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Abstract 

We develop a new method, SBayesRC, that integrates GWAS summary statistics with 

functional genomic annotations to improve polygenic prediction of complex traits. Our 

method is scalable to whole-genome variant analysis and refines signals from functional 

annotations by allowing them to affect both causal variant probability and causal effect 

distribution. We analyse 28 traits in the UK Biobank using ~7 million common SNPs and 96 

annotations. SBayesRC improves prediction accuracy by 14% in European ancestry and by 

up to 33% in trans-ancestry prediction, compared to the baseline method SBayesR which 

does not use annotations, and outperforms state-of-the-art methods LDpred-funct, PolyPred-S 

and PRS-CSx by 12-15%. Investigation of factors affecting prediction accuracy identified a 

significant interaction between SNP density and annotation information, encouraging future 

use of whole-genome sequence variants for prediction. Functional partitioning analysis 

highlights a major contribution of evolutionary constrained regions to prediction accuracy 

and the largest per-SNP contribution from non-synonymous SNPs.  
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Introduction 

Polygenic scores (PGS) for complex traits (also known as polygenic risk scores (PRS) for 

common diseases) are playing increasingly important roles in research and medical 

applications of the fast-growing genomic data from genome-wide association studies 

(GWAS)1. PGS are used to provide evidence of polygenic adaptation of populations to 

different environments2, to explore putative causal relationships between traits3, to improve 

cost and efficiency of clinical trials4, and perhaps most importantly, to identify individuals 

with high genetic risk of complex diseases5-10, which provides opportunities for preventative 

medicine, early intervention, improved prognosis and personalised treatment11-13. However, 

the clinical application of PGS is currently limited by the modest prediction accuracy for 

most complex diseases. Furthermore, a substantial loss of prediction accuracy is observed 

when applying PGS across ancestries14-20.  

 

Current PGS methods (see ref21 for a review) rely on estimating the effects of common SNPs 

that tag the causal variants by linkage disequilibrium (LD). The prediction accuracy then 

depends on the estimation accuracy of the SNP effects and the extent to which the LD in the 

GWAS population is the same as that in the target population. First, complex traits are 

affected by many common causal variants each with a vanishingly small effect size, likely 

due to the action of negative selection22-24. Therefore a very large sample size is required to 

accurately estimate their effects. Given the limited sample sizes for most diseases, it would 

be helpful to incorporate other information that are independent of the GWAS data. Second, 

although the parsimonious assumption that common causal variants are shared across 

ancestry groups has empirical support20,25, the LD between the causal variants and the SNP 

markers are likely to vary between populations20. Thus, to maximise prediction accuracy of 

PGS across people of different ancestries requires selection of the causal variants into the 

prediction equation rather than non-causal variants that tag the causal variants by LD.  

 

Functional genomic annotations, e.g., the chromatin state and biological function of a 

genomic region, are informative regarding the locations and effect sizes of the causal variants 

underlying complex traits26,27. This information can be used to separate the likely causal 

SNPs from non-causal SNPs in high LD with them28 and hence improve polygenic 

prediction15,29-32. Harnessing functional annotations to improve prediction was first proposed 

in livestock genetics in a method called BayesRC33, a Bayesian method that incorporates 

biological priors for SNP effects but requires individual-level genotype and phenotype data 
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and only allows discrete annotation categories. Recent methodological development in 

human genetics have allowed the integration of GWAS summary-level data with overlapping 

annotations for polygenic prediction, such as AnnoPred30, LDpred-funct31, MegaPRS32 and 

PolyPred15. However, there are limitations in these methods. First, most of these methods 

assume sparse genetic architecture by a mixture prior, which is superior to an infinitesimal 

assumption and is likely a better representation for many traits23,34-36, but consider only a 

subset of common variants, e.g., SNPs from a genotyping array or the HapMap3 panel37, due 

to computational feasibility. We caution that there is potentially a problem in modelling the 

annotation information when considering only a subset of SNPs, because SNPs that tag the 

causal variants by LD do not necessarily tag them by annotation, resulting in a mismatch 

between effect size and biological function of the variant (as illustrated in Fig. 1a). Second, 

these methods rely on the estimated per-SNP heritability enrichment for each annotation38 as 

input data, which can, supported by empirical results33,39, arise from either differences in the 

proportion of causal variants or in the distribution of effect sizes between annotation levels or 

categories (Fig. 1b), but none of the methods explicitly accounts for these two sources of 

information in the model. Third, all of them are stepwise weighting methods that require a 

tuning sample of individual-level data from the target population, which is not available for 

many traits. 

 

Here, we propose a new method, SBayesRC, that addresses these limitations by 1) analysing 

all imputed common SNPs simultaneously using an efficient algorithm, 2) refining the 

annotation information using a hierarchical multi-component mixture prior that allows 

annotation data to affect the probability of a SNP being causal as well as that of having a 

certain magnitude of causal effect size, and 3) using a full Bayesian learning machinery that 

estimates all parameters jointly from the data without a need of tuning. We apply our method 

to 28 complex traits including diseases using up to 10 million imputed common SNPs with 

96 functional annotations (including discrete and continuous annotations), consider both 

within European ancestry and trans-ancestry prediction using UK Biobank40 and Lifeline41 

datasets, and make comparisons with the best methods in the literature (Table 1). We also 

investigate factors that affect prediction accuracy when exploiting annotation data, and 

consider connections between the genetic architecture of functional categories and their 

contributions to prediction accuracy.   
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Results 

Method overview 

SBayesRC extends SBayesR35 to incorporate functional annotations and allows joint analysis 

of all common SNPs in the genome. Similar to SBayesR, SBayesRC only requires summary 

statistics from GWAS (i.e., marginal SNP effect estimates, standard errors, and GWAS 

sample size) and LD correlations from a reference sample as input data. In addition to joint 

SNP effect estimates for deriving PGS, SBayesRC also generates the fine mapping Bayesian 

statistics of posterior inclusion probabilities (PIP) for SNPs as measures of trait associations, 

and estimates of functional genetic architecture parameters such as SNP-based heritability 

and polygenicity associated with the functional annotations.  

 

The capability of simultaneously analysing all common variants is achieved by deriving a 

low-rank model based on the eigen-decomposition on quasi-independent LD blocks in the 

human genome42. In each LD block k, we transform the summary-data-based model (as used 

in SBayesR) into a new model where the joint effects of mk SNPs are fitted to qk linear 

combinations of marginal SNP effects (instead of mk marginal SNP effects), with qk being the 

number of top principal components that collectively explain more than a given proportion 

(𝜌) of variance in the LD matrix (Methods; Supplementary Fig. 1a). In such a model, the 

dimension of the system of equations is qk ´ mk, usually qk is much smaller than mk, leading 

to considerably less memory consumption and faster computation (Table 2). For instance, 

when 𝜌 = 99.5%, qk/mk ≈ 0.2 on average across LD blocks for the 7.4 million common 

SNPs used in this study (Supplementary Fig. 2). Essentially, the low-rank model refines the 

signals in GWAS summary statistics by collapsing information from SNPs in high LD. This 

also leads to independent residuals for the transformed observables, which warrants a more 

robust algorithm by estimating the residual variance from the data (Methods). 

 

We use an annotation-dependent prior to better model the distribution of SNP effects, and 

learn both annotation parameters and SNP effects from the data. In SBayesR, SNP effects are 

assumed to follow a mixture of normal distributions with different variances, including a 

point mass at zero. This model accounts for a spectrum of genetic architecture from major-

gene to infinitesimal architecture and allows the data to inform which is the best-fit for the 

trait of interest. It is, however, independent of genomic features, such as LD and minor allele 

frequency (MAF) patterns and biological functions of different genomic regions. In 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.10.12.510418doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.12.510418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

SBayesRC, the probability parameters of the mixture distribution are estimated from a linear 

model in which the individual SNP annotations are the independent variables. This describes 

the probability that SNPs are causal variants and the probability distribution of their effect 

sizes (Methods; Supplementary Fig. 1b). In other word, we allow the distribution of SNP 

effects to be dependent on annotations, and this model will better capture the causal effects if 

the distributions of effect sizes are truly different between annotations. Owing to the use of a 

generalised linear model for the annotation effects, both binary and quantitative annotations 

are accommodated irrespective of overlapping between them. Our method has been 

implemented in a user-friendly software GCTB23 and in a R package (Code availability). 

