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Abstract 

The dysregulation of regulatory mechanisms due to Single Nucleotide Polymorphisms (SNPs) can 

lead to diseases and does not affect all cell (sub)types equally. Current approaches to study the 

impact of SNPs in diseases lack mechanistic insights. Indeed, they do not account for the 

regulatory landscape to decipher cell (sub)type specific regulatory interactions impaired due to 

disease-related SNPs. Therefore, characterizing the impact of disease-related SNPs in cell 

(sub)type specific regulatory mechanisms would provide novel therapeutical targets, such as 

promoter and enhancer regions, for the development of gene-based therapies directed at preventing 

or treating diseases. We present RNetDys, a pipeline to decipher cell (sub)type specific regulatory 

interactions impaired by disease-related SNPs based on multi-OMICS data. RNetDys leverages 

the information obtained from the generated cell (sub)type specific GRNs to provide detailed 

information on impaired regulatory elements and their regulated genes due to the presence of 

SNPs. We applied RNetDys in five disease cases to study the cell (sub)type differential impairment 

due to SNPs and leveraged the GRN information to guide the characterization of dysregulated 

mechanisms. We were able to validate the relevance of the identified impaired regulatory 

interactions by verifying their connection to disease-related genes. In addition, we showed that 
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RNetDys identifies more precisely dysregulated interactions linked to disease-related genes than 

expression Quantitative Trait Loci (eQTL) and provides additional mechanistic insights. RNetDys 

is a pipeline available at https://github.com/BarlierC/RNetDys.git 

 

Introduction 

Gene regulation is largely controlled by the binding of transcription factors (TFs) to regulatory 

elements, such as promoters and enhancers, to control cell (sub)type specific functions. Notably, 

it has been shown that most of these functions are strongly regulated by enhancer activity 

(Latchman, 2011; Andersson et al., 2014). Therefore, the impairment of the regulatory interactions 

between TFs and enhancers of regulated genes can lead to dysregulations that trigger pathological 

gene expression changes that contribute to disease development (Lee and Young, 2013). In that 

regard, Single Nucleotide Polymorphisms (SNPs) have been shown to be associated with 

regulatory dysregulations driving complex diseases, such as diabetes and Alzheimer’s disease 

(AD) (Hiramoto et al., 2015; Akhlaghipour et al., 2022). Standard approaches such as Genome-

Wide Association Studies (GWAS) and expression Quantitative Trait Loci (eQTLs) have been 

used to study the association between SNPs and genes (Visscher et al., 2017; Bryois et al., 2022; 

Gazal et al., 2022). In particular, GWAS successfully deciphered thousands of disease-related 

SNPs (Claringbould and Zaugg, 2021). Moreover, GWAS showed that the majority of these SNPs 

were found in non-coding regions, particularly in enhancer regions, and thus were most likely 

involved in gene regulation (Nica and Dermitzakis, 2013). Moreover, eQTLs have been useful to 

provide further insights in understanding the influence of SNPs in diseases by associating them to 

their target genes, based on the statistical association of gene expression variation to these genetic 

polymorphisms (Jeng et al., 2020). However, these approaches only provide information on SNP-

gene relationships. Leveraging multi-OMICS data to construct and exploit the regulatory 

landscape in order to gather additional mechanistic insights would significantly contribute to a 

better understanding of the impact of disease-related SNPs on gene regulation and disease 

development. Notably, GRNs have been widely used to gain insights into diseases (Emmert-Streib 

et al., 2014; Ament et al., 2018; Bakker et al., 2021) but the characterization of underlying 

regulatory mechanisms dysregulated due to SNPs and the cell (sub)types specifically impaired 

remains elusive. The resolution of cell (sub)type specific regulatory mechanisms impaired due to 
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SNPs in disease would provide additional mechanistic insights and pave the way towards the 

development of gene-based therapies for disease prevention and treatment (Uddin et al., 2020). 

