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Abstract

The recent public release of the latest version of the AlphaFold database has
given us access to over 200 million predicted protein structures. We use a
“shape-mer” approach, a structural fragmentation method analogous to sequence
k-mers, to describe these structures and look for novelties - both in terms of
proteins with rare or novel structural composition and possible functional an-
notation of under-studied proteins. Data and code will be made available at
https://github.com/TurtleTools/afdb-shapemer-darkness

1 Introduction

The universe of all possible protein-like sequences is sparsely populated by natural proteins (Levitt,
2009) and, with the contribution of both experimental and computational approaches, has been both
greatly expanded and functionally annotated. Recent deep-learning based protein structure prediction
techniques, such as AlphaFold (Jumper et al., 2021), are now also expanding our knowledge at
the structural level. Apart from the hundreds of thousands of experimentally resolved structures
in the Protein Data Bank (PDB) (Berman et al., 2000), 214 million protein structural models are
publicly available since July 28 2022 through the AlphaFold database version three (AFDB v3)
(Varadi et al., 2022; Callaway, 2022). These structures open new avenues for the better understanding
of the diversity of folds adopted by all natural proteins and their potential biological roles. However,
this data explosion imposes the need for efficient and automatic methods for protein structure analysis
and comparison.

Here, we decompose structures into fragment shape-mers analogous to k-mers in a protein sequence,
or words in natural language. This allows for fast and efficient large-scale comparison across millions
of structures using natural language processing (NLP) techniques. With this framework in place, we
attempt to describe the structural novelties in AFDB v3 compared to the PDB with two different
perspectives in mind - first, differentiate between the distributions of PDB and AFDB structural folds
and pinpoint structural outliers in AFDB; and second, connect unannotated and functionally unknown
proteins to similar structures for which some functional annotations are available.

Two recent efforts in similar directions include van Kempen et al. (2022), where a 20-letter structural
alphabet was created based on the local distances and angles between each residue and its closest
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neighbor in order to use fast sequence search approaches, and Bordin et al. (2022), where the authors
combine sequence profile searches, language models, and structure searches to assign parts of AFDB
v1 structures to CATH domains (Orengo et al., 1997). Unlike the former, our approach allows for
the understanding of larger fragments encompassing whole secondary structure elements and their
structural context. And, complementary to the latter, it allows for purely structural comparisons
across millions of structures in a completely unsupervised fashion, thus bringing to light not only
structural outliers in terms of known domains, but also outliers in terms of structural fragment content.

2 Methods

2.1 Shape-mer construction

Rotation-invariant moments The shape-mer approach used builds upon the Geometricus algorithm
from Durairaj et al. (2020), which used 4 rotation invariant moments calculated on fragments of
protein structures, defined either using overlapping k-mers of backbone α-carbon coordinates, or α-
carbon coordinates within a sphere of a certain radius of each residue. Here, we extend our approach
to make use of 17 rotation invariant moments including 3 second order moments from Mamistvalov
(1998), 12 third order moments from Flusser et al. (2003, 2016) and the chiral invariant moment from
Hattne and Lamzin (2011). These 17 moments were calculated for 4 different fragmentation types
on α-carbon coordinates: k-mers of size 8 and 16, and spheres of radii 5 and 10; for a total of 68
moments for each residue in a protein, ignoring the first 8 and last 8 residues.
Neural network We trained a neural network using PyTorch (Paszke et al., 2019) with input size
68 (i.e. the number of moment invariants calculated per residue), 1 hidden layer of size 1024 and
output size 10. The network was trained with contrastive loss to reduce the output distance between
structurally equivalent pairs of residues and increase the distance between non-equivalent pairs in the
training set. As the output of the network is 10 floating point numbers between -1 and 1, this could
be discretized into 10 bits based on whether the value was greater than or less than 0, resulting in
1024 shape-mers, where the bitwise Hamming distance defines the similarity between shape-mers.
See Figure 4 for a comparison of these extended shape-mers against Geometricus and TM-score.
Training data To train shape-mer representations from the moment invariants, we used structures
from the CATH database having <40% sequence identity that could be assigned CATH functional
family (funfam) assignments with an E-value < 10e6−10. From these 8333 structures, US-align
(Zhang et al., 2022) was used to align and superpose all pairs within each funfam cluster and 3 *
8333 randomly chosen pairs across clusters. Pairs of residues from two proteins belonging to the
same funfam, with an alignment TM-score > 0.8 and a weighted RMSD of the 16 residue sequence
neighborhood and 10 Åstructure neighborhood < 2 were considered as positive pairs. Pairs of
residues from two proteins belonging to different CATH superfamilies, with an alignment TM-score
< 0.6 and a weighted neighborhood RMSD > 5 were considered as negative pairs. This resulted in a
total of 3,398,839 residue pairs for training. Training took 30 mins on 1 RTX-3080TI.
Shape-mer calculation Shape-mers were calculated for all AFDB v3 proteins (214M proteins
modelled as monomers) and every chain of the PDB (version PDB_220907T050415, 652,611 chains).
For AlphaFold models, we followed the approach described in the analysis of AFDB v1 (Akdel et al.,
2021) to split each protein into segments with Gaussian smoothed plDDT > 70. Shape-mers were
then calculated for each segment and concatenated. Computations took about 1 week using 20-40
threads in our cluster. Proteins with less than 20 amino acids were ignored. Figure 1 shows four
example shape-mers along with corresponding examples of proteins with over 50% of their structure
made up of that shape-mer.