 

Genome-wide simulation based on real genotypes and annotation data 

We first used simulation to calibrate our low-rank model which requires a specification of 

two parameters: the minimum width (cM) of a LD block after merging contiguous small 

quasi-independent LD blocks42, and the minimum proportion (𝜌) of variance in the LD 

matrix explained by the selected principal components in each LD block. We simulated 

GWAS data using 1,154,522 SNPs on 328,501 individuals of European ancestry in the UKB 

and calculated the prediction accuracy in a hold-out sample of 14,000 individuals. We found 

that in general the prediction accuracy increased with the increasing minimum value of LD 

block width, reaching to a plateau at the width of 4cM (Supplementary Fig. 3). When 𝜌 

increased from 85% to 99.95%, prediction accuracy improved due to increased amount of LD 

information, which allowed SNPs to better track the causal variants, reaching a plateau at 

𝜌 = 99.5%. Thus, for the best computational performance and a stable prediction accuracy, 

we decided to use a minimum block width of 4cM and 𝜌 = 99.5% in the subsequent analyses 

unless otherwise noted.  

 

We then checked the robustness of our method to two common challenges in the real data 

analysis: 1) differences in LD between GWAS and LD reference datasets, and 2) unequal 

GWAS sample sizes across SNPs (Supplementary Note), in comparison to two state-of-the-

art methods using summary statistics, LDpred243 and SBayesR35. For all methods, the 

prediction accuracies decreased when the LD reference sample size was too small relative to 

the GWAS sample size (large variation in LD by chance), but SBayesRC (no annotation 

used) preserved more prediction accuracy than the other methods (Fig. 2a and 

Supplementary Fig. 4). In an extreme case where African ancestry individuals were used to 
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estimate LD correlations, ~70% prediction accuracy was preserved in SBayesRC, whereas 

neither LDpred2 nor SBayesR was able to reach to convergence. For the scenario of unequal 

per-SNP sample sizes, we simulated two cohorts with a proportion of SNPs genotyped in 

only one cohort (i.e., non-overlapped SNPs) and obtain the summary statistics from the meta-

analysis (Methods). As the proportion of overlapped SNPs decreased, SBayesR more often 

failed in convergence and LDpred2 had a faster rate of decrease in prediction accuracy than 

SBayesRC (Fig. 2b). Of note, LDpred2 tended to preserve prediction performance at the cost 

of biased estimates in SNP-based heritability and polygenicity (Supplementary Fig. 6). In 

contrast, in SBayesRC, the impact of model misspecification was mostly absorbed in the 

residual variance which is a nuisance parameter in the model, with no or only marginal bias 

to the other important genetic architecture parameters (Supplementary Fig. 5-6). These 

results demonstrated that SBayesRC is more robust than the competing methods to the model 

misspecifications that are likely to occur in practice. 

 

We next evaluated the benefit of using functional annotation data and considering more SNPs 

beyond the HapMap3 panel (a commonly used panel in the current prediction methods such 

as LDpred2 and SBayesR). We expanded the simulation to include 7,356,518 imputed 

common SNPs and incorporated functional annotations to simulate the causal effects. In the 

simulation, we sampled the causal variants from the 7M SNPs, with their effects sampled 

from a mixture distribution depending on the observed functional annotations from the 

curated annotation dataset24 (LD score regression baseline model BaselineLD v2.2) and the 

annotation effects estimated from the SBayesRC analysis in UKB height (Methods). As 

expected, we observed a significant improvement in prediction accuracy when using more 

SNPs and/or annotation data in SBayesRC (Fig. 2c). Compared to using 1M HapMap3 SNPs, 

using all 7M SNPs improved the prediction accuracy by 14.4% (the difference in prediction 

𝑅!"#$%&'()  between 7M and 1M SNPs divided by that with 1M SNPs). Compared to the no 

annotation model, the model incorporating annotation data improved the prediction accuracy 

by 2.0% and 3.8% when using 1M HapMap3 and 7M common SNPs, respectively. A similar 

pattern was observed in LDpred-funct that using annotation data on 7M SNPs gave higher 

prediction accuracy than that on 1M SNPs, but the prediction accuracy was substantially 

lower than that from our method in each scenario (Fig. 2c and Supplementary Fig. 7). We 

hypothesize that the advantage of exploiting annotations is because of both better 

identification of causal variants and better estimation of their effect sizes. This hypothesis is 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.10.12.510418doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.12.510418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

supported by the results that for a given PIP threshold, incorporating annotations in the model 

led to a higher power and a lower false discovery rate (FDR) for identifying the causal 

variants (Fig. 2d,e) and a stronger correlation in the estimated and true SNP effects (Fig. 2f). 

Coupled with the higher prediction accuracy, the SNP-based heritability estimate increased 

toward to the true value in the simulation when more SNPs with annotation data were used 

(Supplementary Fig. 9). 

 

Improved prediction accuracy within European ancestry 

We performed 10-fold cross-validation in the UKB sample and cross-biobank prediction in 

the Lifeline cohort to assess the performance of SBayesRC for predicting individuals of 

European ancestry (Methods). As in the simulation, the per-SNP annotation data were from 

BaselineLD v2.224, which included 83 binary annotations such as coding, promoter, 

enhancer, or conserved variants and 13 quantitative annotations such as predicted allele age 

and background selection statistic. There were in total 10M imputed common SNPs in the 

UKB. After matching SNPs across GWAS, validation and annotation data sets, 7M common 

SNPs were retained for the subsequent analyses (Methods). 

 

In the UKB cross-validation, we analysed 28 independent traits including 8 diseases 

(Supplementary Table 1). We compared the performance of our method using 7M SNPs, 

annotation data, or both, to that of common practice of using 1M HapMap3 SNPs without 

any annotation, and to the performance of other methods including C+PT44, SBayesR35, 

LDpred243 and LDpred-funct31. Other than C+PT, all these methods are joint-effect models 

that generate joint SNP effects as predictors, in which SBayesR and LDpred2 are widely used 

methods for analysing HapMap3 SNPs and LDpred-funct is the latest method that can 

analyse 7M SNPs and incorporate annotations (Table 1). For the ease of comparison, the 

prediction accuracy from each method was calculated as the relative value to that from 

SBayesR from out-of-sample prediction, i.e., relative prediction accuracy of method x = 𝛿*) =
+!"	-	+#$%&'()

"

+#$%&'()
" , where R2 is the prediction accuracy. We report the mean 𝛿*) over 10-fold cross-

validation. When using HapMap3 SNPs only, SBayesRC without annotations gave 

approximately the same prediction accuracy as SBayesR, which was significantly higher than 

that of LDpred2 (𝛿./01%2)) = −3.2%, Wilcoxon signed rank exact test P-value = 1.4´10-7) 

(Fig. 3a). Compared to using HapMap3 SNPs without annotations, the prediction accuracy 

was improved by 2.8% (P=0.001) or 3.2% (P=3.2´10-7) corresponding to using either 7M 
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SNPs or annotation data in our method. When using both 7M SNPs and annotation data, the 

relative prediction accuracy increased to 14.2% (P=7.5´10-9), substantially higher than using 

either source of information alone, suggesting a strong interaction between the SNP density 

and annotations (see more discussion below). Although more SNPs together with annotation 

data also improved the mean relative prediction accuracy from LDpred-funct, it was not 

significantly greater than that of the baseline method (max 𝛿./01%2-34567) = 3.5%; P=0.58), 

i.e., SBayesR using 1M HapMap3 SNPs without annotations. In LDpred-funct, results from 

that traits varicose veins, risk taking and waist-hip ratio (adjusted for BMI) were large 

outliers which all had a relatively low SNP-based heritability (ℎ!89) < 0.074) and low 

baseline SBayesR R2 (𝑅!"#$%&') < 0.022); in addition, although the prediction accuracies for 

these traits were relatively high, the regression slopes were largely biased (Supplementary 

Table 2-3). On average across all traits, SBayesRC gave 11.9% higher prediction accuracy 

than LDpred-funct using 7M SNPs and annotation data (P=5.5´10-5). In line with the 

literature21,45-47, all of the above joint-effect models were markedly superior to the C+PT 

approach (a marginal-effect model; 𝛿(:9;) = −50.8%; P=7.5´10-9), which did not show any 

improvement from using more SNPs, consistent with the finding of a recent study48. In 

addition to high prediction accuracy, SBayesRC gave regression slopes close to one across 

different traits, suggesting no significant prediction bias, better than those from other 

methods (Supplementary Fig. 12).  