We present RNetDys, a multi-OMICS pipeline that identifies impaired regulatory mechanisms due 

to the presence of disease-related SNPs at the cell (sub)type level. In particular, RNetDys combines 

scRNA-seq, scATAC-seq, ChIP-seq and prior-knowledge to build comprehensive cell (sub)types 

or state specific GRNs that are leveraged to capture impaired interactions due to disease-related 

SNPs. Compared to existing strategies to study SNPs (Farh et al., 2014, Yu et al., 2022; Nathan et 

al., 2022), this pipeline provides a comprehensive view of the impaired regulatory landscape, 

including interactions mediated by TFs and enhancers of regulated genes and activation or 

repression mechanisms to provide additional mechanistic insights. In particular, RNetDys provides 

the binding affinity score of impaired TFs, the type of mechanism dysregulated, and a list of ranked 

TFs based on their importance in the impaired network topology, the strength of the binding 

impairment and the frequency of SNPs occurring in the global population. 

We applied RNetDys in five disease case studies and showed that it was able to accurately capture 

impaired regulatory interactions and provide additional mechanistic insights by leveraging the 

information obtained from the GRN inference. 

 

Material and methods 

General workflow of RNetDys 

We implemented a systematic pipeline integrating different type of OMICS data to decipher 

impaired regulatory mechanisms due to SNPs in disease by leveraging the GRN information. The 

pipeline was divided in two main parts composed of the cell (sub)type specific GRN inference and 

the capture of impaired regulatory interactions due to disease-related SNPs to gain regulatory 

mechanistic insights for the disease. 

Cell (sub)type specific regulatory interactions inference 

The cell (sub)type specific regulatory network inference was based on a multi-OMICS approach 

that used single cell transcriptomics and single cell chromatin accessibility, not necessarily 

matched, as well as prior-knowledge, including ChIP-seq data and reported enhancers interactions. 
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First, using the scRNA-seq we selected genes that were conserved at least in 50% of the cells for 

further analyses. Then, we ensured the accessibility of the corresponding promoter regions using 

scATAC-seq data and predicted TF-promoter interactions by intersecting the ChIP-seq TF-binding 

evidence with the open promoter regions using BEDTools (Quinlan and Hall, 2010). Then, we 

performed a peak correlation using the scATAC-seq data and carried out a statistical test, as well 

as a BH multiple correction, to select the significant interactions such as p-adjusted value < 0.05. 

The identified enhancer-promoter interactions were then intersected with GeneHancer (Fishilevich 

et al., 2017), used as a backbone and interactions involving active promoters were kept. Then, TF-

enhancers interactions were inferred by intersecting the ChIP-seq and scATAC-seq data. Finally, 

the regulatory interactions were signed to distinguish activations from repressions by computing 

the Pearson correlation between TFs and genes using the scRNA-seq dataset (Fig. S1). Correlation 

scores for enhancer-promoter interactions were computed such as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐸𝐸𝑎𝑎→𝐺𝐺𝑏𝑏 =  �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑥𝑥→𝐺𝐺𝑏𝑏
𝑥𝑥

 

 With corV corresponding to the correlation value, E denoting the enhancer and G corresponding 

to the gene. And, correlation scores for TF-enhancer were computed such as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎→𝐸𝐸𝑏𝑏 =  �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎→𝐺𝐺𝑥𝑥
𝑥𝑥

 

 With corV denoting the correlation value, E corresponding to the enhancer and G to the gene. 

Finally, positive correlation scores were considered to be activations whereas negative ones were 

considered to be repressions. Further details are provided in Supplementary Information. 

Identify candidate impaired regulatory interactions 

Using the cell (sub)type specific GRN inferred in healthy condition, we then contextualized the 

GRN towards the disease condition. The contextualization required a list of SNPs for the disease 

studied and the cell (sub)type GRN of interest. The SNPs were mapped to the GRN by using their 

coordinates and interactions for which a SNP was falling into a TF binding region of an enhancer 

or promoter were considered as candidates to be impaired in the dis-ease. We then performed a TF 

binding analysis using PERFECTOS-APE (E. Vorontsov et al., 2015) to refine the candidate 

interactions by selecting the ones having at least one binding site significantly impaired by the 
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SNP (Supplementary Information). Finally, we ranked TFs by their involvement in the regulatory 

impairments based on the network topology and the MAF score of SNPs such as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇 = 𝑅𝑅𝑅𝑅 ×
𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅

 ×  �� |𝐴𝐴𝐴𝐴|𝑖𝑖𝑟𝑟 ×  �𝑀𝑀𝐴𝐴𝑀𝑀𝑖𝑖𝑟𝑟 × �𝑀𝑀𝐴𝐴𝑀𝑀𝑟𝑟 �� 

Where RE denote the number of regulatory elements regulated by the TF, NG corresponds to the 

number of downstream genes across RE, AI denotes the binding affinity impairment log2FC and 

i corresponds to the SNPs and r the regulatory element. 

