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Figure 3. Cell size guided M-GMC transition is sufficient to explain the self-renewal and differentiation behavior of 
meristemoids !"#$!%!&'. (A) The workflow of the meristemoid division tree model (left) and its key parameters (I-IV, right). 
10,000 meristemoids are randomly drawn from a starting population, gamma distribution [4, 33.3] (I). These meristemoid then 
divide asymmetrically, each with a size asymmetry (size of the meristemoid daughter divided by the size of the mother cells) 
drawn from a beta distribution [6.8, 14.6] (II). The newly formed meristemoid daughter was then passed on to a cell-size-guided 
differentiation model while the SLGC was discarded. In the cell size guided differentiation model, each meristemoid 
differentiates with some probability based on current size using the binomial cumulative distribution function (CDF) [current 
size, 100,0.32] (III). A cell of 32 square microns will divide 50% of the time. Differentiated meristemoids leave the model 
while the rest grow with 3% growth rate (per hour) with a cell cycle length drawn from a gamma distribution [10, 20] (IV). 
After growth, these meristemoids are then looped back to divide asymmetrically again and pass through the rest steps of the 
model until all 10000 meristemoids differentiate and leave the model. (I) Histogram of the measured starting meristemoid cell 
size (gray, n=132 cells) and the fitted gamma distribution probability density function (PDF) (orange). (II) Histogram of the 
measured ACD size asymmetry (gray, n=98 cells) and the fitted beta distribution PDF (orange). (III) Dot plot of the measured 
meristemoid cell size at birth separated by their fates (gray, n=98 cells) and the fitted binomial distribution CDF (orange). (IV) 
Histogram of the measured cell cycle length for amplifying division (gray, n=112 cells) and the fitted gamma distribution PDF 
(orange). (B-D) Outputs of the meristemoid division tree model. (B) Computed meristemoid cell size at ACDs before 
differentiation (n=913 cells). (C) Comparison of the empirical (n=50 cells) and simulated (n=10000 cells) meristemoid cell size 
at birth before undergoing M-GMC transition. (D) Comparison of the empirical (n>300 cells/replicate/genotype) and simulated 
(n=10000 cells/replicate/genotype) meristemoid division-differentiation behavior. Empirical data are taken from lineage tracing 
experiments where each individual behavior of the abaxial cotyledon of corresponding genotypes are tracked for their cell 
divisions and differentiation behavior from 3 dpg to 5dpg (Gong, Alassimone, et al., 2021). All p-values are calculated by 
Mann-Whitney test. 
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Figure 4. Alteration of the meristemoid size and ACD asymmetry affects number of successive meristemoid ACDs but 
not the cell size of the M-GMC transition. (A-C) Comparison of cell size for leaf epidermal cells in wild type Col-0, tetraploid 
Col-0 (Col-0 4N), and the ctr1 mutant at different stages of development. (A) False-colored confocal images of the abaxial 
epidermis of 0 dpg cotyledons from different genetic backgrounds. mPS-PI staining images of half of the cotyledons were 
segmented and false-colored based on cell size in MorphoGraphX (Barbier de Reuille et al., 2015). (B) Cell size distribution of 
epidermal cells in Col-0, Col-0 4N, and ctr1 cotyledons at 0 dpg (n>500 cells/genotype). (C) Cell size distribution of 
meristemoids in Col-0, Col-0 4N, and ctr1 cotyledons at 4 dpg (n>50 cells/genotype). Meristemoids were selected from 
confocal images of 4 dpg cotyledons (labelled with the plasma membrane reporter pATML1::RCI2A-mCherry) with their cell 
size (surface area) measured in FIJI (Schindelin et al., 2012). (D-E) Division-differentiation behavior of meristemoid population 
from 3 dpg to 5dpg (n>300 cells/genotype), shown as the distribution (D) or as its mean, counting differentiation as zero (E). 
Data of Col-0 are adapted from Gong, Alassimone, et al. (2021). (F) Comparison of cell size at birth between meristemoids that 
acquire different fates in Col-0, Col-0 4N, ctr1 and the myoxi-i mutant (n> 50 cells/genotype). The data of Col-0 are taken from 
Figure 2B. All p-values are calculated by Mann-Whitney test. Scale bars, 10 μm. 
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Figure 5. Cell size is sensed via chromatin content in the nucleoplasm. (A-B) Comparisons of nuclear area (A) and cell area 
(B) for wild-type Col-0 and crwn1 plants. (C-D) Comparison of the rate of amplifying division for Col-0 and crwn1 plant, as 
the distribution (C) or its mean (D). (E-F) Logistic regressions of cell area (E) or nuclear area (F) against meristemoid behavior, 
showing that relative to Col-0 meristemoids, crwn1 meristemoids transition to differentiation at the same nuclear size, but a 
different overall cell size. (G) Comparison of nuclear areas of differentiating meristemoids in diploid and tetraploid Col-0, 
showing that chromatin content influences the transition size. All p-values are calculated by Mann-Whitney test, except in E-
F, where a t.test was performed on the outputs from dose.p (see methods). 
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Materials and methods  
 