 

In the cross-biobank prediction analysis, we focused on the analysis of height and body mass 

index (BMI) for which GWAS summary statistics are publicly available with different 

sample sizes. We used summary statistics from UKB and GIANT consortium49 (sample size 

up to 0.7 million) for training, and validated in the Lifeline cohort (n=11,842)41. All the 

training and validation datasets were of European ancestry. As expected, the prediction 

accuracy improved as the training sample size increased for both height and BMI in all 

methods. SBayesRC had the highest prediction accuracy in each sample size, outperforming 

LDpred2 by 4.0-21.9% (which only used 1M HapMap3 SNPs without annotations), and 

outperforming LDpred-funct by 7.1-26.3% (which used the same data as SBayesRC but 

required additional tuning dataset) (Fig. 3b). Using the largest sample size to date 

(nGIANT=0.7M) and SBayesRC with 7M SNPs and 96 per-SNP annotations, we achieved a 

maximum prediction R2 of 0.40 for height and 0.16 for BMI in the Lifeline cohort, explaining 

65% and 73% of SNP-based heritability estimated by SBayesRC (ℎ3!89) = 0.62 for height and 
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0.22 for BMI), which serves as the theoretical upper bound of the out-of-sample prediction 

accuracy for each trait.  

 

Improved accuracy in trans-ancestry prediction 

To test whether the superiority of using functional annotations with genome coverage for 

prediction is transferable into other populations of different ancestries, we performed trans-

ancestry prediction in UKB, where predictors derived from GWAS in European ancestry 

were validated in samples of South Asian (SAS), East Asian (EAS), and African (AFR) 

ancestries, respectively. In this analysis, we calculated two types of relative prediction 

accuracy for each trait. In the first type, the benchmark was the prediction accuracy of 

SBayesR with 1M HapMap3 SNPs averaged across 10 folds of cross-validation in the 

European ancestry. In the second type, the benchmark was the prediction accuracy of 

SBayesR trained in the GWAS of European ancestry and validated in each of the other 

ancestries. To reduce sampling variation in relative prediction accuracy, we removed 10 traits 

with prediction accuracy (R2) from SBayesR less than 0.05 in the cross-validation in 

European ancestry and one trait failed to converge with PolyPred-S (age at menarche), 

retaining 17 traits for the trans-ancestry prediction.  

 

We compared our method to two recently developed methods designed for trans-ancestry 

prediction, PolyPred-S50 and PRS-CSx14 (Table 1). Because both methods require a tuning 

sample of individual-level data from the target population to generate the final SNP weights 

for prediction, we held out a sample of 500 individuals from the validation dataset for each 

non-European ancestry for SNP weights tuning. Given the genetic discrepancies between 

ancestries, the tuning step is critical and could override the differences between models in 

themselves. For a fair comparison, we also allowed our approach to use this tuning data by 

first running SBayesRC in each of the GWAS datasets of different ancestries separately and 

then combining the SNP effects with weights estimated from the tuning data (we refer this 

analysis strategy to as SBayesRC-multi; Methods and Table 1). 

 

Relative to the prediction accuracy within European ancestry, the trans-ancestry prediction 

accuracy attenuated with increased genetic distance to the European ancestry, regardless of 

methods (Fig. 4a), in line with previous studies14-19,48. Despite the overall decline in 

prediction accuracy, the use of high-density SNPs beyond HapMap3 or annotation data 

increased prediction accuracy when benchmarking with that of SBayesR observed within 
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each of the ancestries (Fig. 4b). Consistent with the patterns observed within European 

ancestry, SBayesRC using both 7M SNPs and annotation data gave the highest prediction 

accuracy, with a relative improvement of 16.0% in SAS (P=1.5´10-5), 22.6% in EAS 

(P=2.1´10-4), and 33.7% in AFR (P=4.6´10-5), averaged across traits. In contrast, we did not 

observe large improvement using PolyPred-S, except in the AFR population (mean relative 

prediction accuracy of 2.6% with P=7.9´10-3 in SAS; 2.0% with P=0.55 in EAS; 29.9% with 

P=6.7´10-3 in AFR). On average, SBayesRC outperformed PolyPred-S by 13.2%, 19.7% and 

13.2% in SAS, EAS and AFR, respectively (mean improvement of 15.4% across the three 

non-European ancestries). A notable outlier was vitamin D which had 331% improvement in 

PolyPred-S on the basis of 𝑅!"#$%&') = 	0.0018 in AFR. This remarkable improvement is 

likely achieved from the use of tuning sample in PolyPred-S, which can help to identify 

causal variants that are in high LD in EUR but have very different LD in AFR. Using 

additional set of GWAS summary statistics from Biobank Japan (BBJ51), PRS-CSx 

outperformed SBayesRC by only 0.4% for predicting EAS individuals in the UKB but was 

inferior to SBayesRC-multi by 13.5% (Fig. 4c). Note that the summary statistics were 

separately analysed in SBayesRC-multi but were jointly modelled in PRS-CSx. The fact that 

SBayesRC-multi was favoured suggests that the benefit of leveraging functional annotations 

with all imputed SNPs outweighs the benefit of joint modelling summary statistics from 

multiple populations at a subset of SNPs.   

 

In addition to improved prediction accuracy, SBayesRC used less computational resources 

than other methods (Table 2). For the analysis of 7M SNPs with 96 annotations, SBayesRC 

required 75 GB RAM and 9.5 computing hours per core with 4 CPU cores, which are 

commonly available in a standard computing cluster. 

 

Significant interaction between SNP density and annotation information 

Results above have shown that using a full imputation SNP set (i.e., not limiting to the 

HapMap3 panel) or using annotation data can each lead to a significant improvement in 

prediction accuracy. Moreover, using 7M SNPs and annotation data together remarkably 

outperformed using either one source of information alone, suggesting an interaction effect 

between SNP density and annotation information for prediction. To test and quantify the 

significance of this interaction effect, we calculated the relative prediction accuracy of 

exploiting annotations in the model, i.e., (𝑅#55<7) 	− 	𝑅=<) )/𝑅=<) 	where 𝑅#55<7)  is the 
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prediction accuracy with annotations and 𝑅=<)  is that without annotations, given a set of 

SNPs. As shown in Fig. 5, using 7M SNPs resulted in a significantly higher relative 

prediction accuracy of exploiting annotations than using 1M HapMap3 SNPs in both 

simulation and real trait analyses, manifesting a significant interaction effect. More 

specifically, regardless of the level of heritability in simulation, sample size of GWAS in real 

traits, within- or cross-ancestry prediction, the use of 7M SNP annotations (y) led to about 

twice as much improvement as that of using 1M SNP annotations (x) (Fig. 5; regression 

slope = 1.88 with P=1.4´10-5 from regression of y on x weighted by the number of traits in 

each data point). For example, in the cross-validation of complex traits in the UKB European 

sample, incorporating annotations increased prediction accuracy by 4.4% with 1M HapMap3 

SNPs but by 11.2% with 7M imputed SNPs. This is consistent with our hypothesis that the 

annotations at the SNPs in LD with a causal variant may not track the annotation at the causal 

variant, resulting in a loss in information (Fig. 1a). To pursue the maximum improvement, 

we further considered all imputed common variants in the UKB (~10M SNPs) by extracting 

their annotations from the PolyPred model (Methods), but did not observe more 

improvement in prediction accuracy (Supplementary Fig. 15), suggesting a saturation of 

association signals detectable by imputation. Thus, it is likely that the benefits of leveraging 

annotation data for polygenic prediction will be maximized when analysing variants at 

sequence level. 

