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Abstract

Mutations in a protein active site can lead to dramatic and useful changes in protein
activity. The active site, however, is extremely sensitive to mutations due to a high
density of molecular interactions, drastically reducing the likelihood of obtaining
functional multipoint mutants. We introduce an atomistic and machine-learning-based
approach, called htFuncLib, to design a sequence space in which mutations form
low-energy combinations that mitigate the risk of incompatible interactions. We applied
htFuncLib to the GFP chromophore-binding pocket, and, using fluorescence readout,
recovered >16,000 unique designs encoding as many as eight active-site mutations.
Many designs exhibit substantial and useful diversity in functional thermostability (up to
96 ℃), fluorescence lifetime, and quantum yield. By eliminating incompatible active-site
mutations, htFuncLib generates a large diversity of functional sequences. We envision
that htFuncLib will be useful for one-shot optimization of activity in enzymes, binders,
and other proteins.

Introduction

Protein active sites comprise molecular-interaction networks that are critical to function.
Due to the molecular density of the active site, however, the majority of mutations
destabilize the protein1 or lead to dysfunction2, and functional multipoint mutants are
exceptionally rare3,4. Thus, active sites are among the most evolutionarily conserved
protein sites5. Furthermore, experimental lab-evolution studies that aim to modify protein
activity typically discover many more mutations outside the active site than within it6;
yet, understanding whether and how remote mutations change activity is often
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elusive7,8. Although active-site mutations have the greatest potential to alter function, in
practice, sensitivity to mutation has severely limited access to active-site functional
variants in natural and lab evolution and in deep mutational scanning9,10 and
computational protein design11. Therefore, as a rule, lab-evolution studies comprise
multiple cycles of mutagenesis and selection that are customized specifically for each
desired functional trait12–14. Such iterative processes are time consuming and likely to
severely undersample the space of functional sequences.

Furthermore, epistatic interactions between mutations can severely restrict the chances
of finding functional multipoint mutants15. In epistasis, a mutation may be tolerated only
if another position has already been mutated16–18, drastically reducing the chances for
the emergence of beneficial multipoint mutants15,19. This dependence also severely
limits our ability to predict the functional impact of multipoint mutations even when the
effects of single-point mutations are known20,21, for instance, based on deep mutational
scanning3,4. Epistasis has critical implications for our understanding of molecular
evolution, including the emergence of viral and microbial resistance mutations22 and the
evolution of new enzymatic and binding specificities23. It also presents one of the
primary obstacles to our ability to design protein activities in basic and applied
research1,24.

Here, we introduce a computational method called high-throughput functional libraries
(htFuncLib) to design large libraries of active-site mutants that can be applied, in
principle, to any protein. Most current atomistic design methods, including our
previously described FuncLib method24, select designs that optimize desired energy or
structure criteria25,26. By contrast, htFuncLib searches for a set of active-site point
mutations that, when freely combined, yield low-energy multipoint designs. Our
approach can be applied to an arbitrarily large set of positions to generate diverse and
complex libraries that encode millions of designs. htFuncLib thus accesses sequence
spaces that have so far been interrogated through random or semi-random
mutagenesis and selection methods. Yet, unlike such methods, htFuncLib generates
libraries that are preselected computationally to enrich for stable, folded, and potentially
active designs.

Results

Principles for designing combinatorial active-site diversity

We applied htFuncLib to Green Fluorescent Protein (GFP). GFP and other fluorescent
proteins have attracted intense interest in evolution studies due to their ubiquitous uses
in molecular and cellular biology27–29 and their straightforward optical readout30. GFP
fluorescence depends on the chemical environment of the chromophore, including
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electrostatics and torsional freedom about the bond that links its aromatic rings31 and is
therefore sensitive to mutations in the chromophore-binding pocket. Most previous
large-scale screens targeted the entire protein or consecutive segments of it3,4,30,32. GFP
is a β-barrel, however, and the chromophore is buried within the protein core. Therefore,
most mutations targeted solvent-exposed regions that are unlikely to impact spectral
properties. Unlike these previous studies, we apply htFuncLib solely to positions that
line the chromophore-binding pocket. Because active-site mutations may reduce protein
stability, we chose as a starting point a previously designed version of enhanced GFP,
PROSS-eGFP, that exhibited elevated resistance to thermal denaturation33. In this
previous design, active-site positions, except Tyr145Phe and Thr167Ile, were
immutable. In applying htFuncLib, we also allowed design in these two positions.

Our working hypothesis is that epistatic interactions most frequently arise from three
molecular sources (Supplementary Figure 1): (1) direct molecular interactions between
proximal mutated amino acids; (2) indirect interactions between amino acid positions
due to backbone conformational changes; and (3) stability-mediated interactions in
which destabilizing mutations do not exhibit phenotypic differences when introduced
singly but reduce stability or expression levels when combined1,7.

The htFuncLib approach combines phylogenetic analysis, Rosetta atomistic design
calculations26,34, and a machine-learning analysis to nominate mutually compatible
mutations when combined freely with one another (see Methods for details). Using
Figure 1 as a visual guide for applying htFuncLib to GFP, we started by manually
selecting 27 active-site positions likely to impact functional properties based on previous
GFP studies or proximity to the chromophore (Figure 1A). htFuncLib then computed all
single-point mutations and selected the ones likely to be tolerated against the
background of the original amino acids in all other positions34. In this selection step, we
retain mutations that are likely to be present in the diversity of sequence homologs and
that are moreover predicted not to destabilize the protein native state according to
atomistic design calculations35. The atomistic calculations contain the chromophore to
ensure that the mutations do not abrogate contacts that may be critical to fluorescence.
In addition, these calculations apply harmonic coordinate constraints to backbone atoms
during whole-structure minimization, thereby penalizing backbone deformations that
may lead to indirect epistatic interactions (Supplementary Figure 1B).

After filtering, htFuncLib applies atomistic modeling to evaluate the energy of
combinations of tolerated point mutations. Since the space of potential multipoint
mutations in a large active site is computationally intractable for enumeration, we focus
calculations on combinations of mutations within neighborhoods of proximal positions
(Figure 1B & C, Supplementary Tables 1 and 2) which are the most likely to give rise to
direct epistatic interactions (Supplementary Figure 1A). In a companion paper, we show
how to select combinations of enzyme backbone fragments that form low-energy
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combinations when freely combined using a new machine-learning-based approach
called EpiNNet36. Here, we apply EpiNNet to select low-energy combinations of
mutations across all spatial neighborhoods within the chromophore-binding pocket. The
multipoint mutants within each neighborhood are classified according to their energies
into favorable (Rosetta energies lower than PROSS-eGFP) and unfavorable
(highest-energy 50%, Figure 1D). We then train the neural network to predict the
energy-based classification of favorable and unfavorable designs. Finally, the trained
network ranks the single-point mutations according to their likelihood of being found in
low-energy multipoint mutants, and the top-ranked mutations are selected for library
construction. The resulting library is enriched in mutually compatible mutations, such
that both direct and stability-mediated epistasis (Supplementary Figure 1A and C) are
addressed. Following design, we clone the library using Golden Gate assembly37

(Figure 1E) and apply FACS sorting and deep sequencing to identify active designs
(Figure 1F).

Multipoint mutants from the EpiNNet-enriched sequence space exhibit, on average,
dramatically lower computed energies than those in the original filtered sequence space
(Figure 2A), suggesting that EpiNNet increases the fraction of folded and stable
designs. Furthermore, in a representative case, following the selection steps, only 14
positions (out of the 27 we selected initially) were selected for design with a sequence
space of 107, compared to experimentally intractable 1035 sequences for the space
encompassing every mutation at 27 positions and 1019 following the phylogenetic and
single-mutation energy filters (Supplementary Tables 3 and 4).

Thus, unlike conventional protein design methods25,26, htFuncLib does not search for the
most optimal mutants according to energy or structural criteria. Instead, the
astronomically large space of combinatorial mutations in an active site is reduced to a
tractable size through phylogenetic, structural, and energy-based analysis. Then,
mutations that may destabilize the protein in combination with others are removed by
analyzing the energies of combinatorial mutations. Thus, htFuncLib assumes that
active-site stability is a primary constraint for discovering functional multipoint
mutants1,38,39. Additional functional constraints are encoded by verifying that the mutants
form favorable interactions with the chromophore.
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Figure 1. Steps in applying htFuncLib to GFP. (A) 14 positions designed by htFuncLib are shown (PDB
entry: 2WUR). (B) Red and blue backgrounds indicate representative neighborhoods centered around
GFP amino acid positions 181 and 61, respectively. (C) The sequence space of each neighborhood is
partially enumerated. Sequence representation of the two neighborhoods shown in (B). Only variable
positions are shown for clarity. Color bars represent Rosetta energies. (D) EpiNNet top-ranked mutations
are selected as the enriched sequence space. An atomistic verification step scores thousands of random
combinations from the EpiNNet-enriched and the filtered sequence spaces. Nearly all designs in the
EpiNNet sequence space are predicted to be more stable than PROSS-eGFP, compared to almost none
in the filtered sequence space. Red triangles mark the mutable positions, and the number of mutations in
each position is marked under the bar. (E) The designed library is cloned using Golden Gate assembly37

of oligos that contain the desired mutations, expressed in E. coli cells, and (F) sorted by FACS.