Prior-knowledge collection and processing 

RNetDys relied on prior-knowledge data that were collected and processed to be integrated in the 

pipeline. The ChIP-seq bed files were downloaded from ChIP Atlas (Oki et al., 2018) for human 

hg19 and hg38 assemblies. Bed files were annotated using HOMER (Heinz et al., 2010) with the 

latest GTF file for each assembly. Enhancer regions and their connected genes were obtained from 

the GeneHancer database (Fishilevich et al., 2017). Of note, GeneHancer database provided 

information for hg38 coordinates and hence, we used LiftOver (https://genome.ucsc.edu/cgi-

bin/hgLiftOver) to convert these coordinates for hg19 to provide more flexibility to our pipeline. 

 Data collection and analysis 

First, to perform the benchmarking analysis, we collected 20 publicly available scRNA-seq and 

11 scATAC-seq datasets from six human cell lines including BJ, GM12878, H1-ESC, A549, Jurkat 

and K562 (Table S1). Then, we collected scRNA-seq and scATAC-seq healthy data from pancreas 

and brain tissues to extract cell (sub)types using Seurat (Hao et al., 2021) and Signac (Stuart et al., 

2020), and then generated the GRNs (Supplementary information). Finally, we collected SNPs 

from ClinVar (Landrum et al., 2018) for five diseases including Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Epilepsy (EPI), Diabetes type I (T1D) and type II (T2D) to perform the 

network contextualization towards the disease condition. Notably, SNPs were defined as being 

single nucleotide variants found at least in 1% of the global population such as MAF >= 0.01 

(Supplementary Information). In addition, we performed an outdegree analysis for three main TFs 

involved in the regulatory impairments. The outdegree ratios were computed by scaling each TF 

outdegree by the maximum outdegree in each cell (sub)type. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2022.10.08.511312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.08.511312


Validation and comparison to state-of-the-art 

We first assessed the performances of RNetDys in identifying cell (sub)type specific regulatory 

interactions and compared them to state-of-the-art GRN inference methods (Aibar et al., 2017; 

Chan et al., 2017; Kim, 2015; Huynh-Thu et al., 2010) (Supplementary Information). First, we 

benchmarked the performances of each method to infer cell (sub)type specific TF-promoter 

interactions. The gold standards (GS) were compiled using cell line specific ChIP-seq from 

Cistrome (Mei et al., 2017) by selecting only the highest quality data. Then, we assessed the 

performances of RNetDys for capturing cell (sub)type specific enhancer-promoter regulatory 

interactions compared to Cicero, a widely used method to identify cis-interactions based on 

scATAC-seq data (Pliner et al., 2018). The GS networks were built using promoter capture Hi-C 

data from 3DIV (Yang et al., 2018) for three of the human cell lines. For both benchmarking 

analyses, we computed the precision (PPV) and F1-score (F1) to assess the performances such as: 

𝑃𝑃𝑃𝑃𝑐𝑐 = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇)

  and  𝑀𝑀1 =  2×𝑇𝑇𝑇𝑇
2×𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹

 

With TP = True Positive (predicted and found in the GS), FP = False Positives (predicted but not 

in the GS) and FN = False Negatives: (not predicted but in the GS). 

We then compared the ability of RNetDys to precisely capture gene-disease relationships in cell 

(sub)types, compared to eQTL (Bryois et al., 2022). First, we downloaded Online Mendelian 

Inheritance in Man (OMIM) Morbid Map (Amberger et al., 2019), filtered for gene-disease 

interactions reported in the five diseases in study (AD, EPI, PD, T1D, and T2D), and removed the 

interactions reported as provisional. Then, we matched these gene interactions to the SNP-

associated genes identified by eQTL and RNetDys. The ratio of matched genes in eQTL and 

RNetDys was calculated by dividing the number of matched genes by the total of genes identified 

in each of the methods across all cell (sub)types. 
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Results 

RNetDys, a multi-OMICS pipeline to decipher impaired regulatory mechanisms 

We implemented RNetDys, a systematic pipeline based on multi-OMICS data to decipher 

impaired regulatory interactions due to SNPs in diseases by leveraging the information of cell 

(sub)type specific GRNs (Fig.1).  