 

Other factors affecting accuracy of prediction leveraging functional annotations 

Here we investigate other factors, besides SNP density, that affect accuracy of prediction 

leveraging functional annotations, including SNP-based heritability, GWAS sample size, 

properties of minor allele frequency (MAF) and LD, the number of annotations, and the 

strategy of analysis.  

 

Stratifying traits based on the SNP-based heritability estimates from SBayesR found that 

traits with lower SNP-based heritability tended to benefit more from exploiting annotation 

data on 7M SNPs (regression slope = -15.7, P=0.031; Fig. 6a). When down sampling the 

UKB data for GWAS in height and BMI, the relative prediction accuracy using 7M SNPs and 

annotations was higher with a smaller GWAS sample size, whereas using more SNPs alone 

required a larger sample size to give a higher improvement in prediction accuracy (Fig. 6b). 

This is expected because including annotations in the model is analogous to adding more data 
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as annotations are independent of genome variations, whereas including more SNPs in the 

model alone increases the number of parameters to estimate therefore consuming more 

degrees of freedom. Given that most traits have a polygenic architecture, low SNP-based 

heritability or small sample size means low power in GWAS. Thus, results from this analysis 

suggest that traits with insufficient power would benefit more from leveraging annotation 

data for prediction. 

 

To investigate whether functional annotations provide additional information than LD and 

MAF properties, we evaluated the relative prediction accuracy for height and BMI by first 

fitting 13 MAF related annotations from BaselineLD only and gradually adding 4 LD bins, 

21 core annotations52, and finally the full set of 96 annotations. We found that the relative 

prediction accuracy increased with just fitting MAF, had no significant change when adding 

LD bins, and further increased with additional functional annotations (Fig. 6c). In addition, 

conditional on MAF and LD bins, the improvement was larger with 96 functional annotations 

than that with 21 core annotations. These results suggest that functional annotations are more 

informative than LD and MAF annotations, and using a rich set of functional annotations 

altogether is better than using a few key functional categories. 

 

Lastly, we compared alternative strategies of analysing all common SNPs with annotations. 

Simultaneous fitting of 7M SNPs in the model is computationally impractical in most 

MCMC-based methods. One strategy is to perform a stepwise analysis53,54 as below. Step 1, 

estimation of impact of functional annotations on SNP effects, which is often quantified by 

estimation of the annotation-specific enrichment in per-SNP heritability using S-LDSC38. 

Step 2, prioritisation of all SNPs based on their functional annotations and results in step 1. 

Final analysis uses a subset of the SNPs that rank from the top in step 2. To compare our 

method to such a stepwise strategy, we selected the top 1M SNPs from 7M SNP set based on 

the results from S-LDSC38, and performed the prediction analysis in height and BMI. For 

SBayesRC in which annotations were not assigned, the functionally-prioritised 1M SNP set 

had a higher prediction accuracy than the 7M SNPs, whereas for SBayesRC in which 

annotations were assigned, the functionally prioritised 1M SNPs was slightly better than the 

same set of SNPs without re-estimation the annotation effects but was inferior to the 7M 

SNPs (Fig. 6d), suggesting that the unified analysis is better than the stepwise analysis in 

refining the information from annotation data.   
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Contributions of functional categories to prediction accuracy 

We have shown that functional annotations are useful to improve polygenic prediction. We 

then sought to identify which functional annotations are of most importance. To this end, we 

constructed functional category-specific PGS using SNPs within that functional category and 

their effect estimates from the genome-wide analysis of SBayesRC. Overall, categories with 

more SNPs contributed more to the prediction accuracy, but with apparent outliers (Fig. 7a). 

We found that evolutionary constrained regions, albeit small in SNP set size, had the greatest 

contribution among all categories without flanking windows. For example, regions that are 

conserved across 29 eutherian mammals (Conserved_LindbladToh55 in BaselineLD) only 

covers 2.9% of the genome but contributed 40.5% of prediction accuracy averaged across 

traits, resulting in 14.0-fold enrichment in the per-SNP contribution to prediction accuracy 

(per-SNP predictability enrichment = 40.5/2.9). For comparison, the coding regions (1.6% of 

the genome) contributed 25.9% of prediction accuracy, with a per-SNP predictability 

enrichment fold of 16.5. This result suggests that evolutionary constrained variants are as 

informative as the coding variants with respect to complex trait prediction, despite only 

33.2% coding variants are annotated as constrained variants. Across functional categories, the 

per-SNP contribution to prediction accuracy was in proportion to the per-SNP contribution to 

heritability (Fig. 7b), suggesting that the variance explained by a SNP in the GWAS sample 

can be transferred into predictive ability of the SNP in the validation sample. The largest per-

SNP predictability was from the non-synonymous SNPs in the coding sequence (41.4-fold 

enrichment), which also had the largest enrichment in per-SNP heritability. 

 

We prioritised functional annotations based on their per-SNP heritability enrichment 

averaged across traits analysed in this study. The top 20 had mean fold enrichment in per-

SNP heritability, which ranged from 3.8 to 18.8, included non-synonymous variants, 

evolutionary constrained regions, coding sequence and regulatory elements, by-and-large 

consistent with the results from S-LDSC (Supplementary Fig. 16). Our method allows us to 

go on ask whether the enrichment in per-SNP heritability is due to more causal variants or 

larger effect sizes in the category. We found that conditional on the other annotations, the 

non-synonymous SNPs category were enriched in both the proportion of causal variants and 

the magnitude of effect sizes (Fig. 7c). Moreover, compared to evolutionary conserved 

regions in mammals, conserved regions in primates had lower proportion of null SNPs and 

higher proportions of SNPs with small to large effects in human traits.  
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Discussion 

We have introduced a novel method, SBayesRC, for polygenic prediction of complex traits 

using GWAS summary statistics of the full set of imputed SNPs and incorporating diverse 

functional annotations on each SNP. Compared to the common practice of using 1M 

HapMap3 SNPs, using 7M imputed common SNPs and 96 per-SNP annotations, we observed 

14% improvement in prediction accuracy within European ancestry averaged over 28 

complex traits and diseases, and up to 33% across ancestries averaged over 18 well powered 

traits. Our observation of improved prediction exploiting annotation data is consistent the 

findings in the previous studies15,29,30,33,46,54. Our method outperformed the best method for 

within European ancestry prediction using annotations, LDpred-funct, by 12%, and the best 

method for cross-ancestry prediction using annotations, PolyPred-S, by 15% averaged across 

ancestries (20% in EAS), and that without annotations but jointly models GWAS summary 

statistics from multiple populations, PRS-CSx, by 14% when the data from the EAS ancestry 

was also used in our method. Furthermore, we found a significant interaction between SNP 

density and annotation information for prediction accuracy by observing consistent results 

across datasets that use of 7M SNPs doubled the benefits of incorporating annotations into 

prediction as compared to 1M HapMap3 SNPs.   