Design of a multiplexed GFP active-site library

The spectral properties of GFP depend on chromophore packing, electrostatics, and
hydrogen-bond networks around the chromophore27. Since hydrogen-bond networks are
extremely sensitive to structural perturbations, we designed two libraries: nohbonds,
which excluded positions that directly hydrogen bond to the chromophore, and hbonds,
which included such positions. We manually selected 27 and 24 positions for design in
each library, respectively, applied htFuncLib to these positions, and generated 11 million
and 930,000 designs for each library, respectively. Both libraries are complex: some
positions allow only subtle mutations, and others, including e.g., Gln69 and Tyr145,
exhibit high diversity and radical mutations (Supplementary Figures 2 and 3,
Supplementary Table 5). According to Rosetta atomistic modeling, both libraries are
highly enriched for low-energy mutants compared to the GFP starting point. For
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instance, nearly 99% and more than 67% of the nohbonds and hbonds designs,
respectively, exhibit lower Rosetta energies than the progenitor PROSS-eGFP (Figure
2A). By contrast, the energies of multipoint mutants from the sequence space prior to
EpiNNet enrichment are significantly worse than PROSS-eGFP, with >99% and >96%
exhibiting higher energies for nohbonds and hbonds, respectively (Figure 2A). The
unfavorable energies of combinatorial mutants in the sequence space before EpiNNet
selection reflect the high epistasis in the active site. By contrast, the EpiNNet-enriched
sequence space significantly improves the fraction of low-energy and, thus, potentially
stable and foldable active-site designs. Additionally, combinations of EpiNNet-selected
mutations exhibit lower energies than expected from an additive contribution of the
constituting point mutations (Figure 2B).

Figure 2. htFuncLib selects mutations that combine to form low-energy designs. (A) Energy
distributions of the EpiNNet-enriched sequence space, the sequence space filtered by energy and
phylogenetic criteria (Filtered), and unfiltered (all 20 amino acids at each position). >95% of mutants in
the EpiNNet-enriched combinatorial sequence space exhibit higher stability than PROSS-eGFP,
compared to <0.6% for the other spaces. 12,000 randomly selected sequences were modeled to
generate each distribution. The dashed line signifies PROSS-eGFP energy. (B) Distributions of the
energy difference between multipoint mutants and the sum of their constituent point mutations. (C) The
number of functional designs according to FACS screening of libraries comprising an increasing number
of top-ranked EpiNNet mutations is plotted as a function of the total number of designs detected in the
deep-sequencing data. Points are color-coded according to the number of mutations that constitute the
library. For example, a library of 25 top-ranked EpiNNet mutations that comprise ~104 designs would yield
approximately 103 functional ones (dashed blue lines). The diagonal is the best fit to the data points. (D)
Overlay of all mutations of the 25 top-ranked EpiNNet mutations from panel C. Despite the relatively small
size of this library, it contains radical mutations, including Tyr145Met and Gln69Pro.

The two libraries were cloned using Golden Gate assembly into E. coli cells, with
transformation efficiency greater than 5 x 107. Deep-sequencing analysis of the
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unsorted libraries shows high uniformity in the distribution of multipoint mutations,
verifying that the assembly process exhibits low bias (Supplementary Figure 4). The
cells were FACS-sorted using two selection gates: (405 nm excitation, 525 nm
emission; referred to as AmCyan405/525) and (488 nm, 530 nm; referred to as GFP488/530;
Supplementary Figure 5). Following selection, plasmids were purified and cloned into
fresh cells and resorted using the same gating strategy to reduce sort errors. Following
each sort, we collected several individual clones for sequencing and functional
measurements, obtaining 62 unique designs, 50 of which were functional. Furthermore,
the presorted library and the output from the second sort were subjected to deep
sequencing analysis. To determine thresholds for selecting positive hits from the deep
sequencing data, we analyzed the enrichment values of the 62 designs we collected
during sorts. Relatively loose criteria (enrichment in the selected population relative to
the presorted population >1) captured 45 functional designs with only a single false
positive (Supplementary Table 6). Applying these thresholds, we identified 14,242 and
1,926 unique designs in the sorted nohbonds and hbonds libraries, respectively (0.13%
and 0.21%, respectively; see Supplemental Figure 6 for distribution of read counts in
the selected libraries). We also retrospectively evaluated the fraction of functional GFP
variants in libraries that were constructed from top-ranked EpiNNet-selected mutations.
We found that up to library sizes of 104-105, approximately 10% of the multipoint
mutants were functional, and only above a library size of 105 did the fraction of
functional variants decay substantially (Figure 2C & D). These results are encouraging
as they suggest that focusing htFuncLib on top-ranked mutations may yield highly
functional libraries in experimental systems that are not amenable to high-throughput
screening.

Combining the positive hits from both libraries yields 16,155 unique, putatively active
GFP designs. Remarkably, these include 1,167 designs that exhibit ≥8 mutations
relative to GFP (Figure 3A). Strikingly, many of the active designs have radical
mutations, including Thr203His (13%), Gln69Met (9%), Ser205Asp (9%), Gln94Leu
(8%), and Tyr145Met (8%) (Supplementary Table 7). The large number of functional
active-site multipoint mutants is striking compared to previous engineering and design
strategies applied to eGFP, which showed a steep decline in active mutants with the
number of mutations and no active mutants with ≥5 mutations in the
chromophore-binding pocket4,40 (albeit, these studies did not focus diversity on the
active site). The vast majority of the mutations observed in those studies were in the
more tolerant solvent-exposed surfaces. By contrast, the current designs are entirely
within the chromophore-binding pocket where they are more likely to affect functional
properties (Figure 3A). The large number of active high-order multipoint designs in our
dataset confirms our working hypothesis that a stable starting scaffold (eGFP-PROSS)
and the htFuncLib enrichment of mutually compatible mutations dramatically increase
the yield of functional active-site multipoint mutations. Furthermore, htFuncLib
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generates many more functional multipoint active-site designs relative to random
mutagenesis (Figure 3A). Finally, compared to all known descendants of Aequorea
victoria GFP (avGFP) in the fluorescent protein database (FPBase)35 and variants
characterized in focused and high-throughput studies, we find that htFuncLib explored
different regions of the sequence space (Figure 3B).

Figure 3. htFuncLib exposes a large space
of functional multipoint active-site GFP
variants. Deep sequencing of htFuncLib
libraries sorted by fluorescence revealed over
16,000 potentially active designs. (A)
Frequency and number of functional variants
with a given number of mutations (top and
bottom, respectively). htFuncLib-NGS - all
sequences obtained from deep sequencing of
the sorted designs; htFuncLib-RF - the entire
sequence space labeled by the random forest.
The avGFP dataset was derived from
Sarkisyan et al.4. The amacGFP, cgreGFP, and
ppluGFP datasets were derived from
Somermeyer et al.3. Lines represent fits to the
data (points) according to Eq. 2 (see Methods
and Supplementary Table 8). Data excluded
sequences with mutations outside of the
chromophore pocket. (B) Distance-preserving
dimensionality reduction analysis shows the
relationships between GFP variants in
FPBase35, Sarkisyan et al.4, eUniRep40, and
htFuncLib. The plot approximates the number
of mutations between any pair of mutants40,41.
PROSS-eGFP (and eGFP, which are nearly
identical in the designed positions,
Supplementary Table 12) are marked by a
cross for reference. Individually characterized
htFuncLib designs are marked by purple
circles. The number of sequences represented
for each category is marked in parentheses.
Variants with mutations outside the chromophore pocket were included, but these mutations were ignored
when calculating distances.

Random forest modeling of GFP genotype-phenotype map

To gain insight into what determines the functional outcome of multipoint mutants in the
htFuncLib designs, we trained a random forest model using the functional annotations
derived from the deep sequencing data for the nohobnds library. We chose this type of
analysis because it is easily interpretable, less prone to overfitting than other
approaches, and well suited for mixed categorical and numerical data. As features for
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training, we used the mutation identities, geometric and physicochemical properties,
and conservation scores. The best-performing model exhibits 84% accuracy in
predicting functional versus non-functional designs in a balanced test (Supplementary
Figure 7, Supplementary Table 9). The most important single feature for predicting
functionality is the mean conservation score, calculated as the sum of differences in the
conservation scores between PROSS-eGFP and mutated identities (ΔPSSM,
Supplementary Figure 8). In fact, this single parameter exhibits an area under the ROC
curve of 87%, compared to 93% for the random forest. This result provides a compelling
verification for the approach of combining sequence conservation with atomistic protein
design which underlies htFuncLib and other successful protein design methods
developed in recent years26.

To further understand the qualitative features of the sequence-function relationship
learned by the random forest, we used a technique for visualizing complex fitness
landscapes42. In this technique, the distance between sequences reflects the time it
would take for a population to evolve from one sequence to another under selection to
maintain a fluorescent phenotype as predicted by the random forest model (see
Methods). We found that the main structure of the landscape could be represented by a
two-dimensional visualization, where each axis captures a different qualitative feature of
the GFP genotype-phenotype map (Figure 4A). The first axis (diffusion axis 1) mainly
distinguishes functional from non-functional sequences (79% of sequences with
diffusion axis 1 values greater than 1 were functional, while only 0.01% were functional
if they had diffusion axis 1 values less than -1), capturing the fact that the functional
sequences are highly connected with each other and localized in sequence space
rather than consisting of isolated fitness peaks separated by valleys. The contiguity
between functional sequences suggests that the htFuncLib selection of mutations that
increase stability may generate a highly evolvable library in which active variants are
connected via mutational trajectories that maintain function38,39. Additionally, the second
axis (diffusion axis 2) then largely separates functional AmCyan405/525 sequences from
functional GFP488/530 sequences.
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Figure 4. Global analysis of the GFP genotype-phenotype map shows high mutational contiguity
among functional sequences. (A) Low-dimensional visualization of the sequence-function relationship
predicted by the random forest model (see Methods). Functional sequences are highlighted in different
colors according to whether they are predicted to fluoresce in the GFP488/530 channel (green),
AmCyan405/525 channel (blue), or both (gold). Lines join genotypes that are separated by a single amino
acid substitution. (B) Site-frequency logos of functional sequences based on position along diffusion axis
2 (the three logos correspond to diffusion axis 2 coordinates greater than -0.5, between -0.5 and -2.25,
and less than -2.25). (C) The proportion of functional sequences changes depending on the amino acids
at positions 65 and 69. Gray lines indicate single amino acid substitutions. (D) Close-up of the region
containing a cluster of observed sequences with unusual sequence properties. Highlighted dots indicate
sequences that were directly characterized as functional in the high-throughput experiments, and black
lines indicate single amino acid substitutions between these experimentally characterized sequences (see
Supplementary Figure 9 for a visualization of all sequences enriched in the high-throughput experiment).
(E) Sequence logo representing the coefficients of the logistic regression models trained on random forest
predictions to identify changes in allelic preferences when using all sequences for training (top) or only
sequences within two mutations of the genotypes highlighted in panel D (bottom). Coefficients are
expressed as additive allelic contributions (i.e., Δlog2 odds ratios) that have been mean-centered by site.