RNetDys is an integrative approach relying on single cell transcriptomics and single cell chromatin 

accessibility from a specific cell (sub)type or state, as well as prior-knowledge information 

including extensive ChIP-seq data (Oki et al., 2018) and reported enhancer-promoter relationships 

(Fishilevich et al., 2017). The pipeline is composed of two main parts: (i) the cell (sub)type specific 

GRN inference and (ii) the identification of impaired regulatory mechanisms due to SNPs in 

diseases (Fig. 1, Fig. S1). The first part consists of the GRN inference for a healthy cell (sub)type 

or state based on scRNA-seq and scATAC-seq data as an input. Notably, the two single cell 

datasets do not need to be matched but they need to contain the same cell (sub)type. The second 

part takes as an input a cell (sub)type or state specific GRN and a list of SNPs of particular interest 

for the disease studied (Visscher et al., 2017; Landrum et al., 2018). In particular, the SNPs 

provided could have been described as related to the disease of interest in prior-knowledge 

databases (Landrum et al., 2018) or identified by genotyping analyses (Nielsen et al., 2011). As a 

result, RNetDys provides the impaired regulatory mechanisms, the corresponding SNPs, the 

affinity scores of TF having their binding site impaired, and a list of ranked TF regulators based 

on their involvement in the observed impairments (Fig. 1). 

RNetDys is more accurate to infer cell (sub)type specific GRNs  

RNetDys mainly relies on the cell (sub)type specific regulatory landscape to identify impaired 

regulatory interactions due to disease-related SNPs. Therefore, we assessed the performance of 

RNetDys in predicting cell (sub)type specific GRNs (Fig. 2). In this regard, we performed the 

benchmarking of both TF-gene and enhancer-promoter interactions, compared to current methods. 

We showed that our approach overcame the state-of-the-art GRN inference methods for predicting 

cell (sub)type specific TF-gene interactions with an average precision of 0.20 and average 

accuracy of 0.28 (Fig. 2A, B).  
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Fig. 1. General workflow of RNetDys to decipher regulatory dysregulation in diseases. 
RNetDys is composed of two main parts including (1) the cell (sub)type specific GRN inference 
using scRNA-seq, scATAC-seq and prior-knowledge, and (2) the identification of candidates 
impaired regulatory interactions using the GRN and a list of SNPs, followed by the TF-binding 
affinity analysis. The part one provides the cell (sub)type or state specific GRN describing the 
regulatory interactions mediated by TFs and enhancers of regulated genes. The part two provides 
the list of candidate impaired regulatory interactions in the cell (sub)types, the SNPs that were 
mapped to these interactions and the TFs for which the binding ability might be impaired and 
regulatory TFs ranked based on their importance in the impairments. 
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This assessment highlighted the strength of combining different regulatory layers with prior-

knowledge to provide predictions with a higher confidence. Moreover, we showed that RNetDys 

outperformed Cicero in capturing cell (sub)type specific enhancer-promoter interactions with a 

median precision of 0.76 and median accuracy of 0.72, supporting the confidence provided by the 

prior-knowledge leveraged by our approach (Fig. 2C, D). This analysis demonstrated the accuracy 

of the cell (sub)type specific GRN information leveraged by our pipeline to capture impaired 

transcriptional regulatory mechanisms due to SNPs in diseases. 

RNetDys provides additional insights into the mechanistic dysregulation enhanced by SNPs 

Validation of the SNPs impairment and comparison to state-of-the-art approaches 

We applied RNetDys to five diseases, including AD, PD, EPI, T1D and T2D, by collecting disease-

related SNPs from ClinVar (Landrum et al., 2018) and cell (sub)type specific GRNs generated 

from human pancreas and brain tissues. First, we supported the relevance of predicted SNP-gene 

interactions identified by RNetDys using available GWAS data from ClinVar database and 

recently published cell-type specific eQTL information (Bryois et al., 2022). Across the five 

diseases, we were able to find support for 90% of the SNP-target gene relationships identified by 

our pipeline (Table S4). Furthermore, by using cell type specific eQTL data, we were able to 

validate the occurrence of certain SNPs and their impact on the predicted target genes in specific 

cell types. For instance, our results show that the PD-associated SNPs rs11538371, rs2072814 and 

rs8137714 are found to be linked to TIMP3 in astrocytes (Table S4). In fact, TIMP3 is an inhibitor 