 

The interaction between SNP density and annotation information is likely due to fewer 

“errors” in the annotation data when more variants are uncovered through imputation. When 

the causal variants are unobserved, SNPs used in the analysis can capture the causal effects 

by LD but may be annotated differently from the annotations at the causal variants. In other 

word, the causal effects are assigned to other variants with “incorrect” annotations. This 

would dilute the information from each annotation and smooth out the differences in effect 

size distribution between annotations if the unobserved causal variants are distributed at 

random, or would cause a systematic bias in the annotation effect estimates if the unobserved 

causal variants are enriched in some annotation categories. In either case, the annotation data 

are used less effectively. As shown in the simulation study, the estimation for the proportion 

of SNPs in each non-zero distribution was biased when using the 1M subset of SNPs 

(Supplementary Fig. 10), in concordance with the lower prediction accuracy than using a 

full SNP panel including the causal variants (Supplementary Fig. 11). In the real data 

analysis, we observed a significant improvement from 1M to 7M imputed SNPs but no 

further difference to 10M imputed SNPs (Supplementary Fig. 15), likely due to the 

limitation of imputation accuracy. Thus, it is expected that using variants at sequence level 
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will maximize the efficiency of borrowing information from the annotation data for 

prediction.  

 

We found that the combination of high-density SNPs and functional annotations provides 

most benefit to traits with low SNP-based heritability or small GWAS discovery sample sizes 

through provision of additional information to allele frequency and linkage disequilibrium 

categories, and is best used in a unified analysis where all parameters are estimated in one 

model. These results highlight the utility of leveraging functional annotations for predicting 

disease risk, as most common diseases do not have a high SNP-based heritability and the 

effective sample sizes are still limited for many diseases. These results support the need for 

generation of more high-quality functional annotations, because empirically they provide 

extra information in addition to non-functional dependent annotations, such as MAF and LD 

(none of the MAF or LD categories were present in the top 20 annotation categories ranked 

based on the per-SNP contribution to prediction accuracy; Fig. 7c). Our method can 

incorporate many annotations and estimate both annotation effects (binary and/or 

quantitative) and SNP effects from the data without additional tuning steps. Our results 

suggest that such a unified computational framework is more desirable than the stepwise 

approaches commonly used in the previous studies53,54. These results are useful to inform the 

experimental design of leveraging functional annotations for prediction in the future. 

 

We proposed a rank reduction approach to account for correlations between marginal effects 

such that the joint effects of genome-wide SNPs are fitted to a set of observables with 

independent residuals. There are several advantages of using this low-rank model. First, it 

substantially improved the model robustness. We showed that our method is robust to the LD 

differences between GWAS and reference samples and the per-SNP sample size variation 

resulted from the meta-analysis between cohorts with different genotyping platforms. This is 

not only owing to elimination of numerous small eigenvalues/eigenvectors in each LD block 

which are subject to high sampling variation in LD, but also because independence of 

transformed summary statistics enables the sampling of block-wise residual variance, which 

introduces a mechanism to manage the convergence issue due to violation of model 

assumptions. It has been found that SNP effect sizes would blow up during MCMC when the 

model fails to converge. In this case, the sampled values of residual variances would be large 

if the SNP effect sizes tend to blow up, which will in turn shrink them back toward zero, 

preventing failure in convergence. Second, the low-rank model substantially improved the 
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computational efficiency which allows us to fit a large number of SNPs with only a small 

fraction of computation resource compared to the original model. In theory, SBayesRC is 

scalable to fit variants at sequence level via calibrating the required proportion of variance in 

LD explained by the selected eigenvalues/eigenvectors, making it a powerful tool to analyse 

the incoming large-scale whole-genome sequence data. Third, this low-rank model depicts a 

general framework that can be applied with different priors as used in other methods.         

 

We noted several limitations in this study. First, although our method is scalable to analysis 

of whole-genome sequence data, only imputed common SNPs that were functionally 

annotated were analyzed due to limitations in availability of whole-genome sequence data 

when conducting the study. We investigated use of up to 10 million imputed SNPs with 

MAF > 0.01 but did not observe a significant improvement comparing to the 7 million SNP 

set, suggesting a likely saturation of information from imputation and warranting a follow-up 

study with sequence variants. Second, our low-rank model requires eigen-decomposition on 

the LD matrices which can be expensive if they are computed one by one. We performed 

eigen-decomposition on the 7 million SNP set using parallel computing and provide the 

results online for use by the research community, assuming that the SNPs in their GWAS 

summary data match with the SNPs we used to generate the LD data. This could be an issue 

if some SNPs in the LD data are not included in the GWAS, although most studies impute to 

the same reference data we used (HRC reference panel56). One approach to address this is to 

impute the summary statistics for those “missing” SNPs57 (Supplementary Note). We found 

empirically that the loss of prediction accuracy was marginal unless the missing rate was 

greater than 40%. Third, our method is robust to LD and per-SNP sample size variation, 

which has been found to be the major cause of the convergence problem in SBayesR and 

other summary-statistics based methods, but it is still subject to errors in the GWAS summary 

statistics, such as genotyping errors and allelic mislabeling. Thus, application of additional 

quality control on the summary statistics prior to the analysis may be required in some 

circumstances58. Fourth, for trans-ancestry prediction, there is possibly further improvement 

in prediction accuracy by modelling summary statistics from multiple populations jointly as 

in PRS-CSx14, but we leave such an extension of our method to a future project. Fifth, in 

theory, our method can be applied to a very large number of variants given a memory usage 

by calibrating the rank reduction parameter, but a too low threshold value may result in a loss 

of prediction accuracy and therefore requires calibration with caution. Sixth, this study used 

general annotations curated by the BaselineLD model38, which does not include annotations 
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from recent studies using single-cell sequencing technology that uncover more cell-type 

specific epigenetic marks and chromatin states59-62. Given mounting knowledge about which 

tissues or cell types are relevant to complex traits inferred from GWAS data and single-cell 

RNA-seq data, using annotations derived from the trait-relevant tissues or cell types are 

expected to generate more accurate predictors.  

 

In conclusion, the method proposed in this study is a powerful tool to improve polygenic 

prediction in complex traits and diseases. Our findings provide a guideline how to make best 

use of functional annotation data for prediction and which functional categories are most 

useful for within European and trans-ancestry prediction. We anticipate further improved 

prediction accuracy in the future when the method is applied to whole-genome sequence data 

with high-quality trait-relevant annotations.  
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Methods 

Summary-data-based low-rank model 

Consider a general form of the summary-data-based model for fitting SNP joint effects: 

𝐛 = 𝐑𝜷 + 𝜺                                                                (1) 

where b is the vector of GWAS marginal effect estimates (assuming the genotype matrix X 

has already been standardised with mean zero and variance one), 𝐑 = >
?
𝐗′𝐗 is the LD 

correlation matrix, N is the GWAS sample size, 𝜷 is the vector of SNP joint effects, and 𝜺 is 

the vector of residual terms with 𝑉𝑎𝑟(𝜺) = >
?
𝐑𝜎@). When the marginal effects are estimated 

from GWAS using genotypes at 0/1/2 scale (b*), b can be estimated using b*, standard error, 

and GWAS sample size (Supplementary Note).  

 

Sparse LD matrices estimated from a reference sample are often used to improve 

computational feasibility, including banded43,54, shrunk35,63 and block-diagonal14,64 matrices. 