Figure 4B provides more detail on the interpretation of diffusion axis 2 by showing site
frequency logos for three different regions of the fitness landscape. These frequency
logos indicate that the main set of functional sequences is largely separated into three
groups: one group with Thr65Ser and Gln69 consisting of AmCyan405/525 designs; one
group with Thr65 and Gln69 consisting of designs that fluoresce a mixture of
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AmCyan405/525, GFP488/530, or both; and one group with Thr65 and Gln69Leu that consists
of GFP488/530 designs. All three groups are strongly supported by many different
sequences directly assessed in the sorting experiment (Supplementary Figure 9).
Strikingly, Thr65Ser and Gln69Leu are highly incompatible: sequences that contain both
these mutations have a much lower chance of being functional (Figure 4C). As a
consequence, evolutionary trajectories from Ser65/Gln69 to Thr65/Leu69 that maintain
functionality would tend to pass through a Thr65/Gln69 intermediate.

In addition to these three main groups, which comprise the large majority of the
functional designs, the random forest analysis predicts two long parallel tails of
functional sequences spreading along diffusion axis 1 and sweeping up along diffusion
axis 2. The AmCyan405/525 tail is well-supported by the experimental data and is not an
artifactual prediction of our model, as we observe a cluster of highly mutationally
connected designs that were also among the most strongly enriched in AmCyan405/525

sorted cells (Figure 4D, Supplementary Figure 9, Supplementary Table 10). Moreover,
in this cluster, all sequences contain an unusual and rarely functional pairing of alleles
Thr65/Gln69Ala (Figure 4C), and all except one contain Thr108Glu, which is also
unusual among other functional sequences (Figure 4B). To investigate what
distinguishes these designs from the other fluorescent proteins in the library, we fit an
additive logistic regression model to the random forest output using only sequences up
to two mutations away from the cluster highlighted in Figure 4D (see Methods). We then
compared the estimated mutational effects on the probability of activity to those
obtained by fitting the same logistic regression model to the full genotypic space (Figure
4E). Although there are some commonalities in the inferred mutational effects (e.g.,
Tyr145Met, which is the strongest single-site predictor of functionality based on the
random forest, greatly increases the probability that a sequence is fluorescent under
both logistic regression models), positions 68, 69, 72 and 108 show marked differences
in amino acid preferences. For example, Thr72Ala increases the odds ratio for
functionality by approximately fourfold in the general model but reduces the odds ratio
by 13-fold in this alternative context. These results suggest that variants within this
cluster also differ in their functional constraints as compared to the majority of
fluorescent designs, although more detailed experiments would be required to validate
this qualitatively different solution to GFP fluorescence.

Designs exhibit large and useful functional diversity

The above results, based on flow cytometry, identify designs that maintain fluorescence,
but they do not provide information on other changes in functional properties, including
finer-scale changes in excitation and emission spectra. To examine these aspects of
functional diversity, we expressed, purified, and characterized a total of 88 unique
designs, exhibiting at least two mutations from PROSS-eGFP and typically at least two
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mutations from one another, and three controls (eGFP, PROSS-eGFP, and superfolder
GFP (sfGFP); Supplementary Tables 11 and 12). Twenty-four designs are cluster
representatives of the hits observed in the deep-sequencing data, 17 of which (71%)
were active. We also selected three designs with mutations rarely found in the sorted
populations, Glu222Gln/Leu and Leu44Met, one of which was active. As an especially
stringent test, we selected six designs with the maximal number of mutations (12-14),
but none of these was functional. Furthermore, we selected 19 designs that were
predicted to be functional by the random forest analysis but were not observed among
the positive hits in the deep sequencing analysis. Surprisingly, 15 (79%) were active,
confirming that a random forest analysis based on deep sequencing data of htFuncLib
designs can be used to recover false negatives — active designs that were missed by
the experimental workflow. Additionally, we isolated designs from FACS sorts that were
gated for higher brightness or spectral shifts (Supplementary Table 11) by applying
sorting gates that combine two channels (Supplementary Figure 10). We also verified
that 19 designs could be transferred to the superfolder GFP (sfGFP) background43 to
demonstrate that the designs are compatible with a different chassis (Supplementary
Table 12).

Although we did not explicitly guide the design process to improve any functional
property (except native-state stability (Figures 1D and 2A)), we hypothesized that the
large diversity in active-site sequences would lead to observable functional differences.
We first analyzed GFP functional thermostability or the temperature at which its
fluorescence deteriorates to 50% of the maximal value, a critical property for
high-temperature or long-term experiments and “real-world” applications44,45. Functional
thermostability is remarkably variable among the designs, 46-96 ℃, compared to 84℃
for eGFP (Figure 5A and Supplementary Figure 11). We noticed that the PROSS-eGFP
parental design is less stable than eGFP when functional thermostability is measured
(Figure 5A) rather than thermal denaturation as in the PROSS-eGFP design study33.
Apparently, the PROSS-eGFP design is more resistant to heat denaturation, but its
fluorescence is more sensitive to heat than eGFP. Quantum yield, which measures the
efficiency of emitting light absorbed by the chromophore, was also extremely variable,
0.16-0.82, compared to 0.55 for eGFP (Figure 5A and Supplementary Figure 12).
Surprisingly, across the all designs we tested, functional thermostability and quantum
yield were correlated (Pearson’s r=0.53, Supplementary Figure 13). This correlation
probably stems from the fact that both chromophore brightness and resistance to
unfolding increase with core packing density31,46. To our knowledge, this is the first
observation of such a correlation, demonstrating how a large set of active-site variants
can yield insights even in a well-studied protein. Moreover, the designs we sorted
specifically for spectral shifts indeed displayed significant shifts in excitation spectra
(Figure 5B, Supplementary Tables 11 and 12, and Supplementary Figure 14).
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We examined the design models for a molecular explanation of the large observed
differences in stability and quantum yield. For instance, Tyr145Phe, seen previously to
enhance stability and quantum yield47, appeared in all five high stability/brightness
designs but only in one of the bottom 26 designs. Similarly, Thr203His, likely to stabilize
the chromophore through π-π stacking interactions48, is seen in all top designs and
none of the bottom ones. Ser205Thr is in three of the top-five designs and none of the
bottom. By contrast to the two mutations above, Ser205Thr is enriched in designs with
high thermostability and quantum yield though we are unaware of previous studies that
pointed to its significance.

We also observed large variability in photostability, which is the resistance of the
chromophore to bleaching by bright light. Bleaching is often a limitation in long-term
live-imaging studies49, whereas it is an advantage in assays such as fluorescence
recovery after photobleaching (FRAP), in which fast fluorescence decay enhances
signal50. We isolated two designs that exhibited higher photostability than GFP
(photostable.1 & photostable.2, with seven mutations each from PROSS-eGFP) and
many significantly less photostable designs (Figure 5A and Supplementary Figure 15).
At the extremes, design fast.4 (6 mutations) photobleaches tenfold faster than GFP,
while the design photostable.1 requires 122% of that time. Finally, we also noted large
differences in fluorescence lifetime (Supplementary Figure 16) and pH sensitivity
(Supplementary Figure 17). Furthermore, several mutations enriched in designs with
altered pKa are either adjacent to His amino acids or introduce a novel His (Thr203His).
Interestingly, seven designs exhibit different pH sensitivity profiles when excited at either
405 or 488nm (Supplementary Figure 17).
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Figure 5. Functional diversity among htFuncLib designs. (A) A subset of tested designs clustered by
sequence similarity. The dashed line marks eGFP, error bars mark standard deviations. (B) Selected
excitation and emission spectra in light and dark hues, respectively. The excitation spectra of several
designs are considerably different from eGFP (Supplementary Figure 14). (C & D) Structural view of
thermo.5 and slow.3. Each design exhibits six mutations from PROSS-eGFP). PROSS-eGFP and designs
colored gray and orange, respectively.

Discussion

Epistasis is a significant constraint on the emergence of new activities in proteins and
other biomolecules15. Until now, experimental methods to address epistasis have relied
on iterative cycles of diversification and selection, but such processes do not efficiently
cover the space of functional variants. Computational methods have used evolutionary
couplings among pairs of positions51, but such analyses require deep and diverse
sequence alignments, which are not generally available. Other approaches have used
machine-learning models trained on high-quality and large-scale mutational data to
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recommend mutations52–54. By contrast, htFuncLib only requires a molecular structure
(or model) and a limited sequence alignment of homologs. Its success in generating an
order of magnitude more functional active-site mutants than were previously known for
GFP verifies our underlying assumption that energetically incompatible mutations are a
significant source of epistasis. Furthermore, because the designs are diverse and only
target the chromophore-binding pocket, they exhibit potentially useful functional
diversity in each of the properties we assayed.

Our implementation of htFuncLib did not target a specific functional outcome, except for
protein stability. This implementation is especially suitable if multiple variants for
different and potentially incompatible goals are desired. For example, FRAP
experiments require fluorescent proteins that bleach quickly, whereas long-term imaging
experiments require slow bleaching, and we recovered designs that exhibited both
properties from a single library. If a specific functional goal is desired and the molecular
underpinnings of that goal are known, they can be imposed during the design process
to focus diversity such that it exhibits these essential molecular features. The high
stability and brightness of the eGFP starting point are likely to be key to obtaining so
many functional variants3,55. Further research is needed to determine whether the
combination of PROSS stability design56 and htFuncLib can access such large spaces
of functional variants in less robust starting points.

