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Hundreds or thousands of loci are now routinely used in mod-
ern phylogenomic studies. Concatenation approaches to tree
inference assume that there is a single topology for the entire
dataset, but different loci may have different evolutionary his-
tories due to incomplete lineage sorting, introgression, and/or
horizontal gene transfer; even single loci may not be treelike
due to recombination. To overcome this shortcoming, we intro-
duce the mixture across sites and trees (MAST) model, which
uses a mixture of bifurcating trees to represent multiple histo-
ries in a single concatenated alignment. The MAST model al-
lows each tree to have its own topology, branch lengths, substi-
tution model, nucleotide or amino acid frequencies, and model
of rate heterogeneity across sites. We implemented the MAST
model in a maximum-likelihood framework in the popular phy-
logenetic software, IQ-TREE. Simulations show that we can ac-
curately recover the true model parameters, including branch
lengths and tree weights (i.e. frequencies) for a given set of tree
topologies. We also show that we can use standard statistical
inference approaches to reject a single-tree model when data
are simulated under multiple trees (and vice versa). We applied
the MAST model to multiple primate datasets and found that it
can recover the signal of incomplete lineage sorting in the Great
Apes, as well as the asymmetry in minor trees caused by intro-
gression among several macaque species. When applied to a
dataset of four Platyrrhine species for which standard concate-
nated maximum likelihood and gene tree approaches disagree,
we find that MAST gives the highest weight to the tree favored
by gene tree approaches. These results suggest that the MAST
model is able to analyse a concatenated alignment using max-
imum likelihood, while avoiding some of the biases that come
with assuming there is only a single tree. The MAST model
can therefore offer unique biological insights when applied to
datasets with multiple evolutionary histories. We discuss how it
can be extended in the future.
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Introduction
Molecular phylogenetics aims to infer phylogenetic trees,
often from aligned DNA or amino acid (AA) sequencing
data. Many popular phylogenetic tools are designed to in-
fer a single tree from a multiple sequence alignment, using
one of a number of approaches such as maximum likelihood
(e.g. RAxML (1), IQ-TREE (2), PhyML (3)), Bayesian in-
ference (e.g. MrBayes (4), BEAST (5)), maximum parsi-
mony (e.g. MPBoot (6), matOptimize (7), TNT (8)), or dis-

tance methods (e.g. BioNJ (9), FastME (10), QuickTree (11),
RapidNJ (12)). The assumption that the data can be repre-
sented as a single tree is appropriate when analysing a single
non-recombining locus. However, there are many situations
where this “treelikeness” assumption is violated. For exam-
ple, an alignment of a single locus may contain one or more
recombination events in its history, such that different regions
of the alignment follow different trees. More generally, it is
well known that different genomic loci may have evolved un-
der different trees due to biological processes including in-
complete lineage sorting (ILS), hybridisation/introgression,
and horizontal gene transfer (13, 14). Since modern phyloge-
nomic datasets now routinely contain hundreds or thousands
of loci, a great deal of work has focused on developing meth-
ods and software that relax the treelikeness assumption (15).
Most existing approaches that account for complex histories
in large datasets focus on inferring either species trees or
species networks, either from a single concatenated align-
ment or from many individual locus alignments or individ-
ual locus trees. Many of the most popular approaches for
inferring species trees are based on the multi-species coa-
lescent model (MSC) or are consistent with the MSC, and
can infer a species tree while accounting for ILS among loci
(e.g. SNAPP (16), ASTRAL-III (17), MP-EST (18), SVD-
Quartets (19), *BEAST (20), *BEAST2 (21)). More recent
work has extended the MSC to account for a broader range
of processes that can cause reticulations in the underlying
species tree. These methods use models referred to as the
multi-species network coalescent (or MSNC), and typically
infer a species network that represents both the vertical in-
heritance and horizontal exchange of genetic material among
evolving lineages (e.g. PhyloNet (22), PhyloNetworks (23),
SpeciesNetwork (24), and BPP (25)).
In this study, we present a different solution to the problem of
accounting for multiple histories in a single sequence align-
ment: the mixtures across sites and trees (MAST) model. The
MAST model is an example of a multitree mixture model
(26), because it uses mixtures of bifurcating trees to represent
the multiple histories present in a dataset. In phylogenetic
mixture models, a number of sub-models (known as classes)
are estimated from the data and the likelihood of each site in
the alignment is calculated as the weighted sum of the likeli-
hood for that site under each sub-model (Figure 1). Mixture
models have been widely used in phylogenetic inference, in-
cluding in rate heterogeneity across site models (2, 27), pro-
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file mixture models (e.g. the CAT model (28)), mixtures of
substitution rate matrices (e.g. the LG4M and LG4X mod-
els (29)), and mixtures of branch lengths (e.g. the GHOST
model (30)). The MAST model extends the use of mixture
models to tree topologies. It is best seen as a generalisation
of a standard concatenated phylogenetic analysis. In a stan-
dard concatenated phylogenetic analysis, we assume that the
history of the entire alignment is represented by a single bi-
furcating phylogenetic tree (i.e. we make the treelikeness as-
sumption). With the MAST model we relax this assumption
and represent the history of the alignment with a mixture of
any number of trees. Given an alignment and a collection of
tree topologies that contain the same tip labels as that align-
ment, the MAST model estimates the likelihood of each site
under each tree, the maximum-likelihood weights of each of
the input trees, the branch lengths of the trees, and the other
free parameters of the substitution model. In this way, it has
many of the advantages over concatenation approaches, but
can still accommodate underlying discordance in the align-
ment (31).

The MAST model differs from species tree and species net-
work models in a number of ways. First, as opposed to many
MSC and MSNC approaches, the MAST model does not ex-
plicitly model biological processes such as ILS, introgres-
sion, or horizontal gene transfer. Instead, the MAST model
is process-agnostic and simply seeks to calculate the relative
weights of multiple histories from the input data. This is a
limitation in the sense that the output of the MAST model
does not contain direct estimates of many evolutionary pa-
rameters of interest, such as the number of hybridisation
events, their location on the species tree, or ancestral popula-
tion sizes. On the other hand, this difference may be seen as
a strength because the MAST model can represent all biolog-
ical processes or bioinformatic errors (such as the accidental
inclusion of paralogs) which can cause the treelikeness as-
sumption to be violated for a given alignment. Second, the
MAST model differs from previous approaches because it
calculates the likelihood of every site under every tree in the
mixture, and thus allows fine-grained post-hoc analysis of the
data. For example, while a species network can estimate the
proportion of the genome that may have been involved in an
introgression event, the MAST model represents the weights
of the relevant tree topologies as well as the association be-
tween the sites of the alignment and the event.

In this paper, we first describe the mathematical basis of the
MAST model and its implementation in IQ-TREE. This im-
plementation allows us to estimate model parameters and
branch lengths for a given set of fixed tree topologies. We
then perform extensive simulations to evaluate the accuracy
and the limitations of the MAST model. Finally, we demon-
strate the use of the MAST model on four empirical datasets
of primates to show that it recapitulates results from well-
studied clades. We also highlight the advantages of MAST
over standard phylogenetic analysis methods when applied
to these datasets.