2.2 Natural language processing techniques

As shape-mers within a protein structure can be considered equivalent to words within a document, we
use two NLP techniques to compare shape-mers of protein structures. We train Word2Vec (Mikolov
et al., 2013) on shape-mers from the PDB dataset using gensim (v4.2.0) (Rehurek and Sojka, 2011)
with a window size of 16 and embedding size of 1024. Protein-level embeddings are obtained by
averaging across normalized shape-mer embeddings. Non-negative Matrix Factorization (Lee and
Seung, 2000) as implemented in scikit-learn (v1.1.1) (Pedregosa et al., 2011) was trained with 1000
topics on the term frequency inverse document frequency matrix of the shape-mers for all PDB
chain structures. Each topic is a weighted combination of the 1024 shape-mers and each protein is a
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Figure 1: Examples of shape-mers and proteins containing them. Residues associated with the
corresponding shape-mer are colored in green.

weighted combination of these topics. We assigned proteins to each topic using knee detection as
implemented in the kneed Python library (v0.7.0) (Satopaa et al., 2011) with a weight cut-off S of 4.
Topic-specific residue scores were obtained by multiplying the corresponding topic weight for each
shape-mer with the normalized Euclidean distance between each residue and the central residue of
the shape-mer, aggregated across all shape-mers.

2.3 AlphaFold database version 3 analysis

Dataset collection We mapped each entry in AFDB v3 to its corresponding UniRef50 cluster
(v03.08.2022) (Suzek et al., 2007) and computed the distribution of average pLDDTs across all
elements in each cluster. Given the diversity of pLDDTs for entries within the same UniRef50 cluster
(Figure 2), we choose as representative of each UniRef50 cluster the longest entry with an average
pLDDT above 70, and restricted our study to those with an average pLDDT above 95. This resulted
in total to 1’066’673 structures, referred to as UniRef50-95. The most common type of repeat protein
within the dataset corresponds to 21,300 coiled coil-like long helical repeats (shown in Figure 1A)
consisting almost entirely (>50%) of shape-mer 370 - these were removed from further analyses.

Novelty and outlier detection We use the Isolation Forest algorithm (Liu et al., 2008) from
scikit-learn to detect outliers in AFDB as compared to the PDB. The forest was trained on the
Word2Vec embeddings of the PDB dataset with 5% contamination rate and used to detect outliers
in the UniRef50-95 dataset. To obtain similarities between proteins, an approximate k nearest
neighbors graph was created using PyNNDescent (v0.5.7, Euclidean metric and 30 neighbors) (Dong
et al., 2011) across both the PDB and UniRef50-95 dataset. For sets of proteins of interest, graphs
connecting each protein to up to three nearest neighbors with Word2Vec embedding distance < 0.15
(see Figure 6) are constructed to perform connected components analysis analysis with NetworkX
(v2.8.6) (Hagberg et al., 2008).