In a companion paper, we demonstrate that the EpiNNet strategy is general and can be
extended to design large and highly functional enzyme libraries comprising substantial
backbone conformational diversity, including insertions and deletions36. We envision that
htFuncLib will provide a platform for designing high-yield multipoint mutation libraries in
a range of applications, including optimizing binding affinity and enzyme catalytic rate
and selectivity.
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Methods

Library design

Phylogenetic analysis

A phylogenetic analysis was conducted as previously24,56,57 using all sequences in the
lineage of avGFP according to FPBase35. A total of 153 seqeunces were retrieved from
FPBase, all synthetic variants of avGFP. Briefly, sequences were clustered by cd-hit58

and aligned using MUSCLE59. The resulting multiple sequence alignment (MSA) was
segmented by secondary structure elements. A position-specific scoring matrix
(PSSM)60 was then derived from the MSA segments and concatenated to create a
PSSM for the whole sequence. The PSSM is used to filter mutations absent in the
PSSM at each position and to bias the Rosetta energy function towards mutations
favored by the PSSM (high PSSM score).

Refinement and mutational scan

PROSS-eGFP was modeled based on a high-resolution X-ray structure of eGFP (PDB
code: 2WUR). The eGFP-PROSS model was subsequently refined in Rosetta as
described before56. Chromophore pocket positions were then manually selected, 14, 16,
18, 42, 44, 46, 61, 64, 66, 68, 69, 72, 108, 110, 112, 119, 123, 145, 150, 163, 165, 167,
181, 185, 201, 220, 224 and 42, 44, 61, 62, 69, 92, 94, 96, 112, 121, 145, 148, 150,
163, 165, 167, 181, 183, 185, 203, 205, 220, 222, 224 for the hbonds and nohbonds
libraries, respectively. All positions are within 8 Å from the chromophore, and their side
chains are buried within the GFP β-barrel. All mutations with PSSM scores > -2 were
then scanned in silico, as previously described24,56. Briefly, each mutation is modeled,
refined, and scored separately on the PROSS-eGFP background. This step calculates
the ∆∆G between the mutant and eGFP-PROSS.

Spatial partitioning and sequence space selection

We split the chromophore pocket into spatial neighborhoods, with each selected
position as a center of a distinct neighborhood. In order to capture direct epistatic
interactions, each neighborhood is extended to all positions that interact directly with the
neighborhood’s center. Here, direct interaction is defined as having at least two heavy
atoms within 6 Å of the neighborhood’s central residue. Neighborhoods were manually
examined, and positions that did not interact directly with the neighborhood’s center
were removed. By selecting neighborhoods this way, we ensure overlap between
proximal neighborhoods. These overlaps ensure that no position-position interactions
are missed.
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Partial modeling and scoring

The number of designs encoded in each neighborhood is calculated for each ∆∆𝐺
𝑚𝑢𝑡−𝑤𝑡

threshold. The energy threshold is selected to limit the number of unique variants to
under 1 million. In this particular case, the ∆∆G thresholds were set to +5.5 and +6.0
Rosetta energy units (R.e.u.) for nohbonds and hbonds, respectively. Neighborhoods
with a sequence space smaller than 10,000 designs were fully modeled. For larger
neighborhoods, only 10% of the sequence space was modeled. RosettaScripts61 and
command-line arguments for modeling calculations are in the Supplementary
Information.

Data aggregation and EpiNNet training

We train an EpiNNet neural net model to predict which designs are more stable than
PROSS-eGFP. Specifically, designs that score better than the wild-type are labeled as
success (1), and the worse 50% are labeled as failed (0). Intermediate designs are
considered undetermined and discarded from subsequent analysis. The resulting data
are split into a training (80%) and a test (20%) set. We then train a multi-layer
perceptron classifier with a single hidden layer the size of the number of selected
positions. The classifier is trained on a one-hot encoded representation of the sequence
data to classify whether a sequence is more or less stable than PROSS-eGFP. The
classifier is trained up to 2,000 iterations. Next, we rank single-point mutations
according to the trained model: each single-point mutation in the tolerated sequence
space is fed into EpiNNet separately, and its score is recorded. The mutations are then
ranked from top to bottom according to their scores. Mutations are selected for the
library by iteratively adding the top-ranked mutations until the resulting sequence space
reaches the experimental limit of several million sequences.

In silico testing of the enriched versus the original sequence spaces

To ensure the resulting sequence space is enriched for low-energy sequences, 10,000
random sequences from both the original and enriched sequence spaces were modeled
and scored (using the same protocol as in the modeling step). The resulting score
distributions were compared (Figure 1D and Figure 2A).

Random forest

To augment the sequence data for machine learning prediction, we added several
features based solely on the sequence and not requiring atomistic calculations. These
include the amino acid identity at each variable position, the total number of mutations
compared to PROSS-eGFP, the number of mutations at each spatial neighborhood, and
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the number of mutations in specific areas. In addition, for every variable position, the
difference in the surface accessible solvent area (SASA), PSSM score, and amino acid
category were also assigned (comparing the mutated amino acid and the PROSS-eGFP
identity). The mean and max values of each of these parameters were added as well.
Non-informative features and features with low importance in initial random forest
training were removed. A prediction pipeline with two consecutive elements was trained.
The first predictor classifies sequences as either functional or non-functional. The
subsequent predictor classifies all functional sequences as either GFP, AmCyan,
GFP/AmCyan, or non-functional. Both models are gradient-boosting random forests
from the LightGBM library62.

Visualization methods

Visualization method as previously described42. Briefly, we construct a model of
molecular evolution where a population evolves via single amino acid substitutions, and
the rate at which each possible substitution becomes fixed in the population reflects its
selective advantage or disadvantage relative to the currently fixed sequence. More
specifically, in our model, the rate of evolution from sequence i to any mutationally
adjacent sequence j is given by

𝑄
𝑖𝑗 

=  
𝑆

𝑖𝑗

1 − 𝑒
𝑆

𝑖𝑗

where is the scaled selection coefficient (population size times the selection𝑆
𝑖𝑗

coefficient of j relative to i), time is measured relative to the amino acid mutation rate
(each possible amino acid mutation occurs at rate 1), and the total leaving rate from

each sequence i is given by . In the current context, sequences are either𝑄
𝑖𝑖

=−
𝑗≠𝑖
∑ 𝑄

𝑖𝑗

predicted to be fluorescent or not, and so we set if j is fluorescent and i is not,𝑆
𝑖𝑗

= 𝑐

if i is fluorescent and j is not, and otherwise so that ,𝑆
𝑖𝑗

=− 𝑐 𝑆
𝑖𝑗

= 0 𝑄
𝑖𝑗 

= 1

corresponding to neutral evolution. For this analysis, we choose so that in the𝑐
long-term, a population spends 60% of its time at functional sequences, representing a
roughly 60-fold enrichment of functional sequences due to natural selection.

Given the rate matrix for our evolutionary model, we then construct the𝑄
visualization by using the subdominant right eigenvectors associated with the smallest
magnitude non-zero eigenvalues of this rate matrix as coordinates. This produces a
visualization that reflects the long-term barriers to diffusion in sequence space, and, in
particular, clusters of sequences in the visualization correspond to sets of initial states
from which the evolutionary model approaches its stationary distribution in the same
manner, and multi-peaked fitness landscapes appear as broadly separated clusters with
one peak in each cluster. Moreover, by scaling the axes appropriately, as is done here,
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these axes can be given units of sqrt(time), and it can be shown that the resulting
distances reflect evolutionary times under this model. In particular, using these
coordinates, the squared Euclidean distance between arbitrary sequences i and j
optimally approximates (in a specific sense) the sum of the expected time to evolve
from i to j and the expected time to evolve from j to i. See ref. 42 for details.

Logistic regression and sequence logos

Calculations and plots were performed using gpmap-tools python library
(https://gpmap-tools.readthedocs.io/en/latest/). Sequence logos were plotted using
logomaker63, and L2-penalized logistic regression models were fit using scikit-learn 64.
Specifically, the global model using all sequences was fit using non-penalized
regression, while the model in the neighborhood of the alternative functional sequences
highlighted in Figure 4D was fit using L2-penalization under one-hot encoding, using
10-fold cross-validation to optimize the hyperparameter controlling the strength of the
regularization. The regularization constant was chosen to be C=0.5 as the strongest
regularization before a drop in the cross-validated AUROC.

Experimental procedures

Library cloning

Each designed library was cloned separately using a Golden Gate assembly
(manuscript in preparation). A computational algorithm optimizes a set of Golden-Gate
gates to minimize the total cost of ordered oligos required to cover all mutations in the
library without introducing unwanted mutations. This results in several variable and
constant segments, with and without mutations. Constant segments were PCR
amplified with primers adding BsaI recognition sites. These and all other DNA fragments
were purified using (HiYield Gel/PCR DNA Fragments Extraction Kit, Real Genomics).
Variable segments were ordered as degenerate oligos (IDT). The single-stranded oligos
were double-stranded by a short PCR with a single primer and purified. The
concentration of each segment was measured using NanoDrop One (Thermo
Scientific). A Golden-Gate assembly was conducted using the manufacturer's
specifications. Briefly, all segments are added at an equal amount, without the vector,
and assembled using T4-ligase and BsaI-HF-v2 using cycles of 16℃ and 37℃
(New-England Biolabs). The resulting assembly is PCR amplified to add the final gates
and assembled into a pBAD vector with appropriate gates.
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FACS sorting

E. coli BL21 (DE3) (E. cloni EXPRESS BL21 (DE3), Lucigen) cells were transformed
with the pBAD plasmids containing the libraries and grown overnight. Transformation
efficiency was estimated by plating serial dilutions of the transformed bacteria, ensuring
that, for each library, the number of transformed cells was at least tenfold higher than
the designed library size. 1 µl from each transformation was plated in dilution to
estimate transformation efficiency. Cells were diluted 1:200 in 2YT media, grown to
0.6-8OD, induced using 0.2% arabinose, and shaken at 20℃ overnight. Induced
cultures were transferred to 4℃ for another night to allow maturation. Cells were
centrifuged at 3000RPM for 10 minutes, decanted, and resuspended with cold PBS
twice. The cells were then sorted using a FACS AriaIII (BD Biosciences) with a 70 µm
diameter nozzle and a cell flow rate of 10,000-20,000 events per second. A preliminary
sorting gate was done on forward scatter (FSC) Vs. side scatter (SSC) parameters to
select single bacteria cells alongside the AlexaFluor488 (excitation at 488 nm, emission
detection at 530±15 nm) and AmCyan (excitation at 405 nm, emission detection at
525±25 nm) channels. Sorted cells were collected in SOC media (2.5 mM KCl, 20 mM
glucose, 0.5% yeast extract, 2% tryptone, 10 mM MgCl2, 10 mM MgSO4, and 10 mM
NaCl), grown overnight at 37℃ and transferred to 2YT supplemented with ampicillin.
Plasmids were extracted by mini-prep (Qiagen).
Plasmids from sorted populations were extracted by min-prep, transformed and sorted
again (using the smae procedure) to reduce false-positives.