of metalloproteinases, enzymes secreted by astrocytes (Yin et al., 2006), that are implicated in 

several PD-associated processes such as dopaminergic neuron degeneration, neuroinflammation, 

and proteolysis of α-synuclein (Sung et al., 2005; Choi et al., 2011; Annese et al., 2015). Second, 

we evaluated the precision of RNetDys in capturing gene-disease relationships at the cell(sub)type 

level using the OMIM database (Amberger et al., 2019) (Fig. S2). When compared to the eQTL 

data, we observed that the genes captured by our approach as being impaired due to the presence 

of SNPs are more often linked to disease than the genes captured by eQTL. Although eQTL 

captures a larger number of SNP-gene interactions, few of them are actually described to be 

involved in the disease, thus explaining the low ratio. On the other hand, RNetDys identifies more 

genes linked to each SNP that have been described as related to the disease, demonstrating the 

higher precision of RNetDys compared to eQTL. 
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Fig. 2. Performances of RNetDys and comparison to other methods. (A, B) TF-promoter 
regulatory interactions performances assessed using (A) the PPV and (B) the F1-score metrics. 
Performances were assessed for RNetDys, state-of-the-art methods and metrics on 20 datasets 
from six human cell lines. (C, D) Enhancer-promoters regulatory interactions performance 
assessment using (C) the PPV and (D) the F1-score metrics. Performances were assessed for 
RNetDys and Cicero on 6 scATAC-seq datasets from three human cell lines. 
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Cell (sub)type differential dysregulation in diseases 

Then, we studied the differential impairment across cell (sub)types in the five diseases as it has 

been reported that some cell (sub)types were more involved in disease mechanisms (Muratore et 

al., 2017; Kamath et al., 2022). We observed that cell (sub)types shared few impaired interactions 

in the studied diseases, especially in EPI and PD (Fig. 3). Interestingly, in EPI, astrocytes, OPCs 

and inhibitory neurons seem to be the most impaired cell types. This is consistent with literature 

evidence that shows that modifications in GABA receptors, which are expressed in inhibitory 

neurons, are closely linked to epilepsy (Tanaka et al., 2012). Furthermore, impairment of antiquin 

expression, encoded by the gene ALDH7A1, in astrocytes has been described to be linked with 

dysregulation of neurotransmitter shuttling and recycling, one of the major causes of neurological 

deficits (David et al., 2009; Jansen et al., 2014). Finally, studies showed that myelinated neuronal 

axons are damaged in epileptic patients and the ability of OPCs to proliferate is reduced in samples 

obtained from patients with dysplasia (Luo et al., 2015; Donkels et al., 2020). 

Insights into the cell (sub)type specific regulatory impairments 

We finally aimed at exploiting the GRN information provided by RNetDys to further analyse the 

regulatory impairments of cell (sub)types (Fig. 4, Fig. S3-S6). We observed that in AD (Fig. 4), 

the same enhancers were involved in all cell (sub)types specific networks with an impact on the 

expression of APP and presenilin 1 (PSEN1). Alterations in the expression of these genes are 

primarily linked to the development of AD (Dewachter et al., 2002; Matsui et al., 2007). 

Furthermore, recent studies have shown that not only neurons, but also astrocytes and microglia 

to be involved in the accumulation of β-amyloid plaques (Palop and Mucke, 2010; Frost and Li, 

2017). However, the impairment of the TFs and enhancers regulating these two genes seems to be 

different across cell (sub)types (Fig. 4). Indeed, most of the SNPs in astrocytes and microglia 

would induce a repression of APP whereas this gene seems to be activated in other cell (sub)types 

(Fig. 4). It has been described that these two cell types provide protective effects, with microglia 

facilitating the clearance of β-amyloid overproduced by neurons in AD (Fakhoury, 2018). 

To provide better insights on the main regulatory TFs behind disease dysregulation, we ranked the 

impaired TFs based on network topology and impact of each involved SNP (see Methods). 

