaptation, we introduced a visuomotor rotation (VR)
perturbation that rotated the output of the model by 30◦, similar to previous visuomotor rotation
experiments in humans2 and monkeys51.

Neural recordings from behaving monkeys
We reanalysed previously published data from two macaque monkeys performing a visuomotor adap-
tation reaching task with a cursor controlled by movements of a manipulandum. In each session the
monkeys performed 154–217 successful trials of an eight target centre-out reaching task. After this
baseline period, a 30◦ rotation (clockwise or counter clockwise, depending on the session) of the cursor
position feedback presented on a screen was introduced. Finally, after 219–316 successful adaptation
trials, the perturbation was removed in order to study de-adaptation during this “washout” period.

We analysed the activity of populations of putative single neurons recorded using 96-channel micro-
electrode arrays chronically implanted in the arm area of primary motor cortex (details in Ref. 51).
We quantified trial-by-trial learning by examining the monkey’s hand trajectories, which was tracked
by recording the position of the handle of the manipulandum. All surgical and behavioural proce-
dures were approved by the Institutional Animal Care and Use Committee at Northwestern University
(Chicago, USA).

Data analysis
Movement error metrics to quantify learning

The take-off angle was defined as the initial reach direction, calculated between the go cue and peak
velocity. When pooling the angular error across monkeys in Figure 2, we smoothed the mean across
all sessions from both animals using a Gaussian filter with s.d. of ten trials.

When studying how error magnitude influences learning in the next trial (Figure 3A), we computed
the Pearson’s correlation (pearsonr from scipy.stats package) between the absolute value of the
angular error and the difference in angular error between the current trial and the next trial. To
assess whether these correlations were significant, we compared them to a null distribution under the
assumption of joint normality. The movement error in Figure 3B is defined as the averaged squared
position error ϵ.
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Analysis of learning timescales

We investigated whether our model’s learning time course is composed of two processes with different
timescales by implementing the analysis used in earlier studies Ref. 63, 64. We fitted a dual-rate
state-space model to the angular error data, defined as below:

xf (n + 1) = Af xf (n) + Bf e(n) (1)
xs(n + 1) = Asxs(n) + Bse(n) (2)

x(n) = xf (n) + xs(n) (3)

subject to the constraints Af < As, Bf > Bs. Af and Bf are the parameters describing the fast
process, whereas As and Bs are the parameters describing the slow process. The Adaptation variable,
x (cf. Figure 3C), is defined as the amount of change in the take-off reaching direction. The error e is
given by the take-off angular error scaled to [-1,1]. The four parameters Af , As, Bf , Bs were obtained
by fitting the model to the adaptation time course observed in the simulated data. For this, we used
the Sequential Least Squares Programming method from the scipy optimization package.

Analysis of temporally dissociable adaptation-related activity changes

We sought to identify a “neural signature” of adaptation-related activity changes in the network that
could be seen in neural recordings from behaving monkeys. To this end, we probed three different
“behavioural epochs” as follows (Figure 5A). For the model data, we simulated 200 baseline trials
(epoch A in Figure 5A), 200 trials beginning immediately after perturbation onset (prior to any
learning; epoch B), and 200 trials beginning 300 trials after the onset of learning (epoch C). For
the monkey data, we considered the following: 100 baseline trials (epoch A), the first 100 trials
after perturbation onset, during which monkeys were beginning to adapt (epoch B), and the last 100
perturbation trials, when monkeys had learned to counteract the perturbation (epoch C). Note that
for the monkey data, the feedback epoch B was not as clearly defined as for the simulation data, since
the monkeys had already started learning within epoch B.