Deep sequencing

Plasmids from presorted and sorted populations were PCR amplified using primers to
generate 590bp amplicons, containing all variable positions excluding position 16
(forward primer: GGGCGATGCCACCTACGGCAAG and Reverse primer:
GAGTGATCCCGGCGGCCTC). Amplicon libraries were prepared at the Weizmann
Institute’s Israel National Center for Personalized Medicine. Libraries were prepared
from 20 ng of DNA, as previously described65. Libraries were quantified by Qubit
(Thermo fisher scientific) and TapeStation (Agilent). Sequencing was done on a Miseq
instrument (Illumina) using a V3 600 cycles kit, using paired-end sequencing.
Sequences were analyzed using the LAST software package and python66,67. Fastq
sequences were aligned to all designed oligos using the LAST align function.
Sequences were consequently filtered for low LAST scores, and assigned to the best
aligned oligo. Pair-end reads were identified using MiSeq UMIs (unique molecular
identifiers). Enrichment values were calculated as the ratio between read frequencies in
the sorted and appropriate unsorted samples. The presorted libraries are too large to be
completely covered by the deep sequencing analysis. We, therefore, did not expect to
detect all combinations, specifically in the nohbonds library. However, given that the
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transformation efficiency was greater than 5x107, and > 108 cells were sorted by FACS,
it is likely that the majority of the functional designs were recovered. We thus
considered all sequences found solely in the sorted samples to be enriched.
The sorted library will be deposited in AddGene upon publication.

Cloning of single designs

Genes encoding for selected designs were ordered from Twist Bioscience and
codon-optimized for E. coli. Genes were inserted in the pET28 vector using BsaI
restriction sites previously cloned using QuickChange. All plasmids were sequence
verified. Designs selected directly from FACS sorting were transferred from the pBAD
vector into pET28 by PCR amplifying the insert with primers and adding BsaI
recognition sites. Amplicons were purified and inserted into a pET28 vector with BsaI
insertion sites using Golden Gate assembly. All plasmids were individually verified using
Sanger sequencing.

Protein expression & purification

pET28 plasmids containing the relevant insert were transformed into BL21 (DE3) cells
and grown overnight. Overnight cultures were diluted 1:100 in 10ml conical tubes
containing 2YT and 50ug/ml kanamycin, grown to OD=0.6-8, induced using 1mM IPTG,
and shaken overnight at 20℃. After expression, samples were shaken at 4℃ to
maximize chromophore maturation. Samples were centrifuged at 4000RPM for 20
minutes at 4℃ and resuspended in 1ml lysis buffer containing PBS, 0.01% Triton x100,
0.02% Benzonase, 0.1% protease inhibitor cocktail, and 0.1mg/ml lysozyme. Samples
were then sonicated and centrifuged at 14,000RPM at 4°C for 45 minutes. 500µl Ni-NTA
beads per sample were resuspended in PBS and allocated into an appropriate number
of 1.7ml tubes. The supernatant of each sample was transferred to a tube containing
500µl Ni-NTA beads and 10mM imidazole. Samples were shaken at room temperature
for two hours for binding, centrifuged at 3,000 RPM for 3 minutes, and the supernatant
was removed. Beads were resuspended in PBS with 20mM imidazole and shaken for
30 minutes at room temperature. Samples were centrifuged again at 3,000RPM for 3
minutes, and the supernatant was removed. Samples were eluted using PBS with
500mM imidazole, shaken for 1 hour at room temperature, and centrifuged at 3,000
RPM for 5 minutes. The supernatant was recovered and kept at 4℃. Protein purity was
estimated by SDS-PAGE gel electrophoresis, and protein concentration was determined
using NanoDrop One (Thermo Scientific).

Functional thermostability

Functional thermostability was measured similarly to SYPRO orange measurements68.
10µM of each design were diluted in PBS in triplicates and placed in a 96-well plate (20
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MicroAmp Fast Optical 96W Reaction Plate, Thermo Fisher, and MicroAmp Optical
Adhesive Film). A ViiA7 real-time PCR instrument (Applied Biosystems) was used to
measure fluorescence during heating from 25-99.9℃ at 0.05℃/second. Raw data were
analyzed using Python to find the temperature at which fluorescence was 50% of the
max for each well.

Fluorescence lifetime

Fluorescence lifetime measurements were performed using a MicroTime200 optical
setup. GFP samples were placed as drops on top of 175 µm glass slides (Precision
Cover Glass No:1.5H, Marienfeld), mounted on an inverted microscope (IX83 inverted,
Olympus) with a 60X water immersion objective (UPlanSApo, Superapochromat,
Olympus. A 485 nm pulsed-interleaved excitation laser (LDH-D-C-485, PicoQuant) with
a repetition rate of 20MHz (50 ns) was directed via a dichroic mirror (ZT473/594rpc,
Chroma) and focused ~10 µm into the sample. The fluorescence emission signal
passed through a 50 µm pinhole and an emission filter (HC520/35, Semrock). Photons
were focused into a single-photon avalanche diode (SPCM-AQRH-14-TR, Excelitas)
coupled to a counting module (PicoHarp 400, PicoQuant), and time-correlated
single-photon counting (TCSPC) histograms were generated. Each sample was
measured for 1-5 min with laser intensities between 2-20 µW, adjusted using OD filters
to reach a photon count rate of ~20 kHz. The profile for the instrument response
function (IRF) was obtained by measuring scattered light from a mirror. The
fluorescence decay curves were fitted with a bi-exponential fluorescence decay model
by iterative IRF-reconvolution to extract the characteristic lifetimes and weights of the
GFP designs.

Photobleaching

Photobleaching was measured similarly as previously described69. A final concentration
of 1µM of each variant was embedded in polyacrylamide gels (168µl 30%
acrylamide/bis-acrylamide, 25µl PBS, 0.5µl TEMED, and 3µl 10% APS and 57µl
fluorescent protein in PBS) inside 8-well microscope slides (ibidi No. 80826). Slides
were mounted to Eclipse TI-E Nikon inverted microscope (Nikon Instruments Inc.,
Melville, NY) with Plan Apo DIC 60X/1.4 NA objective and equipped with a cooled
electron-multiplying charge-coupled device camera (IXON ULTRA 888; Andor). The
measurement consisted of six repetitions of exposure to the strongest available LED
light at either 405 or 488nm for 15 minutes while capturing an image every five seconds.
Images were analyzed using ImageJ to recover the mean intensity from each frame. A
bi-exponential function was fitted to normalized brightness as a function of exposure
time. The weighted average of the exponential coefficients was calculated. Outliers
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were removed, and at least three measurements were used to calculate means and
standard deviations.

Fluorescence spectra and quantum yield

Proteins were diluted in PBS to OD 0.05 at either 450 or 400nm in disposable
fluorescence cuvettes (ordered from Alex Red No CUV010015) in triplicates. OD was
measured on a Cary 60 UV-Vis spectrophotometer (Agilent Technologies) from 300 to
650nm. Both emission and excitation spectra were measured with the same samples on
a fluorescence spectrophotometer (Varian Cary Eclipse). Quantum yield was calculated
using the relative method described in the literature69,70. Briefly, the ratio between
absorbance at the excitation wavelength and the integral of emission spectra are
measured for each sample and a standard with known quantum yield. Fluorescein and
1-aminoanthracene were used as standards for measurements at excitation
wavelengths 450 and 400nm, respectively.

pH sensitivity

Buffers at pH ranging from 3.0 to 10 were prepared as previously reported69. 100µl of
pH buffer were placed in black flat-bottom 96-well plates (Greiner Bio-One, No 655090),
and 2µg of fluorescent proteins were added. Samples were incubated at room
temperature for one hour, and fluorescence at both 405 and 488mn and emission at
520nm was measured for all wells (Infinite M Plex, Tecan).

Multipoint mutants from other GFP datasets

To compare the GFP variants considered here with that studied earlier, we extracted
from previous works (refs. 17,18) sequences and fluorescences of variants having
mutations in the chromophore pocket positions only (corresponding to 2WUR GFP
positions 14, 16, 18, 42, 44, 46, 61, 62, 63, 64, 66, 68, 69, 72, 92, 94, 96, 108, 110, 112,
119, 121, 123, 145, 148, 150, 163, 165, 167, 181, 183, 185, 201, 203, 205, 220, 222,
224). The four GFP variants are Aequorea victoria GFP (avGFP4), Aequorea
macrodactyla GFP (amacGFP3), Clytia gregaria (cgreGFP3), and Pontellina plumata
GFP (ppluGFP3). Our reference GFP sequence was aligned to the alignment of the
avGFP, amacGFP, cgreGFP, and ppluGFP.

Fluorescence Vs. the number of mutations in the active site

The fluorescence of different GFP variants was fit to the exponential-decline and𝐹
negative-epistasis function39:

, (1)𝐹 =  𝑒𝑥𝑝 − α𝑛 − β𝑛2( )
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To get a clearer interpretation of the coefficients and , we have rewritten the Eq. (1)α β
as:

, (2)𝐹 =  𝑒𝑥𝑝 − 𝐴𝑛 − 𝐵 𝑛(𝑛−1)
2( )

Where is responsible for robustness, and is responsible for the𝐴 = α − β 𝐵 = 2β
epistasis. We required and . The analysis is provided as a Jupyter𝐴 ≥ 0 𝐵 ≥ 0
notebook ‘GFP_threshold_epistasis.ipynb’.