To derive our low-rank model, we use a block-diagonal LD matrix based on the quasi-

independent LD blocks found in the human genome42. For the best performance, we merge 

small contiguous blocks to a single block with the minimum width of 4 cM, resulting in 591 

merged blocks for the European ancestry. For each block i, we perform eigen-decomposition 

on Ri (the subscript is ignored for simplicity in notation) 

𝐑 = 𝐔𝚲𝐔′ 

where U is the matrix of eigenvectors and 𝚲 is the diagonal matrix of eigenvalues. By 

multiplying both sides of Eq (1) by 𝚲-
𝟏
𝟐𝐔A, we have 

𝐰 = 𝐐𝜷 + 𝝐                                                            (2) 

where 𝐰 = 𝚲-
𝟏
𝟐𝐔A𝐛 is a linear combination of marginal SNP effect estimates, 𝐐 = 𝚲

𝟏
𝟐𝐔A is 

the new coefficient matrix, and the new residuals 𝝐 = >
?
𝚲-

𝟏
𝟐𝐔A𝐗′𝐞 are independently and 

identically distributed, i.e., 𝝐	~	𝑁(𝟎, 𝐈𝜎B)). To account for high LD between SNPs and LD 

variations between GWAS and LD reference samples, we opt to include eigenvectors and 

eigenvalues for the top principal components (PCs) that collectively explain at least 𝜌 

proportion of the variance in LD. Assuming q top PCs are selected given a value of 𝜌, the 

dimension of w and Q is 𝑞 × 1 and 𝑞 × 𝑚, respectively, with m being the number of SNPs in 

the block. Because q is often much smaller than m, Eq (2) is a low-rank model and 

computationally more efficient than Eq (1). We investigated the impact of 𝜌 on the method 

and decided to use 𝜌 = 99.5% in practice, which led to a reduction of about 80% rows from 
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the original summary-data-based model at a negligible loss in predictive performance 

(Supplementary Fig. 2-3). In addition, Eq (2) has independent residuals so that it is 

straightforward to estimate the residual variance, which helps to improve the robustness of 

the method (Supplementary Note). This low-rank model is general and can be applied to 

any other methods that make different assumptions on the distribution of 𝜷. A more detailed 

derivation is given in the Supplementary Note. 

 

SBayesRC 

SBayesRC is a Bayesian method built on the low-rank model described above, assuming a 

multi-normal mixture distribution for SNP effects. Specifically, we assume that 

𝛽C 	~	T𝜋CD𝑁V0, 𝛾D𝜎E)X
F

DG>

 

where 𝜎E) is the total SNP-based genetic variance estimated from the data, 𝜸 =

[0, 0.001, 0.01, 0.1, 1]′% depict the scaling factor of five distributions as the mixture 

components including a distribution of zeros and four normal distributions where each SNP a 

priori explains 0.001% to 1% of genetic variance, and 𝜋CD is the probability for the SNP 

effect belong to the kth distribution.  

 

In contrast to SBayesR35 which assumes the same 𝜋D for all SNPs, here the probability of 

distribution membership 𝜋CD is SNP specific and depends on the annotations on each SNP. 

Let A be the matrix of annotations with a dimension of the number of SNPs m by the number 

of annotations c. For each SNP, we model 

𝑓V𝜋CDX = 𝜇D +∑ 𝐴CH𝛼DHI
HG>                                               (3) 

where 𝑓(∙) is a link function that maps the probability variable 𝜋CD to the real line, 𝜇D is the 

intercept capturing the overall proportion of SNPs belong to the kth distribution in the 

genome, 𝐴CH is the value of annotation l on SNP j (0 or 1 for binary annotations or 

standardised value with mean 0 and variance 1 for quantitative annotations), and 𝛼DH is the 

effect of annotation l on the membership probability to the kth distribution. This generalized 

linear model allows functional annotations to affect the probability of a SNP being causal 

(1 − 𝜋C>) and accommodates any distribution of the causal effect (by mixture of a finite 

number of normal distributions) given the cumulation of functional annotations, regardless of 

discrete or quantitative annotations, and accounts for overlapping between annotations. 
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Through estimation of 𝛼DH from the data, this computational framework provides a machinery 

to make inference on the functional genetic architecture of the trait, because  𝑓->(𝛼DH) 

quantifies the deviation of the kth distribution membership probability, driven by annotation l, 

to the baseline model where all annotation values equal to zero, conditional on the presence 

of the other annotations. The estimates of 𝛼>H , … , 𝛼FH altogether provide a more detailed 

description about functional architecture than the per-SNP heritability enrichment estimate 

for an annotation category (Supplementary Note and Supplementary Fig. 10,14). We 

assume a flat prior for 𝜇D and a normal prior for 𝛼DH 	~	𝑁(0, 𝜎J,
) ) with 𝜎J,

) 	~	𝜒-)(𝜐J , 𝜏J)) 

where 𝜐J = 4 and 𝜏J) = 1. 

 

For a mixture distribution of five components, there are 5 × (𝑐 + 1) annotation parameters to 

estimate from the data (including the intercept). In addition, 𝜋CD is subject to a constraint that 

∑ 𝜋CDF
DG> = 1 for any SNP. As a consequence, the sampling scheme for 𝛼DH is not 

straightforward. Although the Metropolis-Hastings algorithm can be used to sample all 𝜶 

jointly to account for the dependence between elements of 𝝅C, finding the optimal tuning 

parameters for the proposal distribution could be difficult and specific to trait. To remove the 

dependence between probability parameters, we employed an alternative parameterization for 

modelling membership probabilities and annotation effects. Let 𝛿C be the indicator for the 

mixture component membership for SNP j: 

𝛿C = 𝑘		with	probability	𝜋CD; 𝑘 = 1	to	5 

We define a conditional probability that the SNP effect belongs to the kth distribution given 

that it has passed the bar for the (k-1)th distribution as 

𝑝CD = PrV𝛿C ≥ 𝑘	|	𝛿C ≥ 𝑘 − 1X 	for	𝑘 ≥ 2 

such that 𝜋C> = 1 − 𝑝C), 𝜋C) = V1 − 𝑝CKX𝑝C), 𝜋CK = V1 − 𝑝CLX𝑝CK𝑝C), 𝜋CL = V1 −

𝑝CFX𝑝CL𝑝CK𝑝C), and 𝜋CF = 𝑝CF𝑝CL𝑝CK𝑝C).	We then apply the generalized linear model, Eq (3), 

to link 𝑝CD with 𝜶D. In this parameterisation, all 𝑝CD are independent, which means that 𝜶D 

can be sampled in parallel in each MCMC iteration, and 𝛼DH can be sampled from its full 

conditional distribution using Gibbs sampling algorithm when the probit link function is 

chosen, namely 𝑓V𝑝CDX = ΦV𝑝CDX where Φ(∙) is the cumulative density function (CDF) of 

the standard normal distribution. More details about the alternative parameterization and the 

Markov chain Monte Carlo (MCMC) sampling scheme are described in the Supplementary 

Note. In all SBayesRC analyses in this study, we ran MCMC for 3,000 iterations with the 
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first 1,000 iterations as burn-in and the rest used for posterior inference. Running a longer 

chain did not change the prediction accuracy in the simulation and real trait analysis.   

 

UK Biobank 

The UK Biobank (UKB) is a large volunteer cohort with sample size more than 500,000 from 

across the United Kingdom and has extensive phenotypic and genotypic information from the 

participants. Informed consent with the protocol’s approval from National Research Ethics 

Service Committee was signed by all participants. The genotype data was generated using 

two array chips, the Applied BiosystemsTM UK Biobank AxiomTM Array and the Applied 

BiosystemsTM UK BiLEVE AxiomTM Array. The UKB analysis team conducted the SNP 

imputation with reference panels from Haplotype Reference Consortium56 (HRC) and the 

UK10K project65. We called the imputed data to BED format by PLINK with best-guest 

calling, kept the SNPs with MAF ≥ 0.01, Hardy-Weinberg Equilibrium test P ≥ 10-10, 

imputation info score ≥ 0.6 in European samples. We used the GCTA software66 to remove 

the cryptic relatedness in the UKB based on the HapMap3 SNPs in each population. The 

samples were pruned by estimated relatedness larger than 0.05, keeping the unrelated 

samples only. We also removed the samples with mismatched sex information in phenotype 

and genotype, and samples withdrew the participation. The final dataset contains 4 ancestries, 

European (EUR, N= 347,800), East Asian (EAS, N=2,252), South Asian (SAS, N=9,436) and 

African (AFR, N=7,006).   