Notably, we could observe that certain TFs, such as CREB1, MXI1, and STAT3, are ranked as top 

regulators across different brain diseases and diabetes (Table 1).  
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Figure 3. Cell (sub)type differential regulatory impairment in diseases. Heatmaps showing the 
distribution of impaired interactions due to disease-related-SNPs across cell (sub)types for 
Alzheimer’s disease (AD), Parkinson’s disease (PD), Epilepsy (EPI), Diabetes type I (T1D) and 
type II (T2D). The colors of the heatmap represent the number of SNPs impacting the regulatory 
interactions. Astro: astrocytes, Ex: excitatory neurons, Inh: inhibitory neurons, Mic: microglia, 
Oligo: oligodendrocytes, OPCs: oligodendrocyte progenitors, DAn: dopaminergic neurons. 
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Table 1. TF regulators involved in impaired regulatory mechanisms. 

DISEASE CELL (SUB)TYPE RANKED TFS* 

AD 

Astrocyte MXI1, STAT3 

Excitatory neuron CREB1, USF2, MXI1 

Inhibitory neuron CREB1, MXI1, STAT3 

Microglia CREB1, USF2, MXI1, IKZF1 

Oligodendrocyte CREB1, MXI1 

OPCs CREB1, MXI1, ETV1 

EPI 

Astrocyte MXI1, STAT3, BCL6, ZFX, RXRA 

Excitatory neuron CREB1, MXI1 

Inhibitory neuron CREB1, STAT3, STAT1, MXI1 

Microglia CREB1, MXI1 

Oligodendrocyte CREB1 

OPCs CREB1, BCL6, MXI1, STAT1, ETV1 

PD 

Astrocyte MXI1, BCL6 

Dopaminergic neuron STAT3 

Excitatory neuron MXI1, CREB1 

Oligodendrocyte MXI1 

OPCs BCL6, MXI1, ETV1 

T1D 

Alpha cell STAT3, STAT1, RXRA 

Beta cell STAT3, CREB1 

Delta cell STAT3, CREB1 

T2D 

Alpha cell STAT3, RXRA, STAT1, CREB1, ATF2, EHF 

Beta cell CREB1, STAT1, STAT3, PDX1, ETS1, ATF2, RXRA, MXI1 

Delta cell CREB1, STAT1, STAT3, PDX1, ETV1, EHF, ATF2 

Gamma cell STAT3, CREB1, STAT1, ETV1, EHF, ATF2 

* TFs are ranked by their order of importance in the detected impaired regulatory mechanisms. 

 

To investigate this, we evaluated the outdegree distribution of these TFs and we observed different 

outdegrees values across cell (sub)types, which demonstrates that our ranking has no bias towards 

highly connected TFs (Fig. S7). CREB1, MXI1, and STAT3 participate in common cell 

mechanisms involved disease development, such as cell death and inflammation. However, each 

of these TFs has been described to play a different function in these mechanisms in different 

diseases. 
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Figure 4. Cell (sub)type specific regulatory impairment in AD. Network visualization of 
impaired regulatory interactions for (A) astrocytes, (B) excitatory neurons, (C) inhibitory neurons, 
(D) microglia, (E) oligodendrocytes and (F) OPCs. TFs are represented as diamonds in light red, 
enhancers as yellow rectangles and genes in blue rectangles. Arrows represent activations and T 
edges represent repressions. The weight of edges from TFs correspond to the strength of the 
impairment, with the thinnest translating a weaker binding affinity and a large edge being a strong 
increase in binding affinity. The color of the edges from TFs represents the log2FC with green 
being a decreased affinity and red an increased one. 

 

For instance, MXI1 has been shown to be involved in the aging of the neurovascular unit, which 

contributes for the progression of AD (Zhao et al., 2022). On the other hand, the same TFs seems 

to be part of the unique transcriptomic signature of T2D, which we can also observe in our results 

as this TF does not show as a key regulator in T1D (Table 1) (Cubillos-Angulo et al., 2020). 

Finally, MXI1 was found to be one of the main regulators involved in impaired regulatory 

interactions for PD, apart from dopaminergic neurons (Fig. S3). MXI1 has been described to be 

involved in the mitochondrial homeostasis, dysregulated in PD and known to be involved with 

neurodegeneration (Lestón Pinilla et al., 2021; Malpartida et al., 2021). 
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CREB1 has been extensively shown to regulate gluconeogenesis through the coactivator PGC-1, 

playing a vital role in the regulation of efficient glucose sensing and insulin exocytosis and in the 

development of diabetes (Herzig et al., 2001). Our results show this TF to be the main regulator 

involved in AD and EPI in all cell (sub)types, apart from astrocytes (Table 1, Fig. 4, Fig. S4). 