Functional brightness and darkness assignment We defined the functional “brightness“ of a
given protein as the maximum full-length coverage with family, domains and predicted structural
features (coiled coils and predicted intrinsic disorder) of the best annotated entry in its corresponding
UniRef50 cluster. These annotations were extracted from UniProt, UniParc and Interpro, (uni, 2021;
Blum et al., 2021) excluding those containing ‘DUF’, ‘Hypothetical’, ‘Putative’ and ‘Uncharacterised’
in their descriptions. The higher the coverage (i.e., the closer to 100%) of the best annotated element
in a UniRef50 cluster, the brighter are all of its corresponding entries. Similarly, the lower the
coverage (i.e., the closer to 0%) of the best annotated element in a UniRef50 cluster, the darker are
all of its corresponding entries. We considered as “dark“ proteins those where the brightest UniRef50
representative has a brightness lower than 5%. Figure 5 highlights the distribution of brightness
across UniRef50 and AFDB v3 at different pLDDT levels.
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3 Results

3.1 AlphaFold modelling differs within the same UniRef50 cluster

Driven by multiple independent observations that highly similar protein sequences were modelled in
AFDB at different levels of predicted accuracy, we analysed how widespread these cases are within
UniRef50 clusters. We observed that for 53% of all UniRef50 clusters with more than one element in
AFDB the difference in pLDDT between the lowest and the highest confident models (∆plDDT) is
just 5 pLDDT units, but at least 10% of the clusters encompass models where the absolute ∆plDDT
is larger than 30, with the largest being 70 (Figure 2a).

This variation does not correlate with the size of the UniRef50 cluster (Figure 2b) neither is affected
by the presence of fragments. One example is given in Figure 2c-d. The largest cluster in the dataset
is UniRef50_Q9MIY8 and encompasses members of the Cytochrome C oxidase subunit 1 (COX1)
protein family, with more than 100K entries in AFDB. The absolute ∆pLDDT is larger than 60, but
the highest and lowest confidence models have identical sequences.

To confirm that high confidence models from similar sequences have similar modelled structures, we
performed a Word2Vec connected component analysis on all structures with over 95 plDDT from
the 100 most populated UniRef50 clusters. For each UniRef50 cluster, most proteins (>99%) with
length within one standard deviation were in the same connected component. Smaller proteins (<
100 residues), which are likely fragments, formed a number of smaller disconnected components. To
ensure that we only analyse robust, high quality models, we continue with the UniRef50-95 dataset
(described in Methods). While on average these represent the structures seen in the entire cluster,
Figure 2e-f shows an example where this is not the case.

Figure 2: plDDT analysis of UniRef50 (a) Distribution of ∆plDDTs (difference between lowest
and highest average plDDT) across all clusters (b) Distribution of ∆plDDTs vs. cluster size (c)
Highest and lowest confidence models in the most populated cluster and (d) corresponding sequence
alignment. (e) Two high confidence proteins from UniRef50_P56757 with differing structures and (f)
corresponding sequence alignment.

3.2 What’s new in AFDB predicted models across UniRef50

Ever since the first version of AFDB was made available in the summer of 2021, various efforts
focused on the identification of structural novelties in the thousands of available predicted models
(Akdel et al., 2021; Bordin et al., 2022). Our shape-mer approach combined with classic NLP
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techniques allows easy scaling of such analyses to millions of structures in a matter of days. In
addition, the methods described inspect distributions of structural content in an unsupervised and
alignment-free manner, thus providing a different perspective from alignment-based and annotated
fold-based methods.

The difference between the frequency of different topics in the PDB and the AFDB highlights the
types of structural motifs that have been now expanded by AFDB at an unexpected rate. For example,
the frequency of the topic describing transmembrane regions (Figure 7A) in AFDB is 8% higher than
in the PDB. Similarly, outlier detection highlights those structures in AFDB that are less common in
PDB and thus may represent novel folds or quirks of AlphaFold that may need to be considered when
interpreting AlphaFold models (Figure 8).

One important application of our method is for the analysis of poorly annotated and functionally
dark proteins. Figure 3a shows a set of mostly functionally dark proteins that share a common fold
and cluster closely with known enzymes that bind amino acids (mainly arginine) and are involved in
their metabolism. This suggests that these dark proteins may adopt the same fold and, thus, carry a
similar function. In Figure 3b, we show a cluster containing Outer Membrane β-Barrels but also other
structurally similar proteins. In the middle of this cluster, there are a number of structural outliers
(bigger circles) that consist of single layer beta-sheets, which are rare amongst natural proteins (Xu
et al., 2019). Many of these are Gloverins, antimicrobials targetting Gram-negative bacteria for which
no homologs exist in the PDB (Yi et al., 2014). Finally, Figure 3c shows a cluster of mostly dark and
structural outliers that cluster together with adhesin-like and pectin lyase domains. While a few of
these have been experimentally characterized, AFDB indicates that many more are to be annotated.