 

We matched the SNPs between UKB, the annotation baseline model BaselineLD v2.2 and 

LifeLine cohort, extracted the common SNPs among those 3 datasets, resulting in 7,356,518 

SNPs and 1,154,522 HapMap3 SNPs. For a secondary analysis, we further included up to 

9,705,522 imputed common SNPs with their annotation data extracted from PolyPred-S, 

which used BaseLineLF (an extended version of BaseLineLD v2.2 to include annotations at 

the low-frequency variants). We randomly sampled 5,991 EUR samples as the tunning 

sample for C+PT and LDpred2 and performed 10 cross validation in the remaining samples 

(341,809).  The 55 traits with relatively large sample size (𝑁 > 110,000) were extracted 

from all 4 ancestries.  The phenotypes with continuous values were filtered within the range 

of mean +/- 7SD and then rank-based inverse-normal transformed within each ancestry and 

sex group.   

 

1000 Genomes and UK10K data 
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In addition to the LD reference from UKB, we also used two other whole genome sequence 

data sets. We downloaded genotype data from 1000 Genomes Project (phase 3)67. We kept 

samples labelled as “GBR”, “CEU”, “TSI”, “IBS” and “FIN” as European samples. We 

extracted the same SNP sets QCed above (7,356,518), and removed the cryptic relatedness 

based on the HapMap3 SNPs by GCTA software (cut-off value for GRM 0.05), resulted in 

494 unrelated samples. We used the genotype data from UK10K project65 which consists of 

3781 individuals and 45.5 million genetics variants. We extracted the SNP sets QCed above 

and kept the 3642 unrelated samples by GCTA software.  

 

Lifeline cohort 

From the Lifeline cohort we used 36,305 samples and 17 million SNPs after imputation and 

QC (imputation info score > 0.3, MAF > 0.0001 and HWE > 1e-6). We kept the sample with 

age > 20 years old and removed the samples with the phenotypic value (height and BMI) out 

the range of mean +- 5SD.  We further removed the related samples and retained 11,842 

unrelated samples for out-of-sample prediction.  

 

Public data from GWAS meta-analysis for height and BMI 

We assess the prediction accuracy for height and BMI from the summary data public 

available49. We kept the same variant set in the UKB, extracted the SNPs with per-SNP 

sample size within mean +/- 3 SD and the difference in allele frequency between GWAS and 

LD reference samples smaller than 0.2. The summary data was further QCed by DENTIST58 

to filter the SNPs with potential errors, removed the SNPs with P_DENTIST < 5´10-8 and 

P_GWAS > 0.01. All the summary data were imputed to the same variant panel. 

 

Cross-validation in UKB 

We performed ten-fold cross-validation in the UKB with 341,809 unrelated individuals of 

European ancestry. We chose 55 traits from the UKB with relatively large sample size and 

pruned the traits with pair-wise phenotypic correlation |r| < 0.3. 31 independent traits were 

selected for the prediction analysis, including 11 binary traits and 20 continuous traits, where 

3 binary traits were further removed due to a very low average prediction accuracy (mean R2 

< 0.01 among all methods in the European cross-validation). The sample sizes for the final 

set of 28 independent traits are shown in Supplementary Table 1. We partitioned the total 

sample into ten equal-sized disjoint subsamples. For each fold, we retained one subsample as 
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validation and other remaining nine subsamples as training data. We repeated the process ten 

times. The summary statistics for each fold were generated by PLINK2 software68 with sex, 

age, and first 10 principal component as covariates. Linear regression was used for 

continuous traits and logistic regression for binary traits. We performed the cross-validation 

for all independent traits in those methods: clumping and P value thresholding (C+PT) 

implemented in PLINK 1.9 software, SBayesR69, SBayesRC, LDpred243 and LDpred-funct31. 

SBayesR and LDpred2 were only run in 1M HapMap3 common SNPs due to high 

computational burden.  C+PT, LDpred-funct and SBayesRC were run in both 1M and 7M 

common SNP sets. The functional annotation for LDpred-funct and SBayesR-AL was from 

BaseLine model 2.2 (from LDpred-funct) which contains 96 annotations, of which 14 are 

MAF related (10 MAFbins, MAF_Adj_Predicted_Allele_Age, MAF_Adj_ASMC and 

MAF_Adj_LLD_AFR).  We calculated the PGS using genotypes from independent 

validation set in each fold and obtained the prediction R2 from linear regression of true 

phenotype on the PGS from each method for quantitative trait and McFadden’s pseudo-R2 for 

logistic regression. The final R2 was subtracted the value from full model (PGS + sex + age + 

10 PC) to null model (sex + age + 10PC).  Then, we calculated the relative prediction 

accuracy by 
'-"	-	'#$%&'()

"

'#$%&'()
" , where x is each method compared and R2 is the prediction 

accuracy, then the relative prediction accuracy values are averaged across ten folds. 

 

Trans-ancestry prediction 

We used the summary statistics from all European unrelated samples as the training data 

(sample sizes showed in Supplement Table 1). The prediction accuracy was calculated as in 

the within European ancestry prediction by comparing the null model without PGS and the 

full model with PGS. We randomly selected 500 tuning samples for methods requiring a 

tuning step and excluded them from the PGS calculation in all methods. The settings for 

different methods used in the study are described as below. 

SBayesR family. We ran SBayesR and SBayesRC using the summary statistics of UKB 

EUR, and then applied the estimated SNP effects directly to the genotypes of individual from 

SAS, EAS and AFR ancestries in the UKB.  

PolyPred-S. We followed the steps in ref15 to first apply PolyFun + SuSiE in fine-mapping of 

7M SNPs with functional annotations from BaseLineLF and LD data from the PolyPred 

program which was calculated from the UKB (a step called PolyFun-pred). Then, the mix 

SNP weights were optimised in 500 tuning samples of the target ancestry using both the 
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predictors from Polyfun-pred and predictors from SBayesR (using training samples of 

European ancestry). We obtained the PGS from the optimised SNP weights and genotypes 

for each target ancestry (SAS, EAS and AFR) in the UKB. 

PRS-CSx and SBayesRC-multi. We evaluated these two methods based on their performance 

in predicting individuals of EAS ancestry, because of availability of GWAS summary 

statistics from BioBank Japan (BBJ)51 in the public domain. There were 11 traits in common 

between our selected traits and BBJ, of which 3 traits were diseases. PRS-CSx requires 500 

cases in the tunning samples but there were no sufficient EAS case/control samples for the 

disease traits in UKB, hence the analysis was performed in the 8 continuous traits 

(Supplementary Table 5). The 500 hold-out samples from UKB EAS were used as the 

tunning sample. We matched the SNPs in the summary data from BBJ and UKB and 

removed SNPs with MAF < 0.005 in either population. After QC, 4,906,538 SNPs remained 

with functional annotations, of which 1,011,961 SNPs were in the HapMap3 panel. We ran 

PRS-CSx with GWAS summary statistics from UKB EUR and BBJ populations and LD data 

from UKB EUR and EAS downloaded from the website 

(https://github.com/getian107/PRScsx), using the default parameters. After obtaining the SNP 

weights specific to EUR and EAS populations, we calculated the EUR-based and EAS-based 

PGS with genotypes from UKB EAS, and then estimated the optimal weights to combine the 

two sets of PGS using the EAS tuning samples with phenotypes, as suggested by PRS-CSx. 

The prediction accuracy was calculated from the optimised PGS and phenotypes in the 

remaining EAS validation samples. Followed the same strategy from PRS-CSx, we extended 

our method to utilise GWAS data from multiple populations (SBayesRC-multi). Instead of 

joint modelling, we run SBayesRC with summary statistics from UKB EUR and LD from 

UKB EUR, and run SBayesRC with summary statistics from BBJ and LD from UKB EAS 

separately. Then, the final SNP effects for EAS individuals were derived by combining the 

EUR- and EAS-based PGS in the EAS tuning samples as described above.   