Data availability

All sorted and presorted libraries, together with designs of special interest, were
deposited to AddGene (deposit number 81660). Deep-sequencing data is available on
figshare at 10.6084/m9.figshare.21922365.

Code availability

Jupyter notebooks for the evolutionary analysis can be found at
https://bitbucket.org/cmartiga/gfp_core/src/master. Jupyter notebooks, including data,
for other analyses and the htFuncLib algorithm, are available at
https://github.com/Fleishman-Lab/htFuncLib.

Supplementary Information

RosettaScripts script and flags for modeling combinations of mutations. Every combination of
mutations was modelled using a command based on:
rosetta_scripts_executable -database path_to_database -pdb_gz -overwrite -use_input_sc
-extrachi_cutoff 5 -ignore_unrecognized_res
-chemical:exclude_patches LowerDNA UpperDNA Cterm_amidation SpecialRotamer VirtualBB ShoveBB
VirtualDNAPhosphate VirtualNTerm CTermConnect sc_orbitals pro_hydroxylated_case1
pro_hydroxylated_case2 ser_phosphorylated thr_phosphorylated tyr_phosphorylated tyr_sulfated
lys_dimethylated lys_monomethylated lys_trimethylated lys_acetylated glu_carboxylated
cys_acetylated tyr_diiodinated N_acetylated C_methylamidated MethylatedProteinCterm -linmem_ig
10 -ignore_zero_occupancy false -no_nstruct_label true -in:file:native refined_pdb
-extra_res_fa LG.params -nstruct 30 -out:prefix NAME_
-s refined_pdb -use_occurrence_data -parser:protocol mutate_all_poss.xml -mute all
-parser:script_vars res_to_fix=94A,96A,121A,148A,203A,205A,222A,1X cst_full_path=ref_coord.cst
ignore_pose_profile_length_mismatch=1 min_aa_probability=-2 keep_n=1
all_ress=14A,16A,18A,42A,44A,46A,61A,64A,68A,69A,72A,108A,110A,112A,119A,123A,145A,150A,163A,1
65A,167A,181A,185A,201A,220A,224A,42A,44A,61A,62A,69A,92A,94A,96A,112A,121A,145A,148A,150A,163
A,165A,167A,181A,183A,185A,203A,205A,220A,222A,224A -parser:script_vars target1=POS
new_res1=3_LETTER_AA

Where every mutation is listed as a separate target# and new_res#, the LG.params files is a
parameters file a small ligand, in GFP’s case, it is the chromophore. The script is:
<ROSETTASCRIPTS>

<SCOREFXNS>
<ScoreFunction name="scorefxn_full" weights="ref2015">

<Reweight scoretype="coordinate_constraint" weight="0.1"/>
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</ScoreFunction>
<ScoreFunction name="soft_rep_full" weights="soft_rep">

<Reweight scoretype="coordinate_constraint" weight="0.1"/>
</ScoreFunction>

</SCOREFXNS>
<RESIDUE_SELECTORS>

<Index name="ress_fix" resnums="%%res_to_fix%%"/>
</RESIDUE_SELECTORS>
<TASKOPERATIONS>

<RestrictToRepacking name="rtr"/>
<OperateOnResidueSubset name="fix_not_neighbor">

<Not>
<Neighborhood distance="8">

<Index resnums="%%all_ress%%"/>
</Neighborhood>
</Not>
<PreventRepackingRLT/>

</OperateOnResidueSubset>
<InitializeFromCommandline name="init"/>
<IncludeCurrent name="include_curr"/>
<OperateOnResidueSubset name="fix_res" selector="ress_fix">

<PreventRepackingRLT/>
</OperateOnResidueSubset>
<OperateOnResidueSubset name="not_to_cst_sc">

<Not selector="ress_fix"/>
<PreventRepackingRLT/>

</OperateOnResidueSubset>
</TASKOPERATIONS>
<FILTERS>

<DesignableResidues name="designable" task_operations="fix_not_neighbor"
designable="0" packable="1"/>

</FILTERS>
<MOVERS>

<MutateResidue name="mutres0" new_res="%%new_res0%%" target="%%target0%%"
preserve_atom_coords="1"/>

<ConstraintSetMover name="add_CA_cst" cst_file="%%cst_full_path%%"/>
<AtomCoordinateCstMover name="fix_res_sc_cst" coord_dev="0.5" bounded="false"

sidechain="true" task_operations="not_to_cst_sc"/>
<PackRotamersMover name="prm"

task_operations="init,include_curr,rtr,fix_not_neighbor,fix_res" scorefxn="scorefxn_full"/>
<RotamerTrialsMinMover name="rtmin"

task_operations="init,include_curr,rtr,fix_not_neighbor,fix_res" scorefxn="scorefxn_full"/>
<MinMover name="min" bb="1" chi="1" jump="1" scorefxn="scorefxn_full"/>
<PackRotamersMover name="soft_repack" scorefxn="soft_rep_full"

task_operations="init,include_curr,rtr,fix_not_neighbor,fix_res"/>
</MOVERS>
<PROTOCOLS>

<Add mover="add_CA_cst"/>
<Add mover="fix_res_sc_cst"/>
<Add mover="mutres0"/>
<Add mover="soft_repack"/>
<Add mover="min"/>
<Add mover="prm"/>
<Add mover="min"/>
<Add filter="designable"/>

</PROTOCOLS>
<OUTPUT scorefxn="scorefxn_full"/>

</ROSETTASCRIPTS>
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Supplementary Figure 1. Examples of direct and indirect epistasis. (A) In direct epistasis,
interacting amino acids form favorable contacts (e.g., a hydrogen bond between the Thr and His
residues). The double mutant Val/Pro pair is also favorable, but the point mutant Thr→Pro
(middle) sterically overlaps with the His. (B) In indirect epistasis, a mutation (Thr→Ala)
eliminates a hydrogen bond to the backbone (dashed line), leading to a conformational change
across several non-interacting amino acids. This example is taken from a comparison of the
structures of human and computationally designed variant acetylcholinesterase. Protein Data
Bank entries 4EY4 and 5HQ3 are in gray and orange, respectively56. Showing positions 110 and
112. (C) Schematic explanation of stability-mediated interactions, the wild type (WT), mutant A,
and mutant B are stable (below the stability threshold). The energy of the double mutant is a
linear sum of the two energies of the two mutants, but it is not expressible as its stability has
crossed the stability threshold (marked by a dashed line)39.
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Supplementary Figure 2. Structural overview of the nohbonds library. All mutations are
overlayed in stick representation, colored by position. The total library size is 11,059,200
designs.
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Supplementary Figure 3. Structural overview of the hbonds library. All mutations are
overlayed in stick representation, colored by position. The total library size is 933,120 designs.
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Supplementary figure 4. Golden Gate assembly validation. Both libraries were cloned using
Golden-Gate assembly. The number of occurrences of each pair of mutations is shown as a
heat map. Sequence positions that were on the same oligonucleotide are marked with a
continuous colored bar on the left. There is no obvious linkage between any pair of mutations,
which means that mutations are uniformly represented. Additionally, all single and double
mutations were present in the nohbonds library. The hbonds library suffered from small diversity
at the edges (first and last oligonucleotides), and thus not all pairs of mutations are represented.
Mutations in the same position are masked in white as a single sequence cannot have two
mutations at the same position.
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Supplementary Figure 5. Library sorting gates. The hbonds and nohbonds libraries were
sorted for excitation at both 405 and 488, with emission at 530 and 525, respectively. Alexa
Fluor 488 measures excitation and emission at 488 and 530 nm, respectively. AmCyan
measures excitation and emission at 405 and 525 nm, respectively. Each panel shows only
10,000 events.
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Supplementary Figure 6. deep-sequencing counts across the sorted samples. Number of
times each unique sequence in all sorted samples was found in the deep-sequencing data.
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Supplementary Figure 7. Random forest prediction analysis. (A) Receiver Operating
Characteristic (ROC) analysis of classification accuracy to all four classes. (B) Precision-Recall
analysis for all four classes. “All positives” refers to only the functional classes, and
“micro-average” refers to a sliding window that measures the average precision across all
classes. The area under the curve (AUC) and average precision (AP) are reported for the ROC
and precision-recall analysis, respectively. (C) A confusion matrix of prediction results. All
analyses were conducted on an independent test set. The random forest is fairly accurate in
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determining whether a given sequence is functional, and is somewhat less accurate in assigning
a specific functional classification (GFP, AmCyan, or GFP/AmCyan).
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Supplementary Figure 8. Mean ∆PSSM and number of mutations predict design
functionality. Prediction accuracy analysis for mean ∆PSSM and number of mutations, receiver
operator curve (ROC, left), and Precision-Recall curve (right). The area under the curve (AUC)
and average precision (AP) are reported for the ROC and precision-recall analysis, respectively.
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Supplementary Figure 9. Fitness landscape visualizations showing experimentally
enriched sequences. (A) Low dimensional visualization of the sequence-function relationship
predicted by the random forest model. Sequences are highlighted in different colors according to
whether they are detected to be enriched in the GFP (green), AmCyan (blue) or both channels
(orange) in the high-throughput data. Dark lines join experimentally enriched genotypes that are
separated by single amino acid substitutions. (B) Degree distributions for genotypes located at
different regions of the visualization as observed directly in the experimental data: in the minor
cluster, the main set of functional sequences, and the set of genotypes that the RF predicted to
be non-functional. Non-functional genotypes tend to be more poorly connected in the graph of
experimentally determined sequences than those in the main set of functional sequences
(Mann-Whitney U test, p-value<10-10), further suggesting that, on average, they are false
positives correctly smoothed by the RF. The small cluster of functional sequences predicted by
the RF shows a higher connectivity than the set of non-functional sequences (Mann-Whitney U
test, p-value < 0.001), providing an additional line of evidence for their functionality. (C, D) Low
dimensional visualization of the sequence-function relationship predicted by the random forest
model. Overlaid sequences represent the sequences that were enriched in the experimental
data with the color scale from purple to yellow represents is proportional to the log2(Enrichment)
in the sorted vs unsorted fractions for AmCyan (C) and GFP (D). Sequences with higher
enrichment values are represented on top and the color scale was truncated at
log2(Enrichment)=10.(E) Histogram of the log2(Enrichment) in the sorted vs unsorted fractions
for AmCyan with vertical lines showing the values for sequences in the Cluster highlighted in
(A).
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Supplementary Figure 10. Screen for designs with shifted fluorescence spectra. We
sorted the GFP and AmCyan pre-sorted libraries for designs that exhibit spectral shifts
compared to PROSS-eGFP and eGFP. From top to bottom: empty vector as a negative control,
PROSS-eGFP as a positive control, the library sorted for GFP fluorescence and the library
sorted for AmCyan fluorescence. Alexa Fluor 488 measures excitation and emission at 488 and
530 nm, respectively. AmCyan measures excitation and emission at 405 and 525 nm,
respectively. DsRed2 measures excitation and emission at 561 and 582 nm, respectively.
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Supplementary Figure 11. Functional thermostability of selected designs. Functional
thermostability is the temperature at which fluorescence is at 50% of the max. The dashed line
marks the thermostability of eGFP. Error bars mark standard deviations.
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Supplementary Figure 12. Quantum yield measurement for all designs with excitation at
either 400 or 450 nm. The dashed line marks the quantum yield of eGFP (which is not excited
at 400nm). Error bars mark standard deviations.
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Supplementary Figure 13. Functional thermostability and quantum yield are correlated.
Pearson’s r=0.53 (p-value<10-5) between functional thermostability and quantum yield at 450nm
excitation.
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Supplementary Figure 14. Spectral properties of all tested designs. Excitation and emission
spectra are shown in blue and orange colors, respectively.