Materials and Methods
The MAST model. In a standard concatenation analysis
(such as that performed by IQ-TREE (32) or RAxML (1)),
it is assumed that every site in the concatenated alignment
comes from a single phylogenetic tree, which consists of a
topology and branch lengths. In this framework, maximum
likelihood (ML) approaches seek to find the model of se-
quence evolution, tree topology, and branch lengths that max-
imize the likelihood of the observed alignment. The MAST
model generalizes this framework by assuming that each site
in the alignment comes from a mixture of m trees. Each tree
has its own topology and branch lengths, and the trees may
have independent or shared substitution models (e.g. the gen-
eral time reversible (GTR) model (33)), a set of nucleotide or
amino-acid frequencies, and a rate heterogeneity across sites
(RHAS) model (e.g. the +G or +I+G models). In what fol-
lows we first describe the case in which each tree has an inde-
pendent substitution model, set of nucleotide or amino acid
frequencies, and RHAS model.

Model description. The MAST model consists ofm classes
where each class comprises a bifurcating tree topology Tj .
For the j-th class, λj is defined as the set of branch lengths
on Tj , Rj as the relative substitution rate parameters, Fj as
the set of nucleotide or amino-acid frequencies, Hj as the
rate heterogeneity model, andwj as the class weight (wj > 0,∑m
j=1wj = 1). Given a multiple sequence alignment, A, we

define Lij as the likelihood of the data observed at i-th site
in A under the j-th class of the MAST model. Lij can be
computed using Felsenstein’s pruning algorithm (34). The
likelihood of the i-th site, Li, is the weighted sum of the Lij
over the m classes:

Li =
m∑
j=1

wjLij (Tj ,λj ,Rj ,Hj ,Fj)

The full log-likelihood l over allN alignment sites, which are
assumed to be independent and identically distributed (iid),
is:

l=
N∑
i=1

log(Li) =
N∑
i=1

log

 m∑
j=1

wjLij (Tj ,λj ,Rj ,Hj ,Fj)


This formula is very similar to the formulation of the GHOST
model (30), which allows for mixtures of branch lengths on a
single topology, and differs only insofar as the final sum here
is across the m tree topologies and their associated branch
lengths, versus them sets of branch lengths on a single topol-
ogy in the GHOST model.
In the implementation of the MAST model we describe here
we assume that we know the topologies of all of the m trees
ahead of time, for example, the set of gene tree topologies
observed among the genomes, or the set of possible trees that
should appear under the MSC model. We then estimate the
relative weights (i.e. proportions) of each topology, optimize
the branch lengths of each topology, the parameters of the
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Fig. 1. An example illustrating the MAST model. Two regions (of length 45 bp and 35 bp) were simulated under two different topologies, each with ten taxa. The curves at the
top show the site likelihoods (on a log scale) computed under tree 1 (L1), tree 2 (L2), and the MAST model (LMAST ). LMAST is calculated as the weighted sum of L1
and L2, where the weight parameters w1 and w2 will be estimated by the MAST model. This toy example shows that the LMAST curve matches the L1 curve for region 1
and the L2 curve for region 2 with high site likelihoods, demonstrating the ability of the MAST model to predict the true underlying evolution of this data.

evolutionary model, and the nucleotide or amino-acid fre-
quencies for each tree. We consider extensions of the model
when the tree topologies are not given in the Discussion.

Linked and unlinked MAST submodels. In standard phy-
logenetic analyses we estimate a single tree with an asso-
ciated set of branch lengths, along with the parameters of
the substitution model, the base or amino acid frequencies,
and the rate heterogeneity across sites (RHAS) model. In the
most general MAST model introduced above (submodel 1 in
Figure 2), the tree, the branch lengths of that tree, the sub-
stitution model, the base or amino acid frequencies, and the
RHAS model can all vary in each class, and the weight of
that class pertains to the full set of free parameters associ-
ated with that class. We say that all parameters are unlinked
across classes in this model. We also allow for five more-
restrictive models in which the parameters of the substitution
models, the vectors of base or amino acid frequencies, or the
RHAS model can be linked across all m classes of trees and
their associated branch lengths. The most restricted model
(submodel 6 in Figure 2) links the parameters of all three of
these components of the model across all m classes of trees
and their associated branch lengths. In this model, the es-
timated weights therefore pertain only to the trees and their
branch lengths in each of the m classes, because these are
the only parameters allowed to differ among classes. This
framework allows for the comparison of models with likeli-
hood ratio tests or other information criteria (35).

Model parameter estimation for fixed topologies. Given
a set of fixed topologies, T1, . . . ,Tm, the challenge is to opti-
mize all of the parameters without getting stuck in local op-
tima. We employ both the expectation-maximization (EM)
algorithm (36) and the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm (37) to estimate the MAST model parame-
ters. Taking advantage of the existing parameter optimization
algorithms implemented in IQ-TREE, our workflow (Figure
3) operates as follows. To begin, for class j, the substitu-
tion model Rj and the nucleotide or amino-acid frequencies
Fj are initialized as a Jukes-Cantor (JC) model (i.e. R̂j = 1
and uniform frequencies Fj), and the branch lengths λj are
initialized as the maximum parsimony (Fitch 1971) branch
lengths of the tree Tj . To obtain some sensible initial values
of the tree weights, we first compute the parsimony scores
for each tree topology along all the sites. For each of the sites
with different parsimony scores between the tree topologies,
we then check which tree topology has the minimum parsi-
mony score and assign the site to that tree. The tree weights
are then initialized according to the proportion of the sites
assigned to each of the trees. If all sites have the same par-
simony scores across all the trees, then the tree weights are
initialized to be equal.

Having established the starting values for all the parameters
in the model, we then optimize them. The optimization of
each class of model parameters is done sequentially. Fig-
ure 3 summarizes the workflow of the optimization. Our op-
timization workflow includes an outer loop, a middle loop,
and an inner loop of iterations. The inner loop optimizes
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Fig. 2. A hierarchy of six MAST submodels currently implemented in IQ-TREE.
The term ‘unlinked’ means the parameters can differ across mixture classes, while
‘linked’ means the parameters are restricted to be equal across all classes. The last
line in each box shows the name of the model that can be used directly as input in
IQ-TREE via -m option, assuming two classes with a GTR substitution model and
Gamma RHAS model for each class. The arrows indicate the nestedness between
the submodels; for example, submodel 4 is nested within both submodels 2 and 3,
while submodel 6 is nested within both submodels 4 and 5. Note that two submod-
els are missing (i.e. substitution rate: linked; DNA/AA frequencies: unlinked; RHAS:
linked/unlinked) due to a non-trivial implementation.

the substitution model, nucleotide frequencies, and branch
length of the trees; the middle loop optimizes the rate het-
erogeneity model; the outer loop optimizes the tree weights.
This optimisation continues to iterate until the resulting log-
likelihood value converges, where convergence is defined as
the increment of the log-likelihood value in the current itera-
tion falling below some threshold ε (which we set to 0.0001).
To optimize the unlinked parameters of each tree in the mix-
ture model, we use an EM algorithm similar to that used in
the GHOST model (30).
In detail, our calculations are as follows. Define pi,j as the
posterior probability of site Di evolving under a tree Tj . The
value of pi,j is computed by the following equation:

pi,j = wjLij (Tj ,λj ,Rj ,Hj ,Fj)∑m
j=1wjLij (Tj ,λj ,Rj ,Hj ,Fj)

The expectation of the log-likelihood value (lj) of tree j over
all the sites:

E[lj ] =
N∑
i=1

pi,j log(Lij (Tj ,λj ,Rj ,Hj ,Fj))

In every iteration, by fixing the posterior probabilities pi,j ,
we optimize the tree weights, the branch lengths, the unlinked
substitution rate models, and the unlinked rate heterogeneity

Fig. 3. Optimization flow chart for the MAST model in IQ-TREE. The optimization
workflow includes an outer loop, a middle loop, and an inner loop of iterations. The
inner loop optimizes the substitution model, nucleotide frequencies, and branch
length of the trees; the middle loop optimizes the rate heterogeneity model; the
outer loop optimizes the tree weights. The EM algorithm is used to optimize the
individual unlinked parameters of each tree and the BFGS algorithm is used to
optimize the linked parameters. The iterations continue until the likelihood value
converges.

models of all trees one-by-one to maximize the expected like-
lihood value. The tree weights are then updated by averaging
the probabilities over all the N sites. That is, the new weight
of class j is the mean posterior probability of each site be-
longing to class j:

wj = 1
N

N∑
i=1

pij

For the linked models (submodels 2-6 in Figure 2) the EM
algorithm cannot be applied to the optimisation of the linked
parameters shared between the classes. Thus, we optimize
the parameters of the linked substitution rate model R, the
linked nucleotide or amino acid frequencies F , and the linked
rate heterogeneity modelH using the BFGS algorithm in IQ-
TREE.

Simulations. Having implemented the MAST model in IQ-
TREE, we next used simulated data to test the performance
of the MAST model under a wide range of scenarios. The
first and second simulation experiments test the accuracy of
the unlinked and linked MAST models when the true model
is specified. The third simulation experiment simulates data
with varying levels of introgression to compare the perfor-
mance of standard (i.e. single-tree) concatenation methods
to the performance of the MAST model. The fourth simu-
lation experiment examines the performance of the MAST
model when an incorrect model is specified, by applying an

4 | bioRχiv Wong et al. | Phylogenetic Inference with MAST

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.06.511210doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511210
http://creativecommons.org/licenses/by-nc-nd/4.0/


unlinked MAST model with different numbers of trees to an
alignment simulated under a single tree.

Simulations 1 & 2: Parameter estimation under the
true model for unlinked and linked MAST model (sub-
model 1 & submodel 6). These simulations are designed to
ask whether our implementation of the MAST model in IQ-
TREE is capable of estimating accurate tree weights, branch
lengths, and other model parameters when the model used
for inference matches the model used for simulation. We
simulated alignments under the completely unlinked MAST
model (submodel 1 in Figure 2; simulation 1) and the com-
pletely linked MAST model (submodel 6 in Figure 2; sim-
ulation 2), and provided IQ-TREE with the set of true tree
topologies from the mixture, as well as the true model of
molecular evolution (e.g. GTR+G), and the correct MAST
model (i.e. submodel 1 or 6). We then measured the accu-
racy of our implementation by recording the estimated tree
weights, branch lengths, substitution model parameters, and
nucleotide frequencies, and comparing them to the values
used to simulate the data.
We simulated alignments from mixtures of m of trees with
different numbers (t) of taxa, where m ∈ {1,2,3,5,10} and
t∈ {6,7,10,20}. We performed 100 replicate simulations for
every combination of m and t, for a total of 2000 simulated
datasets per experiment. For each simulated dataset, the m
random trees with t tips were simulated by IQ-TREE version
2 (2) with the option ‘-r’. This simulates a random Yule tree
with branch lengths drawn from an exponential distribution
with a mean of 0.1, a minimum of 0.001, and a maximum of
0.999.
The parameters of the GTR model R were the values of six
random integers uniformly drawn between 5 and 50 and nor-
malized according to the value of G↔T such that the G↔T
rate was always equal to 1.0. The gamma rate H was drawn
randomly from an exponential distribution with a mean of
1.0. The set of nucleotide frequencies F was the propor-
tions between four integers uniformly drawn between 1 and
10. Different R, H , and F were simulated over the trees in
the first simulation experiment, while the same R, H , and F
were shared among the trees in the second simulation exper-
iment. The alignments were then simulated according to the
tree, the GTR model, and the gamma rate using AliSim (38).
Each simulated dataset contained 100k bases, regardless of
the number of trees m. The proportions of the lengths of
each of the m alignments simulated from each of the m trees
were the ratios of m random integers drawn from a uniform
distribution between 1 and 10.
To assess the accuracy of the parameter estimates, we calcu-
lated the root-mean-squared error (RMSE) of each estimated
parameter when compared to its value in the simulation. For
each dataset, we compared the statistical fit of the MAST
model to that of a standard single-tree model by compar-
ing the BIC value (BIC) of the MAST model to the BIC
value(BIC0) of a standard single-tree model.

Simulation 3: Introgression. To examine the performance
of the MAST model in a biologically motivated setting, we

simulated alignments on 4-taxon trees with different levels
of introgression and then used both a single-tree model and
the linked MAST model (i.e. submodel 6) to analyse them.
Each dataset was simulated from a rooted 4-taxon tree shown
in Supplementary Figure S4A. Using this tree we simulated
1500 gene trees with introgression rate r from lineage 2 to
lineage 4 (Supplementary Figure S4A) using the program ms
(39), where r ∈ {0.0,0.1,0.2, . . . ,0.9,1.0} . When the intro-
gression rate is zero, the largest fraction of the gene trees will
match the species tree TE1 and the frequency of the two mi-
nor trees, TE2 and TE3, are expected to be equal. As the
introgression rate increases, the frequency of the tree match-
ing the introgression history, TE2, will increase, and the fre-
quency of the other two trees will decrease. The MAST
model should reflect these patterns in the tree weights cal-
culated from a concatenated alignment of all 1500 genes,
without the need to know the boundaries between the indi-
vidual loci. The benefit of this approach when applied to an
empirical dataset is that it overcomes concerns about ‘con-
catalesence’, in which unaccounted-for recombination within
loci can bias estimates of gene tree frequency calculated by
building trees for each locus (40). Since ms uses a coalescent
model, we rescaled the branch lengths from coalescent units
to units appropriate for simulating alignments (i.e. substi-
tutions per site) by multiplying all branch lengths by 0.002,
selected to result in branch lengths similar to those recovered
from our analyses of empirical dataset 4 (see below). For
each simulated gene tree, we used AliSim (38) to simulate a
1000bp alignment using the GTR+G model with parameters
equal to those reported by IQ-TREE for our analysis of em-
pirical dataset 4 (see below). Concatenating all the single-
locus alignments resulted in an alignment of 1,500,000bp.
We performed 100 replicate simulations at every r, for a to-
tal of 1100 simulated datasets. We then applied the linked
MAST model (submodel 6 in Figure 2) to these data, with
the input trees comprised of all three possible unrooted trees
of the four taxa in Supplementary Figure S4B.