Plant material and growth conditions 
All Arabidopsis lines used in this study are in the Col-0 
background, and wild type refers to this ecotype. Arabidopsis 
seeds were surface sterilized by bleach or 75% ethanol and 
stratified for 2 days. After stratification, seedlings were 
vertically grown on ½ Murashige and Skoog (MS) media with 
1% agar for 3-14 days under long-day conditions (16 hours 
light/8 hours dark at 22°C) and moderate intensity full-
spectrum light (110 μE). 
 
Previously reported mutants and transgenic lines include: 
pSPCH::SPCH-YFP pATML1::RCI2A-mCherry in spch-3 
(Lopez-Anido et al., 2021), pMUTE::MUTE-YFP 
pATML1::RCI2A-mCherry (Davies & Bergmann, 2014), 
pBRXL2::BRXL2-YFP pATML1::RCI2A-mCherry (Gong, 
Varnau, et al., 2021; Rowe et al., 2019), pBRXL2::BRXL2-
YFP pATML1::RCI2A-mCherry in ctr1 (Gong, Alassimone, 
Varnau, et al., 2021), tetraploid Col-0 (Robinson et al., 2018), 
p35S::PIP2A-RFP in basl-2 (Rowe et al., 2019), 
pBRXL2::BRXL2-YFP pATML1::RCI2A-mCherry in myoxi-i 
(Muroyama et al., 2020), pATML1::mCherry-RCI2A 
pBASL::BRX-CFP (Rowe et al., 2019), and pATML1::H2B-
mTFP pATML1::mCit-RCI2A (Robinson et al., 2018). We 
created crwn1-1 pATML1::H2B-mTFP pATML1::mCit-
RCI2A by crossing crwn1-1(Dittmer et al., 2007) with 
pATML1::H2B-mTFP pATML1::mCit-RCI2A (Robinson et 
al., 2018). 
 
Microscopy, image acquisition, and image analysis 
All fluorescence imaging, time-lapse, and time-course 
experiments were performed as described in (Gong, 
Alassimone, Muroyama, et al., 2021). To quantify SPCH 
protein levels (Figure 1D), we captured a time-lapse of a 3 
dpg cotyledon expressing the translational reporter 
pSPCH::gSPCH-YFP. We randomly selected meristemoids 
that were born during this time-lapse and recorded their 
subsequent behaviors (self-renewal vs. differentiation). Mean 
SPCH-YFP intensities were quantified as the raw integrated 
density of a summed projection divided by the area of the 
region of interest in square microns. Similarly, MUTE protein 
levels (Figure 1E) were measured from a time-lapse of a 3 dpg 
cotyledon expressing pMUTE::MUTE-YFP. We segmented, 
tracked, and measured the mean fluorescence intensity of 
MUTE-YFP using the TrackMate Fiji plugin (Tinevez et al., 
2017). To quantify epidermal cell size at 0 dpg (Figure 4A, 
B), mature embryos were dissected from seeds and stained 
with mPS-PI staining as described previously (Truernit et al., 
2008). The stained embryos were imaged using a Leica SP8 
confocal microscope and MorphographX (Barbier de Reuille 
et al., 2015 was used to create a surface mesh containing the 
epidermal signal, that mesh was then segmented to quantify 
cell surface areas. In Figures 2, 3 and 4, meristemoid cell area 
was measured using the polygon tool in Fiji (description of 
process in Figure S1). In Figure 5, nuclear and plasma 