The activity change in the simulation data was calculated by measuring, for each unit, the activity
difference between all pairs of behavioural epochs (A, B, C in Figure 5A). For this, we simulated the
same trials (using the same random seed) without perturbations (A), with perturbations (B), and
with perturbations after the network had adapted (C). To identify the time point within a trial at
which the largest activity change happened, we computed the absolute value of activity change, and
averaged the respective differences across neurons and trials. This resulted in the time courses shown
in Figure 5A,B. For the monkey data (Figure 5E), since we could not have the exact trials in different
epochs, we calculated the difference between trials in different epochs in an all-to-all fashion, then
averaged over those trial pairs.

After an initial analysis of the average activity change across all ten RNN models, we could define
a “feedforward” time point (0.5 s after the go cue), in which the largest activity change between
late adaptation (epoch C) and early adaptation (epoch B) happened, and a “feedback” time point
(0.8 s after the go cue), in which the largest activity change between early adaptation (epoch B) and
baseline (epoch A) happened. These values were very similar to those identified in the analysis of
neural recordings from monkey M1: feedforward time point, 0.4 s after the go cue; feedback time
point, 0.8 s after the go cue. For the pooled analysis presented in Figure 5F,G, we took the values
of the activity change traces at those time points and calculated the ratio between the value at the
feedforward time point and the value at the feedback time point.
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Data availability
The data that support the findings in this study are available from the corresponding authors upon
reasonable request.

Code availability
All code to reproduce the main simulation results will be made freely available upon publication on
GitHub (https://github.com/babaf/feedback-driven-plasticity).

Author contributions

B.F., C.C. and J.A.G. devised the project. M.G.P. and L.E.M. provided the monkey datasets. B.F.
ran simulations, analysed data and generated figures. B.F., C.C. and J.A.G. interpreted the data.
B.F., C.C. and J.A.G. wrote the manuscript. All authors discussed and edited the manuscript. C.C.
and J.A.G. jointly supervised the work.

Competing Interests
J.A.G. receives funding from Meta Platform Technologies, LLC.

Acknowledgements
L.E.M. received funding from the NIH National Institute of Neurological Disorders and Stroke (NS053603
and NS074044). C.C received funding from the BBSRC (BB/N013956/1 and BB/N019008/1), the
EPSRC (EP/R035806/1), the Wellcome Trust (200790/Z/16/Z), and Simons Foundation (564408).
J.A.G. received funding from the EPSRC (EP/T020970/1) and the European Research Council (ERC-
2020-StG-949660). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

References
1 SP Wise, SL Moody, KJ Blomstrom, and AR Mitz. Changes in motor cortical activity during

visuomotor adaptation. Experimental Brain Research, 121(3):285–299, 1998.

2 John W Krakauer, Zachary M Pine, Maria-Felice Ghilardi, and Claude Ghez. Learning of visuo-
motor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience,
20(23):8916–8924, 2000.

3 Kurt A Thoroughman and Reza Shadmehr. Learning of action through adaptive combination of
motor primitives. Nature, 407(6805):742–747, 2000.

4 Stephen H Scott. Optimal feedback control and the neural basis of volitional motor control. Nature
Reviews Neuroscience, 5(7):532–545, 2004.

5 Reza Shadmehr and John W Krakauer. A computational neuroanatomy for motor control. Exper-
imental brain research, 185(3):359–381, 2008.

6 Nicholas G Hatsopoulos and Aaron J Suminski. Sensing with the motor cortex. Neuron, 72(3):477–
487, 2011.

16

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.06.511108doi: bioRxiv preprint 

https://github.com/babaf/feedback-driven-plasticity
https://doi.org/10.1101/2022.10.06.511108
http://creativecommons.org/licenses/by-nd/4.0/


7 J Andrew Pruszynski, Isaac Kurtzer, Joseph Y Nashed, Mohsen Omrani, Brenda Brouwer, and
Stephen H Scott. Primary motor cortex underlies multi-joint integration for fast feedback control.
Nature, 478(7369):387–390, 2011.

8 Stephen H Scott. The computational and neural basis of voluntary motor control and planning.
Trends in cognitive sciences, 16(11):541–549, 2012.