Simulation 4: Parameter estimation under misspeci-
fied models. We next sought to examine the performance
of the MAST model when the underlying data were simu-
lated under a single tree T , but the data were analysed un-
der a MAST model with m > 1 i.e. a misspecified model
with more than one tree. To do this, we simulated data un-
der a single tree topology, and then applied MAST submodel
6 (Figure 2) where the m trees included the true tree T and
also m− 1 additional tree topologies that differed from T .
This simulation is designed to examine the case where a re-
searcher includes the primary tree in a MAST model (e.g.
a tree derived from a single-tree concatenated ML analysis,
or an MSC analysis) but additionally includes some hypothe-
sized trees in the model that have no support in the underlying
data.
Each simulated dataset comprised 20k base pairs and was
simulated on a single tree with different numbers (t) of taxa,
where t ∈ {6,7,10,20}; other simulation parameters were as
above for MAST model 6. We performed 100 replicate sim-
ulations at every t, for a total of 400 simulated datasets. We
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then analysed each simulated dataset under MAST submodel
6. To simulate each of the additional m− 1 tree topologies
in each MAST model, we sequentially performed k random
subtree pruning and regrafting (SPR) moves on the true tree
T . The completely linked MAST model was then applied by
inputting the actual tree topology as well as the other m− 1
different tree topologies that all are k-SPR moves from that
tree, where m ∈ {2,3,5,10} and k ∈ {1,2,3}. Analysing
each of the 400 simulated datasets under 12 combinations of
m and k gives a total of 4800 analyses.
To evaluate the performance, among the 100 replicates, we
recorded how many times the true topology had the maxi-
mum tree weight. As above we also compared the BIC value
(BIC) reported by the MAST model with the BIC value
(BIC0) under the true model, i.e. when the dataset was anal-
ysed under the single true tree T .

Applications to empirical data. In addition to testing the
MAST model on simulated data, we also applied it to four
empirical datasets (Table 1). All of these datasets are sub-
sets of a single dataset comprising 1730 single-gene align-
ments from 26 primates (41). The first two empirical datasets
we used are simple four-taxon datasets, in which it is trivial
to supply the MAST model with all three possible unrooted
trees, and for which the expected tree weights have been esti-
mated in previous research. In the other two empirical exper-
iments, a standard single-tree model was first used to infer a
topology for every gene in the dataset. Then, the set (or sub-
set) of most commonly inferred gene trees were used as the
set of input topologies for the MAST model when analysing
a concatenated alignment of all the single-gene alignments.
In order to find out whether the MAST model has a better fit
to the data compared with the standard single-tree model, we
analysed multiple different submodels of MAST (Figure 2).
We compared the lowest BIC values from these models to the
BIC value calculated using the standard single-tree model on
the same alignments.
The first dataset (‘A’) includes the well-studied four-taxon
grouping of human, chimpanzee, gorilla, and orangutan. Pre-
vious studies have shown that all three possible unrooted
gene trees of four taxa (Figure 4; orangutan is considered an
outgroup to the other tree species) are recovered from these
data. The accepted species tree, uniting humans and chimps,
is the most frequent gene tree, with the two minor trees oc-
curring in very similar frequencies, consistent with the action
of only ILS during the divergence of these species (42); how-
ever, different studies have reported different frequencies for
the three possible gene trees. For example, an early study
that analysed 11945 gene trees (42) and a more recent study
that analysed 1730 gene trees (41) found that 77% and 62%
of gene trees respectively grouped humans and chimps, 12%
and 20% respectively grouped chimps and gorillas, and 11%
and 18% respectively grouped humans and gorillas. The dis-
crepancies in these numbers reflect both the different data
types and data quality available to each study, as well as dif-
ferences in the methods used to reconstruct gene trees. How-
ever, both studies made the single-tree assumption for each
individual gene locus; recombination within each locus vio-

Fig. 4. The three topologies for empirical dataset A. TA3 is the commonly accepted
species tree.

Fig. 5. The three topologies for empirical dataset B. TB3 is the commonly accepted
species tree.

lates this assumption. The MAST model avoids this assump-
tion by using mixtures of trees—in principle, we expect that
estimates of tree weights from the MAST model to be more
accurate than estimates of gene tree frequencies from previ-
ous studies. Nonetheless, we still expect the MAST model to
recover the highest weight for the tree grouping humans and
chimps, and lower but approximately equal weights for the
two minor trees.
The second empirical dataset (‘B’) includes three species
from the genus Macaca (M. fascicularis, M. mulatta, M.
nemestrina) and the mandrill (Colobus angolensis palliatus),
a clade in which a previous analysis found substantial evi-
dence for introgression between M. nemestrina and M. fas-
cicularis (41). Thus, for this dataset we expect the MAST
model to recover the highest weight for the accepted species
tree uniting M. fascicularis and M. mulatta (TB3 in Figure
5), the second highest weight for the minor tree affected most
by introgression (uniting M. nemestrina and M. fascicularis),
and the lowest weight for the minor tree uniting M. mulatta
and M. nemestrina.
The third empirical dataset (‘C’) contains the six species (hu-
man, chimp, gorilla, and the three Macaca species) that rep-
resent the ingroups from the first two datasets. Since we have
a priori information which suggests that all three possible
rooted trees are possible for each of these ingroups, we ap-
plied a MAST model with 9 trees (Supplementary Figure S5),
where all three resolutions of each ingroup clade are paired
with all three resolutions of the other ingroup clade. In prin-
ciple, one should be able to draw similar conclusions from
these 6-taxon datasets as one could from the two independent
analyses of the four-taxon datasets by summing the relevant
tree weights (see below).
The fourth empirical dataset (‘D’) focuses on the rela-
tionships among four Platyrrhine (“New World Monkey”)
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Empirical datasets Species # of genes Total length
A Homo sapiens, Pan troglodytes, 1,595 1,618,506

Gorilla gorilla, Pongo abelii

B Macaca fascicularis, Macaca mulatta, 1,599 1,629,163
Macaca nemestrina, Colobus angolensis palliatus

C Homo sapiens, Pan troglodytes, Gorilla gorilla, 1,556 1,576,852
Macaca fascicularis, Macaca mulatta, Macaca nemestrina

D Callithrix jacchus, Aotus nancymaae, Saimiri boliviensis, 1,557 1,610,755
Cebus capucinus imitator, Macaca mulatta

Table 1. The four empirical datasets analysed here

species: Callithrix jacchus, Aotus nancymaae, Saimiri bo-
liviensis, and Cebus capucinus imitator, including Maccaca
mulatta as an outgroup. There is disagreement about the
species tree among the four focal taxa. Gene-tree-based anal-
yses (41) support a caterpillar tree in which Aotus is the sis-
ter group to a clade uniting Saimiri and Cebus (TD1 in Sup-
plementary Figure S6). However, concatenated ML analy-
sis fails to recover this species tree, instead returning a sym-
metrical tree likely caused by a known inconsistency in ML
methods when the underlying gene trees are highly discor-
dant (43–45). The MAST model should in principle avoid
statistical inconsistencies associated with the single-tree as-
sumption because it explicitly accounts for the existence of
multiple histories in an alignment. Thus, we sought to test
the performance of the MAST model in this well-studied em-
pirical test case. To do this, we applied a MAST model that
included the three ingroup topologies that were most com-
monly found from the gene trees in a previous study (Supple-
mentary Figure S6; (41)).
We analysed each empirical dataset using the same ap-
proach. First, we filtered the original 1730 locus dataset to
retain only those loci that were present in all of the selected
species, which resulted in each dataset containing approxi-
mately 1600 loci and around 1.6 million base pairs (Table
1). We analysed each dataset using standard single-tree con-
catenated ML analyses (using default settings in IQ-TREE2),
as well as the six multitree mixture models described by the
six submodels of the MAST model in Figure 2, using the
trees topologies described above as the input topologies for
the MAST model. Finally, to facilitate comparisons with
other quantities of interest, we calculated for each of the input
topologies: (1) the number of single-locus trees that matched
each MAST tree, where each single locus tree was estimated
with default parameters in IQ-TREE2; and (2) the total num-
ber of base pairs, (3) total number of variable sites, and (4) to-
tal number of parsimony informative sites in all of the single-
locus alignments whose tree matched each MAST tree.