CREB1 is a TF responsible for regulating the major pathways that mediate neurotrophin-

associated gene expression, a group of proteins that promotes survival and neuronal development 

(Shaywitz and Greenberg, 1999). Indeed, increased CREB activity promotes hyperexcitability, one 

of the main triggers of seizures, while reduced levels seem to prevent epilepsy (Zhu et al., 2012; 

Wang et al., 2020) (Fig. S4). PSEN1 has been shown to be a downstream target of CREB1 (Cui et 

al., 2022), which further supports the results obtained by our pipeline as CREB1 was predicted to 

regulate PSEN1. In AD, PSEN1 upregulation leads to myelin dysfunction in OPCs in cases of 

familial AD (Desai et al., 2011). Notably, our pipeline predicts a decrease in CREB1 binding 

affinity to the promoter and enhancer regions of PSEN1 in the presence of rs1800839, potentially 

elucidating one of the possible mechanisms behind PSEN1 upregulation previously observed in 

AD (Fig. 4). 

Finally, STAT3 was overall found to be the main regulator involved in impaired interactions of 

T1D and T2D (Table 1, Fig.s S5 and S6). In the pancreas, STAT3 has been shown to regulate 

insulin secretion and islet development (Saarimäki-Vire et al., 2017). In addition, in T2D, 

exacerbated STAT3 signalling has been shown to lead to insulin resistance in skeletal muscle of 

diabetic patients (Mashili et al., 2013), supporting its importance as a regulator of the 

dysregulations involved in the disease. In neurodegenerative diseases, STAT3 activation has been 

shown to promote astrogliosis, which is reflected in our results by an increase of the binding 

affinity of this TF to distinct regulatory regions (Fig. 4A and Fig. S4A) (Toral-Rios et al., 2020). 

 

Discussion 

The study of cell (sub)type or state specific regulatory interactions impaired due to disease-related 

SNPs is required to pave the way towards the development of gene-based therapies to prevent or 

treat diseases (Rao et al., 2021). In addition, the comprehensive view of the regulatory landscape, 

including interactions mediated by TFs and enhancers of regulated genes, is critical to study 
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dysregulated mechanisms in diseases (Emmert-Streib et al., 2014; Chiou et al., 2021). In that 

regard, existing strategies to study the impact of SNPs do not exploit the GRN information to 

provide additional mechanistic insights into the disease-related dysregulations (Rao et al., 2021; 

Bryois et al., 2022). In addition, recent studies have shown that specialized group of cells, 

including cell types, subtypes and phenotypes, are not equally involved in diseases (Nathan et al., 

2022; Kamath et al., 2022). However, current approaches have been mainly focused on cell types, 

lacking ability to identify dysregulated mechanisms at deeper levels of resolution. RNetDys is a 

systematic multi-OMICS pipeline to decipher cell (sub)type or state specific regulatory 

interactions impaired due to SNPs in diseases. This pipeline exploits the high-resolution of single 

cell to infer a comprehensive regulatory landscape, leveraged to identify impairment due to SNPs. 

We applied RNetDys to five disease cases and showed that cell (sub)types specific regulatory 

mechanisms were not equally impaired, suggesting their differential involvement in the studied 

diseases. Moreover, we validated the relevance of some impaired regulatory mechanisms using 

GWAS and eQTL data (Landrum et al., 2018; Bryois et al., 2022). In that regard, we provided 

additional mechanistic insights into the regulatory mechanisms dysregulated and identified the 

main TF regulators involved. Notably, the presented analysis was performed using SNPs retrieved 

from ClinVar, but RNetDys could be of great use to provide valuable regulatory mechanistic 

insights by using SNPs derived from genotyping studies. In the present study, we were able to 

predict known and unreported cell (sub)type specific SNP-gene interactions, hence showing how 

our pipeline could facilitate the discovery of regulatory impairments. To conclude, we foresee 

RNetDys to be a valuable tool to comprehensively identify cell (sub)type specific regulatory 

mechanisms impaired due to SNPs and aid the development of strategies for therapeutic 

intervention in diseases. 

 

Data and Material availability 

RNetDys is a pipeline publicly available at https://github.com/BarlierC/RNetDys.git. 

The repository of generated regulatory networks, results and scripts used in this study are available 

at https://gitlab.com/C.Barlier/RNetDys_analyses. 
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