9 Joseph Y Nashed, Frédéric Crevecoeur, and Stephen H Scott. Influence of the behavioral goal and
environmental obstacles on rapid feedback responses. Journal of neurophysiology, 108(4):999–1009,
2012.

10 J Andrew Pruszynski, Mohsen Omrani, and Stephen H Scott. Goal-dependent modulation of fast
feedback responses in primary motor cortex. Journal of Neuroscience, 34(13):4608–4617, 2014.

11 Stephen H Scott, Tyler Cluff, Catherine R Lowrey, and Tomohiko Takei. Feedback control during
voluntary motor actions. Current opinion in neurobiology, 33:85–94, 2015.

12 Stephen H Scott. A functional taxonomy of bottom-up sensory feedback processing for motor
actions. Trends in neurosciences, 39(8):512–526, 2016.

13 Mohsen Omrani, Chantelle D Murnaghan, J Andrew Pruszynski, and Stephen H Scott. Distributed
task-specific processing of somatosensory feedback for voluntary motor control. Elife, 5:e13141,
2016.

14 Masato Inoue, Motoaki Uchimura, and Shigeru Kitazawa. Error signals in motor cortices drive
adaptation in reaching. Neuron, 90(5):1114–1126, 2016.

15 Hari Teja Kalidindi, Kevin P Cross, Timothy P Lillicrap, Mohsen Omrani, Egidio Falotico, Philip N
Sabes, and Stephen H Scott. Rotational dynamics in motor cortex are consistent with a feedback
controller. Elife, 10:e67256, 2021.

16 Kevin P Cross, Douglas J Cook, and Stephen H Scott. Convergence of proprioceptive and visual
feedback on neurons in primary motor cortex. bioRxiv, 2021.

17 Tomohiko Takei, Stephen G Lomber, Douglas J Cook, and Stephen H Scott. Transient deactivation
of dorsal premotor cortex or parietal area 5 impairs feedback control of the limb in macaques.
Current Biology, 31(7):1476–1487, 2021.

18 Daniel M Wolpert, Jörn Diedrichsen, and J Randall Flanagan. Principles of sensorimotor learning.
Nature reviews neuroscience, 12(12):739–751, 2011.

19 Jun Izawa and Reza Shadmehr. Learning from sensory and reward prediction errors during motor
adaptation. PLoS computational biology, 7(3):e1002012, 2011.

20 Mitsuo Kawato, Kazunori Furukawa, and Ryoji Suzuki. A hierarchical neural-network model for
control and learning of voluntary movement. Biological cybernetics, 57(3):169–185, 1987.

21 Mitsuo Kawato. Feedback-error-learning neural network for supervised motor learning. In Advanced
neural computers, pages 365–372. Elsevier, 1990.

22 Mitsuo Kawato and Hiroaki Gomi. A computational model of four regions of the cerebellum based
on feedback-error learning. Biological cybernetics, 68(2):95–103, 1992.

23 Rony Paz, Thomas Boraud, Chen Natan, Hagai Bergman, and Eilon Vaadia. Preparatory activity
in motor cortex reflects learning of local visuomotor skills. Nature neuroscience, 6(8):882–890,
2003.

17

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.06.511108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511108
http://creativecommons.org/licenses/by-nd/4.0/


24 Jörn Diedrichsen, Yasmin Hashambhoy, Tushar Rane, and Reza Shadmehr. Neural correlates of
reach errors. Journal of Neuroscience, 25(43):9919–9931, 2005.

25 Ya-weng Tseng, Joern Diedrichsen, John W Krakauer, Reza Shadmehr, and Amy J Bastian. Sen-
sory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of neurophysi-
ology, 98(1):54–62, 2007.

26 Arash Hadipour-Niktarash, Christine K Lee, John E Desmond, and Reza Shadmehr. Impairment
of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary
motor cortex. Journal of Neuroscience, 27(49):13413–13419, 2007.