Results

Simulations 1-3: The MAST model performs well when
the model is correctly specified, with or without in-
trogression. Our extensive simulations demonstrate that the

unlinked (Figure 6 and Supplementary Figure S2) and linked
(Supplementary Figures S1 and S3) MAST models perform
well when the model used for analysis matches that used to
simulate the data. In both the linked and unlinked models,
the error associated with all linked and unlinked models in-
creases as the number of trees in the mixture increases, and as
the number of tips in the tree decreases. This is expected, be-
cause in our simulations we held the total length of the align-
ment and the distribution of branch lengths constant. Thus,
the amount of information available to estimate each param-
eter decreases (and thus the expected error increases) as the
number of trees increases, and as the number of tips in each
tree decreases. The key parameters of interest for the MAST
models are the tree weights (top panel, Figure 6 and Supple-
mentary Figure S1). In the best-case scenario (comprised of
2 trees, each of which contains 20 taxa) the RMSE of the tree
weights was very low, at around 0.01 for both the unlinked
and linked models. In the worst-case scenario (comprised of
10 trees, each of which contains 6 taxa) the error was much
higher, at around 0.05 for both the unlinked and linked mod-
els, although this is still acceptably low in absolute terms.
For both the unlinked and linked models the fit to data sim-
ulated under the matching MAST model is much better than
for the mis-specified single-tree model (bottom panel, Figure
6 and Supplementary Figure S1); the improvement in the fit
of the true model increases (i.e. the difference in BIC be-
comes more negative) as the number of trees and the num-
ber of tips in each tree increases. This is expected because
a single-tree model becomes an increasingly poor fit to data
simulated under more trees.
We also simulated scenarios with introgression, such that
the minor trees are not expected to be equal in frequency.
In these simulations TE1 is the species tree (Supplementary
Figure S4) and increasing introgression makes topology TE2
increasingly frequent. When the introgression rate was be-
tween 0 and 0.6, TE1 is the optimal tree in the single-tree
model (Figure 7A) and the tree with the highest weight in
the MAST model (Figure 7B). When the introgression rate
is above 0.6, in most datasets the single-tree model and the
MAST model reported TE2 as the optimal tree and the topol-
ogy with the highest tree weight, respectively. The results
are as expected from the simulations that were carried out
(i.e. the topology matching the introgressed history does in
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Fig. 6. Performance of MAST model with unlinked parameters over all the trees (i.e. MAST submodel 1) on simulated data when the true topologies are given. All the trees
have unlinked substitution matrices, nucleotide frequencies, and gamma parameters. The distribution of (A) the Root-Mean-Squared (RMS) error of the tree weights; (B) the
RMS error of the branch lengths; and (C) BIC−BIC0, the difference between the BIC from the unconstrained MAST model (BIC) and that from a single-tree model
(BIC0), for different numbers of trees with various numbers of tips. The negative values of BIC - BIC0 indicated that the MAST model is a better model compared with the
standard single-tree model.

fact become the most common). The MAST model is a much
better fit when the tree topologies TE1, TE2 are more equal
in frequency, though it is a better fit across all of parameter
space (because there is always ILS; Figure 7C).

Simulation 4: The MAST model is robust to the inclu-
sion of trees with no support in the underlying data.
To test the robustness of the MAST model to the inclusion
of incorrect additional topologies, we simulated data under a
single topology but fit the data under a MAST model with 10
topologies. Including up to nine trees that have no support
in the data had surprisingly little effect on the conclusions.
Figure 8A reveals that the true tree (which was always one
of the trees included in the MAST model) had the maximum
weight among all of the trees included in the MAST model
in the majority of simulations, regardless of the simulation
conditions. Importantly, the inclusion of incorrect trees in
the MAST model always led to large increases in the BIC
score, such that researchers using this method to select the
best model would reject the additional trees, and instead pre-
fer the results from a single-tree model (Figure 8B).
These simulations also reveal some of the fundamental limi-
tations of the MAST model to distinguish among very simi-
lar trees. When incorrect trees included in the MAST model
were sufficiently different from the true tree (i.e. when the
SPR distance of each incorrect tree in the mast model was 2
or 3 SPR moves from the true tree), the percentage of simu-
lations for which the true tree had the maximum weight re-
mained near 100% regardless of the other simulation con-
ditions. However, when the incorrect trees included in the
MAST model were close to the true tree (i.e. when they
differed from the true tree by a single SPR move), the per-
centage of simulations for which the true tree had the maxi-

mum weight dropped to around 70% in the worst case (trees
with 10 tips; Figure 8A). This general trend is expected, be-
cause more similar trees will share more branches in com-
mon, making it more difficult for any model to distinguish
between them. Our results therefore help to quantify some of
the analytical limits of multitree mixture models as currently
implemented.

Empirical dataset A: Incomplete lineage sorting in the
Great Apes. Figure 4 shows the three possible tree topolo-
gies TA1 , TA2 , TA3 for empirical dataset A, which is made
up of four Great Apes (Table 1). We applied multiple meth-
ods to these alignments in order to estimate the frequency of
the three tree topologies. Single-tree analyses applied to each
gene separately reported 19.8%, 20.1%, and 60.1% of the
genes with topologies TA1 , TA2 , TA3 , respectively (Figure
4; Supplementary Table S1). All MAST submodels reported
similar tree weights of 17.9%, 17.4%, and 64.7% (Figure 4;
Table 2). All methods find that the topology uniting human
and chimpanzee is the most common, with the two minor
topologies having approximately equal weights; these results
are as expected from all previous analyses.
The proportions of different topologies estimated by MAST
are closer to the proportions estimated for individual nu-
cleotide sites than for the corresponding gene trees than the
percentage of the gene trees (Supplementary Table S1). This
may be because the weights of the MAST model more closely
approximate the percentage of the sites (instead of the per-
centage of genes) belonging to different topologies. The
BIC score from MAST submodel 2 was the best (Table 2),
indicating that the MAST model with unlinked substitution
model, unlinked frequencies and linked RHAS was the best
model among different MAST submodels for this dataset.
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Fig. 7. Results from simulated datasets with introgression rate r ∈ {0.0,0.1, ...,1.0} (A) Fitting the concatenated alignment under a single-tree model. The most likely tree
topology becomes TE2 at very high rates of introgression; (B) The tree weights under the linked MAST model. The coloured lines indicate the mean and the grey regions
indicate the standard deviation among the 100 datasets; (C) BIC−BIC0, the difference between the BIC from the linked MAST model (BIC) and from a single-tree
model (BIC0).

Fig. 8. Performance of MAST model on simulated data when it was applied to the datasets simulated under a single tree. We used an unconstrained MAST model in which
each class has its own substitution matrices, base frequencies, and rate heterogeneity model. (A) The percentage of times the true trees have the maximum weights for
different numbers of input tree topologies and various SPR distances between the actual topology and the other input topologies. (B)BIC−BIC0, the difference between
the BIC from the MAST model (BIC) and those from a single-tree model (BIC0).