Supplementary Figure 15. Photobleaching measurement of all selected designs. Shows
average and standard deviation of at least three independent measurements of photobleaching
(Methods). The dashed line marks the eGFP.  Error bars mark standard deviations.
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Supplementary Figure 16. Fluorescence lifetime measurements of all tested designs. Bars
depict the weighted average of bi-exponential fit to lifetime measurements. The dashed line
marks the lifetime of eGFP.  Error bars mark standard deviations.
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Supplementary Figure 17. pH sensitivity profiles. The normalized fluorescence of each
design is shown as a function of buffer pH. Green and blue lines refer to excitation at 480 and
405 nm, respectively. The pKa is the pH at which fluorescence is at 50% of the maximum,
annotated by an “X”.
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Neighborhood
center

Neighborhood members Number of
combinati
ons tested

Total number
of

combinations

14 14: IV 16: VILMT 42: LIMV 44: LIMV 68:
VACILMQST 119: LFMVY

1080 7200

16 14: IV 16: VILMT 18: LFI 44: LIMV 46: FY 64:
L 68: VACILMQST 119: LFMVY 123: IFLMTV

9720 64800

18 16: VILMT 18: LFI 46: FY 64: L 108:
TACEFILMPQSVY 123: IFLMTV

2340 2340

42 14: IV 42: LIMV 44: LIMV 68: VACILMQST
220: LITV 224: VIMSTY

1036 6912

44 14: IV 16: VILMT 42: LIMV 44: LIMV 46: FY
64: L 68: VACILMQST 220: LITV

1728 11520

46 16: VILMT 44: LIMV 46: FY 64: L 68:
VACILMQST 123: IFLMTV 220: LITV

1296 8640

61 46: FY 61: VALMQT 64: L 66:
YAFHLMNQSW 145: YACEFHIMQSTV 220:

LITV

5760 5760

64 16: VILMT 18: LFI 44: LIMV 46: FY 61:
VALMQT 64: L 123: IFLMTV 220: LITV

2592 17280

66 66: YAFHLMNQSW 145: YACEFHIMQSTV
150: VILMT 165: FVY 167: TACSV 220: LITV

5400 36000

68 14: IV 42: LIMV 44: LIMV 68: VACILMQST
112: VCILT 119: LFMVY 224: VIMSTY

6480 43200

69 69: QADEHILMNPSTVWY 72: SACFGINTV
150: VILMT 163: VP 165: FVY 185: NADMV

201: LFMQ

12150 81000

72 42: LIMV 72: SACFGINTV 201: LFMQ 224:
VIMSTY

864 864

108 18: LFI 108: TACEFILMPQSVY 110:
ACHLMY 123: IFLMTV

1404 1404

110 108: TACEFILMPQSVY 110: ACHLMY 112:
VCILT 123: IFLMTV

2340 2340
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112 68: VACILMQST 110: ACHLMY 112: VCILT
119: LFMVY 185: NADMV

1012 6750

119 14: IV 16: VILMT 68: VACILMQST 112: VCILT
119: LFMVY

2250 2250

123 16: VILMT 18: LFI 64: L 108:
TACEFILMPQSVY 110: ACHLMY 112: VCILT

123: IFLMTV

5265 35100

145 61: VALMQT 66: YAFHLMNQSW 145:
YACEFHIMQSTV 167: TACSV 181:

HEFILTVY 220: LITV

17280 115200

150 66: YAFHLMNQSW 69:
QADEHILMNPSTVWY 150: VILMT 163: VP

165: FVY 167: TACSV 201: LFMQ 224:
VIMSTY

81000 540000

163 69: QADEHILMNPSTVWY 150: VILMT 163:
VP 165: FVY 181: HEFILTVY 185: NADMV

201: LFMQ

10800 72000

165 69: QADEHILMNPSTVWY 150: VILMT 163:
VP 165: FVY 167: TACSV 181: HEFILTVY

2700 18000

167 66: YAFHLMNQSW 145: YACEFHIMQSTV
165: FVY 167: TACSV 181: HEFILTVY

2160 14400

181 145: YACEFHIMQSTV 150: VILMT 165: FVY
167: TACSV 181: HEFILTVY

1080 7200

185 69: QADEHILMNPSTVWY 112: VCILT 163:
VP 185: NADMV

750 750

201 69: QADEHILMNPSTVWY 72: SACFGINTV
150: VILMT 163: VP 201: LFMQ 224:

VIMSTY

4860 32400

220 42: LIMV 44: LIMV 46: FY 61: VALMQT 64: L
66: YAFHLMNQSW 68: VACILMQST 145:

YACEFHIMQSTV 220: LITV

124416 829440

224 42: LIMV 68: VACILMQST 69:
QADEHILMNPSTVWY 72: SACFGINTV 201:

LFMQ 224: VIMSTY

17496 116640

Supplementary Table 1. nohbonds library neighborhoods.
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Neighborhood
center

Neighborhood members Number of
combinations

tested

Total number
of

combinations

42 145: FHMY 150: VCIMQ 167: ITV 205:
SDENQT 222: EILMQ 224: VILMQ

1350 9000

44 42: LFIMQ 220: LMQ 222: EILMQ 75 75

61 42: LFIMQ 44: LEIMQ 61: VIMY 145: FHMY
205: SDENQT 222: EILMQ

1800 12000

62 42: LFIMQ 44: LEIMQ 69: QCILM 203:
TCFHNS 205: SDENQT 220: LMQ 224:

VILMQ

10125 67500

69 42: LFIMQ 69: QCILM 203: TCFHNS 205:
SDENQT 222: EILMQ

4500 4500

92 42: LFIMQ 92: YHN 94: QILM 96: R 121: NI
150: VCIMQ 163: V 165: FY 183: QE 185:

NDI 203: TCFHNS 222: EILMQ

32400 216000

94 44: LEIMQ 69: QCILM 220: LMQ 222:
EILMQ 224: VILMQ

1875 1875

96 61: VIMY 145: FHMY 148: HCENST 203:
TCFHNS 220: LMQ 222: EILMQ 224:

VILMQ

6480 43200

112 61: VIMY 62: TACS 145: FHMY 148:
HCENST 150: VCIMQ 165: FY 181: HN

203: TCFHNS

6912 46080

121 61: VIMY 62: TACS 148: HCENST 165: FY
167: ITV 181: HN 203: TCFHNS 205:

SDENQT 220: LMQ

18662 124416

145 61: VIMY 69: QCILM 96: R 145: FHMY 148:
HCENST 165: FY 167: ITV 181: HN

5760 5760

148 62: TACS 145: FHMY 150: VCIMQ 165: FY
167: ITV 203: TCFHNS 205: SDENQT

2592 17280

150 62: TACS 145: FHMY 167: ITV 205:
SDENQT 220: LMQ 222: EILMQ

4320 4320

163 62: TACS 69: QCILM 148: HCENST 163: V 2880 2880
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165: FY 183: QE 203: TCFHNS

165 62: TACS 69: QCILM 94: QILM 163: V 165:
FY 181: HN 183: QE

640 640

167 62: TACS 69: QCILM 96: R 148: HCENST
150: VCIMQ 163: V 167: ITV 181: HN 183:

QE

1080 7200

181 62: TACS 96: R 163: V 165: FY 167: ITV
183: QE

48 48

183 69: QCILM 92: YHN 94: QILM 96: R 112:
VILMNQ 163: V 183: QE

720 720

185 69: QCILM 92: YHN 94: QILM 96: R 150:
VCIMQ 163: V 165: FY 181: HN 185: NDI

3600 3600

203 69: QCILM 92: YHN 96: R 112: VILMNQ
121: NI 183: QE 185: NDI

1080 1080

205 69: QCILM 94: QILM 112: VILMNQ 121: NI
183: QE 185: NDI

1440 1440

220 69: QCILM 94: QILM 96: R 150: VCIMQ
165: FY 181: HN 183: QE 185: NDI

2400 2400

222 92: YHN 94: QILM 112: VILMNQ 72 72

224 92: YHN 94: QILM 121: NI 185: NDI 72 72

Supplementary Table 2. hbonds library neighborhoods.