27 Tonghui Xu, Xinzhu Yu, Andrew J Perlik, Willie F Tobin, Jonathan A Zweig, Kelly Tennant,
Theresa Jones, and Yi Zuo. Rapid formation and selective stabilization of synapses for enduring
motor memories. Nature, 462(7275):915–919, 2009.

28 Kasja Rabe, Ofer Livne, Elke R Gizewski, Volker Aurich, Andreas Beck, Dagmar Timmann, and
Opher Donchin. Adaptation to visuomotor rotation and force field perturbation is correlated to dif-
ferent brain areas in patients with cerebellar degeneration. Journal of neurophysiology, 101(4):1961–
1971, 2009.

29 Hirokazu Tanaka, Terrence J Sejnowski, and John W Krakauer. Adaptation to visuomotor rotation
through interaction between posterior parietal and motor cortical areas. Journal of neurophysiology,
102(5):2921–2932, 2009.

30 Naoki Saijo and Hiroaki Gomi. Multiple motor learning strategies in visuomotor rotation. PLoS
One, 5(2):e9399, 2010.

31 Joseph M Galea, Alejandro Vazquez, Neel Pasricha, Jean-Jacques Orban de Xivry, and Pablo
Celnik. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the
motor cortex retains what the cerebellum learns. Cerebral cortex, 21(8):1761–1770, 2011.

32 John E Schlerf, Joseph M Galea, Amy J Bastian, and Pablo A Celnik. Dynamic modulation of
cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. Journal of Neuroscience,
32(34):11610–11617, 2012.

33 Jean-Jacques Orban de Xivry, Sarah E Criscimagna-Hemminger, and Reza Shadmehr. Contribu-
tions of the motor cortex to adaptive control of reaching depend on the perturbation schedule.
Cerebral Cortex, 21(7):1475–1484, 2011.

34 John W Krakauer and Pietro Mazzoni. Human sensorimotor learning: adaptation, skill, and
beyond. Current opinion in neurobiology, 21(4):636–644, 2011.

35 Ling Wang, James M Conner, Jessica Rickert, and Mark H Tuszynski. Structural plasticity within
highly specific neuronal populations identifies a unique parcellation of motor learning in the adult
brain. Proceedings of the National Academy of Sciences, 108(6):2545–2550, 2011.

36 Risa Kawai, Timothy Markman, Rajesh Poddar, Raymond Ko, Antoniu L Fantana, Ashesh K
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Figure S1: Initial training protocol. The initial training of the RNN is divided into three phases.
In the first phase, we kept the feedback weights W fb fixed and at small initial values (A,D). In the
second phase, we lifted that constraint, and all model parameters became plastic (B,E). In the third
phase, we introduced random velocity perturbations in 75 % of trials (C,F). A-C. Training loss for
each of the three training phases. D-F. Input (top) and output (bottom) for an example test trial for
each of the three training phases.
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Figure S2: Effective feedback-based motor control and adaptation can both be achieved
with sparse feedback for varied degrees of recurrent connectivity. Simulation results for
networks with 50% (A-D) or 80% (E-H) recurrent connection probability. A. Angular error between
produced and target position at the end of the reach immediately after onset of visuomotor rotation
onset for networks with different percentages of neurons receiving afferent feedback (black markers),
including no feedback (dashed line). Lines and error bars, mean and s.d. across ten networks. B.
Take-off error at visuomotor rotation onset (solid circles), and after adaptation (empty circles) for
networks with different percentages of neurons receiving afferent feedback. Lines and error bars, mean
and s.d. across ten networks. C. Average recurrent (blue) and feedback (red) inputs to an RNN
neuron before adaptation. Average input strength is defined as the mean across incoming signals and
neurons. Legend, percentage of neurons receiving feedback. D. Average magnitude of the peak input
strength of the recurrent (blue) and feedback (red) inputs before adaptation. Same colour scheme as
in C. Lines and error bars, mean and s.d. across ten networks. Data in E,F,G,H are presented as in
A,B,C,D.
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