Regardless, the BIC values of all MAST submodels were
much lower than the BIC value reported by the single-tree
model (Table 2), showing that a multitree-mixture model had

a much better fit to the data.
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Model Sub. matrix Freqs RHAS TA1 TA2 TA3 BIC
single-tree 100.00% 4,978,549,51
MAST 1 unlinked unlinked unlinked 17.86% 17.40% 64.74% 4,975,971,28
MAST 2 unlinked unlinked linked 17.85% 17.44% 64.70% 4,975,941.59
MAST 3 unlinked linked unlinked 17.84% 17.48% 64.68% 4,978,121.95
MAST 4 unlinked linked linked 17.84% 17.48% 64.68% 4,978,097.70
MAST 5 linked linked unlinked 17.84% 17.48% 64.68% 4,977,961.91
MAST 6 linked linked linked 17.84% 17.48% 64.68% 4,977,938.91

Table 2. Results of the empirical dataset A when applying IQ-TREE with a standard single-tree model and different MAST submodels with GTR+G substitution model.
There are six submodels of MAST, representing different combinations of linked or unlinked substitution matrix (2nd column), nucleotide frequencies (3rd column), and rate
heterogeneity across sites (4th column). The 5th-7th columns are the weights of the trees TA1 , TA2 , TA3. The 8th column lists the BIC values of different models. The
bolded figure is the best BIC value which is from the MAST submodel 2.

Empirical dataset B: Introgression in macaques. Fig-
ure 5 shows the three possible tree topologies TB1 , TB2
, TB3 for empirical dataset B, which is made up of multi-
ple macaque species. Analyses of the individual gene trees
using single-tree models for each revealed a large asymme-
try in minor topologies (31.2%, 18.6%, and 50.2% for TB1 ,
TB2 , TB3 respectively; Supplementary Table S2). However,
both the proportions of parsimony-informative sites (17.6%,
14.5%, and 67.9% for TB1 , TB2 , TB3 respectively; Supple-
mentary Table S2) and the weights from the different MAST
submodels (all around 17.3%, 14.2%, 68.6% for TB1 , TB2 ,
TB3 respectively; Figure 5; Table 3) showed much more sim-
ilar proportions and weights for the minor trees. Although
the minor trees are still substantially different in frequency
using the MAST analysis—consistent with introgression in
this clade—the difference between them is much lower. As
in empirical dataset A, this result indicates that inferences
directly from gene trees may be underestimates of the fre-
quency of the most common tree, and overestimates of the
frequencies of the minor trees.

Empirical dataset C: Great Apes + macaques. Supple-
mentary Figure S5 shows nine tree topologies for the empir-
ical dataset C. This dataset combines the ingroup taxa from
empirical datasets A and B, allowing us to test the accuracy
of MAST when there are more possible topologies: the nine
topologies represent every combination of the three topolo-
gies present in each of empirical datasets A and B. The fre-
quencies of the nine tree topologies were similar across gene
trees and sites in standard analysis (Supplementary Table S3)
as well as largely similar to the results across MAST submod-
els (Table 4). MAST submodels 1 and 2 are the two best-fit
models to the dataset according to the BIC values (Table 4),
and both give tree weights that are quite close to the corre-
sponding tree weights for the respective analyses in empirical
datasets A and B (Supplementary Tables S4 and S5).

Empirical dataset D: Overcoming known biases in
concatenated maximum likelihood. As mentioned, max-
imum likelihood has a known bias toward symmetrical trees
(i.e. TD3 in Supplementary Figure S6) when there is a large
amount of underlying discordance and the true species tree
is asymmetrical (i.e. TD1 or TD2 in Supplementary Figure
S6). Indeed, when analyzed under ML using a single-tree

model, data from four Platyrrhine monkeys support a sym-
metrical tree (Table 5). In contrast, counts of genes trees and
parsimony-informative sites support the asymmetrical tree
TD1 as the species tree (Supplementary Table S6). Simi-
larly, analyses using the MAST submodels also tended to re-
turn TD1 as the topology with the highest weight (Table 5).
Among all the models, the MAST submodel 2 had the best
BIC value, with reported tree weights 42.4%, 28.1%, 29.6%
for the topologies TD1 , TD2 , TD3 . The tree weights are
similar to the proportions of parsimony-informative sites sup-
porting each of these topologies (i.e. 36.7%, 32.2%, 31.1%;
Supplementary Table S6). It is notable that two MAST mod-
els estimated different trees with the highest weights (sub-
models 3 and 4; Table 5), though submodel 2 has a much
lower BIC value than either of these. Overall, these results
suggest that the MAST model is able to analyse a concate-
nated alignment using maximum likelihood, but without the
biases that come with the single-tree assumption.

Discussion

We have introduced the mixtures across sites and trees
(MAST) model, which assumes that every site in a concate-
nated alignment may have evolved from a mixture of trees.
This flexible assumption allows the method to be applied to
the alignments that include multiple tree topologies, which is
presumably true of almost any large dataset from a recombin-
ing genome. The implementation of the method allows dif-
ferent combinations of linked and unlinked parameters when
estimating the substitution matrix, nucleotide or amino acid
frequencies, and the rate heterogeneity across sites (RHAS)
across different trees. This flexibility allows researchers to
have many of the advantages of concatenated analyses—e.g.
a large amount of data and accurate estimate of complex sub-
stitution processes—while still incorporating gene tree het-
erogeneity, but without the need to make assumptions about
the existence and location of putatively non-recombining
loci. As such, the MAST model opens up the opportunity
to study topological discordance in deep time, past the point
where information from small, non-recombining gene tree
alignments can be informative about relationships (31).
From the simulation experiments we carried out it appears
that the estimates of the parameters are relatively reliable,
especially when the number of taxa is large or the align-
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Model Sub. matrix Freqs RHAS TB1 TB2 TB3 BIC
single-tree 100.00% 4,906,941.36
MAST 1 unlinked unlinked unlinked 17.29% 14.15% 68.55% 4,905,832.06
MAST 2 unlinked unlinked linked 17.29% 14.19% 68.52% 4,905,808.79
MAST 3 unlinked linked unlinked 17.27% 14.24% 68.49% 4,906,632.17
MAST 4 unlinked linked linked 17.27% 14.25% 68.48% 4,906,605.01
MAST 5 linked linked unlinked 17.27% 14.24% 68.50% 4,906,651.67
MAST 6 linked linked linked 17.27% 14.23% 68.50% 4,906,633.71

Table 3. Results of the empirical dataset B when applying IQ-TREE with a standard single-tree model and different MAST submodels with GTR+G substitution model.
There are six submodels of MAST, representing different combinations of linked or unlinked substitution matrix (2nd column), nucleotide frequencies (3rd column), and rate
heterogeneity across sites (4th column). The 5th-7th columns are the weights of the trees TB1 , TB2 , TB3. The 8th column lists the BIC values of different models. The
bolded figure is the best BIC value, which is MAST submodel 2.