Position Amino acids after
filtering

# amino acids after
filtering

Amino acids in
library

# amino acids in
EpiNNet enriched

librarya

14 IV 2 1

16 VILMT 5 VI 2

18 LFI 3 1

42 LIMV 4 LV 2

44 LIMV 4 1

46 FY 2 1
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61 VALMQT 6 VAL 3

64 L 1 1

65b TS 2 TS

66 YAFHLMNQSW 10 1

68 VACILMQST 9 VMA 3

69 QADEHILMNPSTV
WY

15 QPLA 4

72 SACFGINTV 9 SCTAV 5

108 TACEFILMPQSVY 13 TLEIV 5

110 ACHLMY 6 1

112 VCILT 5 VI 2

119 LFMVY 5 1

123 IFLMTV 6 1

145 YACEFHIMQSTV 12 YMSTAIFV 8

150 VILMT 5 VI 2

163 VP 2 1

165 FVY 3 1

167 TACSV 5 TV 2

181 HEFILTVY 8 HYLIFV 6

185 NADMV 5 1

201 LFMQ 4 1

220 LITV 4 LV 2

224 VIMSTY 6 VI 2

Total number of all
combinations

1x1019 11,059,200

Supplementary Table 3. Amino acids after filtration and EpiNNet enrichment for
the nohbonds library.
a each position has, at a minimum, a single amino acid, the PROSS-eGFP identity at
that position.
b position 65 is part of the chromophore and was mutated to Ser without being modeled
in the Rosetta calculations.

55

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2023. ; https://doi.org/10.1101/2022.10.11.511732doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511732
http://creativecommons.org/licenses/by-nc-nd/4.0/


Position Amino acids after filtering # amino acids after
filtering

Amino acids in
library

# amino acids in
EpiNNet enriched

librarya

42 LFIMQ 5 LI 2

44 LEIMQ 5 LIM 3

61 VIMY 4 1

62 TACS 4 1

65b TS 2 TS 2

69 QCILM 5 QLM 3

92 YHN 3 1

94 QILM 4 QILM 4

96 R 1 1

112 VILMNQ 6 VIL 3

121 NI 2 NI 2

145 FHMY 4 1

148 HCENST 6 HST 3

150 VCIMQ 5 1

163 V 1 1

165 FY 2 1

167 ITV 3 ITV 3

181 HN 2 1

183 QE 2 1

185 NDI 3 NI 2

203 TCFHNS 6 THFCW 5

205 SDENQT 6 SDT 3

220 LMQ 3 1

222 EILMQ 5 ELQM 4

224 VILMQ 5 VI 2

Total number of all 6x1012 933120
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combinations

Supplementary Table 4. Amino acids after filtration and EpiNNet enrichment for
the hbonds library.
a each position has, at a minimum, a single amino acid, the PROSS-eGFP identity at
that position.
b position 65 is part of the chromophore and was mutated to Ser without being modeled
in the Rosetta calculations.

Position PROSS-eGFP amino acid nohbonds hbonds

16 V VI

42 L LV LI

44 L LIM

61 V VAL

65 T TS TS

68 V VMA

69 Q QPLA QLM

72 S SCTAV

94 Q QILM

108 T TLEIV

112 V VI VIL

121 N NI

145 Y YMSTAIFV

148 H HST

150 V VI

167 T TV TIV

181 H HYLIFV

185 N NI

203 T THFCW

57

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2023. ; https://doi.org/10.1101/2022.10.11.511732doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511732
http://creativecommons.org/licenses/by-nc-nd/4.0/


205 S SDT

220 L LV

222 E ELQM

224 V VI VI

Supplementary Table 5. Sequence spaces of the two libraries.

Experimental

Functional Non-functional

Deep-sequencing
analysis

Functional 45 1

Non-functional 5 11
Supplementary Table 6. Predictive values for the deep-sequencing data analysis.
62 designs were individually selected directly from FACS sorts and tested for
fluorescence. These were used to calibrate the thresholds for the deep-sequencing
analysis.
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nohbonds hbonds

Position Amino
acid Total Functional Functional

Frequency Total Functional
Functional
Frequenc

y

L42 L 367063 11636 3% 20156 1891 9%

L42 V 226468 2606 1%

L42 I 179 22 12%

L44 L 593531 14242 2% 19959 1883 9%

L44 M 318 26 8%

L44 I 58 4 7%

V61 A 261368 3422 1%

V61 L 104551 1694 2%

V61 V 227612 9126 4% 20335 1913 9%

T65 S 363217 8536 2%

T65 T 230314 5706 2% 20335 1913 9%

V68 A 258462 2053 1%

V68 M 127481 1544 1%

V68 V 207588 10645 5% 20335 1913 9%

Q69 A 239915 1806 1%

Q69 L 143256 1948 1% 6396 532 8%

Q69 P 82078 1013 1%

Q69 Q 128282 9475 7% 7243 767 11%

Q69 M 6696 614 9%

S72 A 137573 5736 4%

S72 S 101580 3080 3% 20335 1913 9%

S72 V 176068 1540 1%

S72 T 62959 1487 2%

S72 C 115351 2399 2%
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Q94 Q 593531 14242 2% 5911 730 12%

Q94 L 4996 438 9%

Q94 I 4613 367 8%

Q94 M 4815 378 8%

T108 T 148714 8769 6% 20335 1913 9%

T108 E 161665 795 0%

T108 I 111234 1406 1%

T108 L 74790 874 1%

T108 V 97128 2398 2%

V112 V 382532 12106 3% 8277 903 11%

V112 I 210999 2136 1% 5878 510 9%

V112 L 6180 500 8%

N121 N 593531 14242 2% 10593 1094 10%

N121 I 9742 819 8%

Y145 I 67163 1831 3%

Y145 M 65798 5555 8%

Y145 S 71924 770 1%

Y145 Y 150237 2586 2% 20335 1913 9%

Y145 V 70897 1168 2%

Y145 F 92946 1217 1%

Y145 A 37083 237 1%

Y145 T 37483 878 2%

H148 H 593531 14242 2% 8131 869 11%

H148 S 6537 567 9%

H148 T 5667 477 8%

V150 V 345895 11767 3% 20335 1913 9%

V150 I 247636 2475 1%

T167 V 384448 6782 2% 6740 645 10%

T167 T 209083 7460 4% 7591 735 10%
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T167 I 6004 533 9%

H181 H 151700 9203 6% 20335 1913 9%

H181 V 133739 1750 1%

H181 Y 59555 726 1%

H181 L 57981 1424 2%

H181 F 79104 365 0%

H181 I 111452 774 1%

N185 N 593531 14242 2% 10689 1132 11%

N185 I 9646 781 8%

T203 T 593531 14242 2% 4605 482 10%

T203 H 4200 569 14%

T203 W 3690 286 8%

T203 F 4149 294 7%

T203 C 3691 282 8%

S205 S 593531 14242 2% 7082 670 9%

S205 T 6099 600 10%

S205 D 7154 643 9%

L220 L 315182 8802 3% 20335 1913 9%

L220 V 278349 5440 2%

E222 E 593531 14242 2% 19861 1891 10%

E222 Q 216 12 6%

E222 L 105 8 8%

E222 M 153 2 1%

V224 V 259722 4877 2% 18875 1795 10%

V224 I 333809 9365 3% 1460 118 8%

Supplementary Table 7. Mutations occurring functional sequences from both
libraries.
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Dataset A B RMSE

RF 0.0253 0.269 0.0134

NGS 0.223 0.134 0.0203

avGFP 0.184 0.191 0.0428

amacGFP 0.766 0.0427 0.0243

cgreGFP 0.542 0.518 0.0233

ppluGFP 0.334 0.248 0.0199
Supplementary Table 8. Overall epistasis and deleteriousness. Fitted parameters
for all six datasets as shown in Figure 2C and D.

Precision Recall f1-score support

GFP 0.8 0.69 0.74 1583

AmCyan 0.75 0.52 0.62 981

GFP/AmCyan 0.67 0.47 0.55 285

Non-Functional 0.97 0.99 0.98 34112

accuracy 0.96 36961

macro avg 0.8 0.67 0.72 36961

weighted avg 0.96 0.96 0.96 36961

Supplementary Table 9. Classification accuracy metrics for the random forest.
Conducted using an independent test set.
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L42 V68 Q69 S72 T108 V112 Y145 T167 H181 L220 V224 Functional
class

Enrichm
ent

(log2)

V A A T E V Y T H V I AmCyan 7.2

V A A T E V M T H V I AmCyan 7.6

V A A T E V F T H V I AmCyan 5.2

V A A T E V Y V H V I AmCyan 7.8

V A A T E V Y T H L I AmCyan 6.2

V A A T E V I T H V I AmCyan 5.2

V A A T E V Y T L V I AmCyan 5.2

V A A T E V M V L V I AmCyan 5.2

V A A T E I Y T H V I GFP 1.3

Supplementary Table 10. Enrichment values for the highly connected cluster.

Source Functional class # designs
tested

# functional
designs

Deep-sequencing data GFP (488/530nm) 10 6 (60%)

AmCyan (405/525nm) 10 8 (80%)

GFP & AmCyan 4 3 (75%)

Total 24 17 (71%)

Max number of
mutations

6 0

Designs of special
interest

3 1 (33%)

Random forest predictions GFP (488/530nm) 5 4 (80%)

AmCyan (405/525nm) 5 4 (80%)

GFP & AmCyan 4 4 (100%)

Undetermined 5 4 (80%)

Total 19 15 (79%)

Sorted for brightness GFP (488/530nm) 4
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Sorted for spectral shifts GFP (488/530nm) 3

AmCyan (405/525nm) 10

Supplementary Table 11. Individually expressed and tested designs.

Supplementary Table 12. Biophysical characterization of the individually tested
designs.
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