As average Word2Vec embeddings lose information about context beyond what is stored in the
individual word (shape-mer) vectors, structures with similar composition but different orders are seen
as similar. While this may be an interesting way to explore phenomena such as circular permutations,
a powerful next step is to train a language model on the sequences of shape-mers to truly capture
structural context.

Figure 3: Examples of functionally dark proteins and their closest UniRef50-95 and PDB Word2Vec
neighbors. Purple circles denote dark proteins, and grey circles represent functionally or experimen-
tally characterized proteins. Large circles mark structural outliers.

4 Conclusion
AFDB v3 has brought forth a sudden and dramatic structural coverage across the tree of life, and is
extensively used by life scientists. However, the confidence of the predicted models vary widely even
across very similar sequences, conveying a false sense of structural diversity. This problem has been
identified by the AFDB maintainers and is now being rectified as part of the version 4 release, as
stated in the AFDB FAQ.

Still, our structural fragment-based analysis shows that AFDB v3 indeed expands structural diversity
even when considering the most confident of robust predictions. Some fold spaces have been
considerably expanded, and a number of models are distinct from experimental structures. A
substantial number of unannotated and under studied proteins are modelled with high confidence
and many are found to be structurally identical to proteins with functional annotations from various
manually and automatically curated databases, opening the doors to automated annotation transfer.
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Such new ways of defining discrete structural fragments with spatial context, and no underlying
fragment database, have an edge in two different ways. Firstly, they give us access to the myriad
of hyper-optimized sequence-based techniques (search, alignment, motifs, profiles, trees and more).
Secondly, they are more analogous to words in natural languages, thus making them better suited to
the recent NLP approaches that are revolutionizing a variety of fields.

Broader Impact
Researchers in bioinformatics and life sciences in general may benefit from such a large-scale
overview of the differences and similarities between experimental and computationally resolved
structures. Our shape-mers or structural words enable easy navigation through the protein universe
from a fragment perspective, also potentially useful for protein engineering and design techniques.
Given the increasing success of language models in a variety of different tasks, the recent explosion
of structures can be combined with the ideas proposed here to create protein embeddings combining
both structure and sequence information across the protein universe.
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Figure 4: 10,000 pairs of proteins from SCOP (with <40% sequence identity from each other)
were gathered such that 2,500 pairs each have TM-score <0.5, 0.5-0.7, 0.7-0.9 and >0.9. Dynamic
programming alignment was performed on the Geometricus shape-mers and our extended and trained
shape-mers across these pairs. Panels (a) and (b) show the ROC and Precision-Recall curves at
different TM-score thresholds.

Figure 5: Functional brightness in UniRef50 and AFDB (a) Distribution of annotation levels across
(1) UniRef50 (2) UniRef50 clusters with AFDB representatives (3) with plDDT > 70 and (4) with
plDDT > 95. Data collection and functional brightness calculations took, in total, about 2 weeks on
a single CPU.
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Figure 6: Euclidean distances between Word2Vec shape-mer embeddings were calculated for 168,010
PDB chains and their corresponding UniProt AFDB models (mapping data obtained from SIFTS)
and compared to distances between the same PDB chains and randomly selected SwissProt AFDB
models. A threshold of 0.15 distance is chosen from this plot and used in the manuscript as 89% of
matching pairs lie under this threshold compared to 7% of random pairs.
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Figure 7: Examples of topics with differing distributions among PDB and AFDB. Topic-specific
residue scores are colored from blue (not topic-specific) to green (topic-specific). The difference
in frequencies between AFDB (calculated by summing across UniRef50 cluster counts) and PDB
chains assigned to each topic is 8% and 3% for A and B indicating that AFDB has expanded upon
these kinds of structural distributions, while it is -3% for C indicating that the PDB has proportionally
more of this topic. This could be because topic C describes loops near β-sheets, while generally
loop-filled regions are not high confidence in AlphaFold predictions and hence their shape-mers are
not considered.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.511548doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511548
http://creativecommons.org/licenses/by/4.0/


Figure 8: Examples of structural outliers in AFDB with no similar PDB structures (as measured by
Word2Vec embedding similarity).
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