Model TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 BIC
single-tree 100.0% 5,187,194.8
MAST 1 0.4% 7% 8.4% 7.7% 2.9% 18.3% 13% 8.7% 33.6% 5,183,982.5
MAST 2 0.4% 10.4% 8.2% 2.1% 2.5% 14% 13.1% 8.4% 41.1% 5,183,988.4
MAST 3 0.2% 8% 5.2% 1.1% 0.2% 17.4% 15.2% 2.4% 50.4% 5,186,041.4
MAST 4 0.2% 0.2% 3.9% 0.6% 0.8% 29.3% 12.7% 19.8% 32.5% 5,185,924.7
MAST 5 0.0% 0.8% 9.8% 1.9% 0.4% 18.2% 17.1% 11.3% 40.4% 5,186,243.3
MAST 6 0.0% 0.7% 11.1% 1.9% 1.8% 20.7% 19.3% 8.4% 36% 5,186,194.1

Table 4. Results of the empirical dataset C when applying IQ-TREE with a standard single-tree model and different MAST submodels with GTR+G substitution model. Six
submodels of MAST are for different combinations of linked or unlinked substitution matrix, nucleotide frequencies, and rate heterogeneity across sites. The 2nd - 10th
columns are the estimated tree weights between the topologies TC1, TC2, . . . , and TC9 for different MAST submodels. The bolded figure is the best BIC value among
different submodels.

Model Sub. matrix Freqs RHAS TD1 TD2 TD3 BIC
single-tree 100.00% 6,185,094.0
MAST 1 unlinked unlinked unlinked 40.3% 23.0% 36.8% 6,177,609.0
MAST 2 unlinked unlinked linked 42.4% 28.1% 29.6% 6,177,535.7
MAST 3 unlinked linked unlinked 3.5% 4.7% 91.8% 6,182,942.1
MAST 4 unlinked linked linked 2.1% 81.3% 16.7% 6,182,954.3
MAST 5 linked linked unlinked 42.4% 32.0% 25.6% 6,184,689.7
MAST 6 linked linked linked 42.4% 32.0% 25.5% 6,184,618.7

Table 5. Results of the empirical data D when applying IQ-TREE with a standard single-tree model and different MAST submodels with GTR+G substitution model. Six
submodels of MAST are for different combinations of linked or unlinked substitution matrix (2nd column), nucleotide frequencies (3rd column), and rate heterogeneity across
sites (4th column). The 5th, 6th, and 7th columns are the estimated tree weights between the topologies TD1, TD2, and TD3 for different MAST submodels, respectively.
The bolded figure is the best BIC value among different submodels.

ments are long, relative to the number of trees included in
the MAST model. Although only the MAST model with un-
linked parameters (i.e. submodel 1) and the MAST model
with linked parameters (i.e. submodel 6) were tested, these
two models are the models with the most and the least num-
ber of parameters, respectively, and therefore should encom-
pass the accuracy of models between them. The overall re-
sults indicate that the parameters are identifiable. The identi-
fiability of parameters in complex models, like mixture mod-
els, has been addressed previously (26, 46). Some research
has shown strong theoretical evidence that, when mixture
models are applied, cases where trees are non-identifiable
are rare (46–48). Rhodes and Sullivant (2012) gave an up-
per bound on the number of classes that ensures the generic
identifiability of trees in models with a multi-tree mixture.
Their method was based on the mixtures from different trees,
provided that all the topologies share a certain type of com-
mon substructure in which a tripartition A|B|C exists such

that the splits A|B∪C and A∪C|B are compatible with all
trees. Parameters in the multi-tree mixture model are generi-
cally identifiable provided m< kj−1 where m is the number
of classes, k is the number of states (i.e. 4 for nucleotides;
20 for amino acids), and the number of taxa in the partition
A and in the partition B are both greater than or equal to j.
However, establishing the identifiability of model parameters
when there is no commonality between the trees remains an
open problem (46).

In order to use the MAST model to perform an analysis,
the user must input a set of pre-specified tree topologies. A
rooted three-taxon tree has only three possible topologies, but
the number of topologies goes up super-exponentially with
the number of tips (Table 3.1 in (49)). This fact means that it
will usually not be feasible to specify all possible topologies
that exist in a moderate-sized dataset; for example, in em-
pirical dataset D we only studied 3 of 15 topologies. While
this would seem to limit the applicability of MAST, often
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there will be a smaller set of topologies that are relevant to
any particular study. For instance, even in a tree with 100
species, it may be the relationships among a smaller number
of clades that are relevant: if ILS only occurs on one branch
of the tree, then there are still only three relevant alternative
topologies, no matter the number of tips. In general, we rec-
ommend that users specify known alternative hypotheses—or
carry out an exploratory analysis of individual gene trees—in
order to choose a manageable set of topologies as input to the
MAST model.

There are multiple known biases when carrying out con-
catenated analyses under the “treelikeness” assumption. As
mentioned in the Introduction, single-tree concatenated max-
imum likelihood is statistically inconsistent in the presence
of large amounts of discordance: it will return the incorrect
tree with increasing probability as more data are added (43).
Our analyses of Platyrrhine monkeys suggest that the MAST
model can solve this problem, giving the highest weight to
the topology favored by other (statistically consistent) meth-
ods. In addition to inferring the wrong tree topology, the
branch lengths inferred from concatenated analyses are bi-
ased in the presence of discordance (21, 50). Such biases
can lead to misestimation of divergence times when using the
entire concatenated alignment. The MAST model allows re-
searchers to estimate the branch lengths of individual topolo-
gies—we therefore recommend estimating divergence times
using branch lengths obtained from the topology matching
the species tree. While these times still represent genic diver-
gence (and not species divergence; (51)), they will be free of
the bias associated with single-tree concatenation.

The output of our method is a set of weights associated with
each input tree topology. Although the MAST model is not
based on a particular biological model of discordance (e.g.
the MSC or MSNC), we expect that the estimated weights
should correspond to biologically relevant features of the
data. Both our analyses of simulated and empirical data
revealed that the reported weights in the MAST model are
highly correlated with the proportion of phylogenetically in-
formative sites which support each tree. This correlation is
expected because the likelihood of each site is calculated as
the weighted sum of the likelihood of the site over all the
trees and the overall likelihood value is the product of the
likelihoods over all the sites. This result, together with the
accurate estimation of minor tree weights, means that we can
use these estimates to infer introgression from MAST out-
put. Common tests for introgression are based on the expec-
tation that the two minor trees are equal in frequency (e.g.
the “ABBA-BABA” test; (52)). One post hoc approach to in-
ferences of introgression using MAST would be to test for a
significant difference in the weights supporting each of two
minority trees. Alternatively, it should be possible to com-
pare the likelihoods of models that either link or unlink the
weights of the minority trees. Greater support for the un-
linked model would indicate that the two trees are not equal
in frequency, and would support an inference of introgres-
sion. Such an approach would be of great benefit to testing
for introgression deeper in time, where individual phyloge-