membrane signals were segmented semi-automatically using 
ilastik (Berg et al., 2019); nuclear and cell areas were 
quantified in Fiji. In Figure S6A, crescent sizes were 
measured using POME (Gong, Varnau, et al., 2021). 
 
Statistical analysis 
All statistical analyses in this manuscript were performed in 
RStudio. Unpaired Mann-Whitney tests were conducted to 
compare the means of two groups using the compare_means 
function in the ggpubr package (Kassambara, 2020). Logistic 
regression was conducted with the glm.fit function with a 
binomial model in R (R Core Team, 2020). Classification 
accuracy was estimated from separate training and test 
datasets. Briefly, 5-fold cross validation was used to split a 
dataset of n = 95 cells into pairs of training and test data. In 
each case, the training dataset was used to estimate the logistic 
with the glm.fit function. Then, for each cell in the test 
dataset, cell size at birth was used to compute a division 
probability according to the logistic and a predicted behavior 
(division or differentiation) was assigned by binarizing the 
probability with threshold 0.5. Accuracy is calculated as the 
percentage of cells with correctly predicted behavior, and the 
average accuracy across all 5 cross validations was reported. 
For all graphs, p-values from the unpaired Mann-Whitney 
tests or logistic regression model were directly labeled on 
these graphs. 
 
The transition size for division/differentiation was 
operationalized as the size at which 50% of cells differentiate. 
As this is conceptually equivalent to estimates of the LD50 
value, the amount of a toxin that causes death in half of the 
subjects, we used the dose.p function from the R package 
MASS (Ripley, 2002) to obtain point estimates and associated 
error for the transition size. 
 
Computation models and simulations 
The lineage decision tree model and all associated simulations 
were built and performed in MATLAB. The lineage decision 
tree model is a stochastic, asynchronous rule-based model of 
meristemoid progression through asymmetric division, 
differentiation, and growth. The starting sizes of 10,000 cells 
were randomly drawn from a gamma distribution (4, 33.3). 
Cells with starting sizes below 40 μm2 were discarded (about 
5% of cells). The cells then divided asymmetrically with a 
division asymmetry drawn from a beta distribution (6.8, 14.6) 
with a noise factor ±0.05, each forming a smaller daughter 
cell or meristemoid and a larger daughter cell or SLGC. 
SLGCs were discarded, while the meristemoid differentiated 
with some probability based on its current size using the 
binomial CDF at (current size, 100, 0.32). For instance, a cell 
of 32 square microns would have a 50% chance of 
differentiating. If the cell did not differentiate, it grew by 3% 
± 0.005% per hour to the power of a random cell cycle length, 
with the cell cycle length drawn from another gamma 
distribution (10, 20). Calculating growth to the power of cell 
cycle length allows for asynchronicity (individual cells are 
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different ages). Parametric distributions were obtained 
through biological measurements. The fittings of the starting 
size of the meristemoid population, division asymmetry, and 
cell cycle length to gamma or beta distributions were 
conducted with the fitdist function from the fitdistrplus 
package (Delignette-Muller & Dutang, 2015). Cell sizes were 
rounded to the nearest integer μm2. Additional noise was 
introduced (+/-) to reflect uncertainty. 
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