netically informative sites and individual gene trees may not
be accurate enough to make strongly supported inferences
about introgression (41).
Finally, the MAST model can be used to assign posterior
probabilities of membership in a class (i.e. topology) to
each nucleotide site in an alignment. Because recombina-
tion will not completely erase spatial information about lo-
cal topologies along a chromosome, these posterior proba-
bilities should allow us to infer the locations of switches be-
tween topologies. A hidden Markov model (e.g. (53)) or
similar approach can then be run to identify individually non-
recombining blocks of a longer alignment that contain only
a single topology. Such an approach would also enable us
to detect topology-switches in any type of alignment. For
example, there is no barrier to applying MAST to an align-
ment of paralogous sequences, either to detect the presence
of multiple different topologies or the location of changes in
topology (i.e. ectopic gene conversion; (54)).
The MAST model is a flexible phylogenetic approach that
allows each site in an alignment to have evolved from a mix-
ture of trees. Each tree has its own topology, a separate set
of branch lengths, a substitution model, a set of nucleotide
or amino-acid frequencies, and a rate heterogeneity model.
However, there are still some limitations to the current im-
plementation. In addition to several future directions men-
tioned above, we would like to extend the MAST model to:
(1) Perform a tree topology search for an input number of
trees. This would relax the requirement that the user must
pre-specify topologies; (2) Be able to compute the optimal
number of trees needed to represent the input dataset. This
would relax the requirement that the user specify the number
of trees ahead of time; and (3) Find the best set of substitu-
tion models and RHAS models for each tree separately. This
would allow much more flexibility in the range of evolution-
ary variation that can be accommodated. These directions
are challenging but will be useful in analysing genome-scale
datasets at any evolutionary timescale.
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MAST model has been implemented in IQ-TREE2, which
is available in the Github: https://github.com/
iqtree/iqtree2/releases/tag/v2.2.0.7.mx.
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Supplementary Figures and Tables

Fig. S1. Performance of MAST model with linked parameters over all the trees (i.e. MAST submodel 6) on simulated data when the
true topologies are given. All the trees share the same substitution matrices, nucleotide frequencies, and gamma parameters. The
distribution of (A) the RMS error of the tree weights; (B) the RMS error of the branch lengths; and (C) BIC−BIC0, the difference
between the BIC from the MAST model (BIC) and that from a single-tree model (BIC0), for different numbers of trees with various
numbers of tips. The negative value of BIC−BIC0 indicated that the MAST model is a better model compared with the standard
single-tree model.

Fig. S2. Performance of MAST model with unlinked parameters over all the trees on simulated data when the true topologies are given.
All the trees have unlinked substitution matrices, nucleotide frequencies, and gamma parameters. The root-mean-squared (RMS) error
of (A) the parameters of the GTR model, (B) the nucleotide frequencies, and (C) the gamma parameters, for different numbers of trees
with various numbers of tips.
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Fig. S3. Performance of MAST model with linked parameters over all the trees on simulated data when the true topologies are given.
All the trees share the same substitution matrices, nucleotide frequencies, and gamma parameters. The root-mean-squared (RMS)
error of (A) the branch lengths, (B) the nucleotide frequencies, (C) the gamma parameters, for different numbers of trees with various
numbers of tips.

Fig. S4. (A) Gene trees with introgression rate r ∈ {0.0,0.1, . . . ,1.0} were simulated in the direction from lineages 2 to 4 by ms under
the coalescent model. The edge lengths are in coalescent time; (B) Three possible topologies for the simulated introgression dataset.
TE1 is the species tree while some sites may evolve under the topologies TE2 and TE3 due to the introgression and incomplete lineage
sorting.

Topology Number of genes Sum of gene lengths Total number of Total number of
(Gene tree %) variable sites parsimony

informative sites
TA1 316 19.8% 302,416 18.7% 7,557 19.9% 430 17.7%
TA2 320 20.1% 278,066 17.2% 6,259 16.5% 339 13.9%
TA3 959 60.1% 1,038,024 64.1% 24,136 63.6% 1,662 68.4%
Total 1,595 1,618,506 37,952 2,431

Table S1. Detailed information of the genes in empirical dataset A. TA3 is the commonly accepted species tree.
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Fig. S5. Nine topologies for empirical dataset C. TC9 is the commonly accepted species tree.

Topology Number of genes Sum of gene lengths Total number of Total number of
(Gene tree %) variable sites parsimony

informative sites
TB1 499 31.2% 438,469 26.9% 8,218 26.6% 214 17.6%
TB2 298 18.6% 298,016 18.3% 5,817 18.8% 176 14.5%
TB3 802 50.2% 892,678 54.8% 16,857 54.6% 824 67.9%
Total 1,599 1,629,163 30,892 1,214

Table S2. Detailed information of the genes in empirical dataset B. TB3 is the commonly accepted species tree.
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Fig. S6. Three topologies for empirical dataset D. TD1 is the commonly accepted species tree.

Topology Number of genes Sum of gene lengths Total number of Total number of
(Gene tree %) variable sites parsimony

informative sites
TC1 53 3.4% 45,687 2.9% 2,014 3.2% 1,216 3.0%
TC2 102 6.6% 88,269 5.6% 3,398 5.4% 2,087 5.2%
TC3 154 10.0% 154,860 9.9% 5,883 9.4% 3,701 9.2%
TC4 67 4.4% 59,598 3.8% 2,434 3.9% 1,525 3.8%
TC5 118 7.7% 93,530 6.0% 3,664 5.9% 2,371 5.9%
TC6 132 8.6% 127,011 8.1% 4,758 7.6% 2,960 7.4%
TC7 176 11.4% 196,128 12.5% 7,943 12.7% 5,055 12.6%
TC8 258 16.8% 252,405 16.1% 9,489 15.2% 6,140 15.3%
TC9 479 31.1% 546,967 35.0% 22,866 36.6% 15,147 37.7%
Total 1,539 1,564,455 62,449 40,202

Table S3. Detailed information of the genes in empirical dataset C. TC9 is the commonly accepted species tree.

((MF,MN),MM) ((MM,MN),MF) ((MF,MM),MN) Sum

((G,C),H) TC1 TC2 TC3 15.8%0.4% 7.0% 8.4%

((H,G),C) TC4 TC5 TC6 28.9%7.7% 2.9% 18.3%

((H,C),G) TC7 TC8 TC9 55.3%13.0% 8.7% 33.6%
Sum 21.1% 18.6% 60.3%

Table S4. The sum of the proportions for different groups of topologies according to the results of submodel 1 on empirical data C. H
- Human; C - Chimpanzee; G - Gorilla; MM - Macaca mulatta; MF - Macaca fascicularis; MN - Macaca nemestrina. Note that the last
decimal place of the sums may not match due to the round-up effect.
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((MF,MN),MM) ((MM,MN),MF) ((MF,MM),MN) Sum

((G,C),H) TC1 TC2 TC3 15.8%0.4% 10.4% 8.2%

((H,G),C) TC4 TC5 TC6 28.9%2.1% 2.5% 14.0%

((H,C),G) TC7 TC8 TC9 55.3%13.1% 8.4% 41.1%
Sum 15.5% 21.2% 63.3%

Table S5. The sum of the proportions for different groups of topologies according to the results of submodel 2 on empirical data C. H
- Human; C - Chimpanzee; G - Gorilla; MM - Macaca mulatta; MF - Macaca fascicularis; MN - Macaca nemestrina. Note that the last
decimal place of the sums may not match due to the round-up effect.

Topology Number of genes Sum of gene lengths Total number of Total number of
(Gene tree %) variable sites parsimony

informative sites
TD1 295 37.06% 329,864 36.06% 30,823 36.72% 3,064 36.69%
TD2 258 32.41% 302,224 33.04% 27,225 32.43% 2,692 32.24%
TD3 243 30.53% 282,703 30.90% 25,903 30.85% 2,594 31.07%

Other 761 — 695,964 — 56,689 — 5,426 —
TD1 +TD2 +TD3 796 914,791 83,951 8,350

Table S6. Detailed information of the genes in empirical dataset D. TD1 is the commonly accepted species tree.
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