 

Simulations 

We performed two sets of simulations, one in 1M HapMap3 SNPs, and another in 7M 

imputed SNPs, following the BayesR model which allows the SNPs effects have different 

variance. We randomly selected 10,000 variants from the whole genome as causal variants, 

of which 6,000 had small effects sampled from N(0, 0.01), 30 had medium effects sampled 

from N(0, 0.1), and 10 variants had large effects following N(0, 1). Then, the effect sizes 

were scaled to give a trait heritability of 0.5. We repeated the simulation 10 times, with 10 
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sets of different causal variants. We also simulated a case with a trait heritability of 0.1 and 

the same number of causals. For the simulation scenario incorporating annotation data, we 

used the annotation effects estimated from height in real data analysis and calculated the per-

SNP probability of membership in each mixture component by probit link function, then 

sampled the causal effects from that distribution. 

 

Data Availability 

The UK Biobank data are available through formal application to the UK Biobank 

(http://www.ukbiobank.ac.uk). All the other datasets used in this study are available in the 

public domain. 

 

Code Availability 

SBayesRC is implemented in a publicly available software GCTB at 

https://cnsgenomics.com/software/gctb/#Download and a R package at 

https://github.com/zhilizheng/SBayesRC. 
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Figure 1 Characteristics of functional annotation data. a) Functional annotations provide 

orthogonal information that help to distinguish the causal variant from the SNP in perfect LD 

with it. However, when the causal variant is not observed, the SNP that tags the causal 

variants by LD captures the causal effect but does not share the same annotation with the 

causal variant, resulting in a mismatch between effect size and annotation category. b) 

Functional categories can differ in both the proportion of causal variants and the distribution 

of causal effect sizes, either of which can lead to an enrichment or depletion in per-SNP 

heritability in a functional category.  
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Figure 2 Assessing the performance of our methods by simulations. a) Robustness of 

SBayesRC to the choice of LD reference. b) Robustness of SBayesRC to the unequal per-

SNP sample sizes in the meta-analysis. c) Improvement of prediction accuracy using 

SBayesRC with high-density SNPs, annotation data, or both, in comparison to LDpred-funct. 

d) Power of identifying causal variants using models with or without high-density SNPs or 

annotation data. e) False discovery rate (FDR) of identifying causal variants using model 

with or without high-density SNPs or annotation data. f) Correlations between the estimated 

and true effect sizes at SNPs with posterior inclusion probability (PIP) greater than a 

threshold.  
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Figure 3 Prediction performance using SBayesRC with 7M SNPs and annotation data in 

European populations. a) Relative prediction accuracy of different methods to SBayesR using 

1M HapMap3 SNPs, averaged from ten-fold cross-validation in the UKB. b) Out-of-sample 

prediction accuracy for height and BMI, using UKB (N = 0.05 to 0.3M by down sampling) or 

GIANT dataset49 (N = 0.7) as training and an independent dataset of Lifeline as validation.  
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Figure 4 Trans-ancestry prediction using SBayesRC with 7M SNPs and annotation data. a) 

Relative prediction accuracy (ratio) to that of SBayesR with 1M HapMap3 SNPs averaged 

across 10 folds of cross-validation in the European ancestry. b) Relative prediction accuracy 

(% of improvement) to that of SBayesR trained in the GWAS of European ancestry and 

validated in each of the other ancestries. VitD in PolyPred-S AFR population had a value of 

331%, which is removed from the graph for a clear presentation. c) Relative prediction 

accuracy as in panel b either using summary statistics from UKB of European ancestry alone 

or together with those from BBJ of East Asian ancestry for trans-ancestry prediction in the 

UKB population of East Asian ancestry (8 traits available). The number above each boxplot 

indicates the mean value across traits. Data provided in Supplementary Table 4 and 5. 
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Figure 5 Comparison between 1M HapMap3 SNPs and 7M imputed SNPs for the 

improvement (%) in prediction accuracy for SBayesRC using annotations relative to 

SBayesRC without annotations. The slope of regression of results from 7M SNPs on results 

from 1M SNPs is 1.88 (s.e.=0.22).  
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Figure 6 Other factors affecting accuracy of prediction incorporating functional annotations. 

a) Traits with low heritability tend to benefit more from using annotation data. b) GWAS 

with small sample sizes tend to benefit more from using annotation data. c) Improvement in 

prediction accuracy increases with the number of annotations upon the MAF and LD (+ 

Baseline core/full = MAF+LD+Baseline core/full). d) Full analysis of all SNPs and 

annotation data is superior to the stepwise analysis that prioritises the top 1M SNPs based on 

their annotations and fits them in the model.
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Figure 7 Contribution of functional categories to the total prediction accuracy and estimation 

of functional genetic architecture in complex traits. a) Proportion of prediction accuracy 

against proportion of SNPs in each functional category. b) Per-SNP contribution to prediction 

accuracy against per-SNP contribution to heritability in each functional category. c) Per-SNP 

heritability enrichment and distribution of effect sizes shown by the proportion of SNP 

effects belonging to each of the five mixture distributions across the top 20 and bottom 5 

functional categories.  
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Table 1 Summary of prediction methods used in this study. 

Method Features Use 
annotations 

Use all 
imputed SNPs 

Require 
tuning data 

C+PT44 Non-parametric method based on GWAS marginal effect estimates of a subset of independent SNPs obtained 
by LD clumping and p-value thresholding. 

No No Yes 

LDpred243 Bayesian mixture model that fits SNPs jointly with a point-normal prior. It is more powerful than C+PT by 
accounting for sparse genetic architecture and LD between SNPs.  

No No Yes 

LDpred-funct31 Stepwise method that starts with an infinitesimal model with functionally informed priors and then considers 
sparse genetic architecture empirically by regularizing SNP effects in bins of different magnitude using cross-
validation. Compared to LDpred2, it incorporates functional annotations and analyses all imputed SNPs. 

Yes Yes Yes 

SBayesR35 Multi-component mixture model that assumes a finite mixture of normal distributions for SNP effects. It 
accounts for complex genetic architecture. All parameters in the mixture distribution are estimated from data. 

No No No 

SBayesRC (this 
work) 

Extension of SBayesR to incorporate functional annotations and allow for fitting all imputed SNPs jointly. It 
considers differences between annotations in both the proportion of causal variants and the magnitude of 
causal effect sizes. 

Yes Yes No 

PolyPred-S15 Stepwise method that combines SNP effect estimates from a functionally informed fine-mapping approach50 
for 18M SNPs with those from SBayesR for 1M HapMap3 SNPs. It is flexible to the choice of method that 
generates the joint-effect estimates of HapMap3 SNPs, for which SBayesR is recommended when LD 
reference sample closely matches the GWAS sample. It is proposed mainly for cross-population prediction, 
and uses a sample from the target population for weighting the SNP effects. 

Yes Yes Yes 

PRS-CSx14 Multi-discovery method designed to improve cross-population prediction by jointly modelling summary 
statistics data from multiple ancestrally diverse populations. It borrows information across populations by a 
shared continuous shrinkage prior but still requires a tuning data to maximize the prediction accuracy in the 
target population. It does not consider functional annotations and is computationally challenging to fit more 
than 1M HapMap3 SNPs.  

No No Yes 

SBayesRC-multi 
(this work) 

Extension of SBayesRC to combine the SNP effect estimates from multiple populations after running 
SBayesRC in each population separately. Similar to PRS-CSx, a tuning sample of individual-level data is used 
to derive the final predictors for the target population. However, unlike PRS-CSx, the GWAS summary 
statistics from different populations are not jointly modelled. 

Yes Yes Yes 
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Table 2 Computation resource required for different methods. Results are average values 

across traits using 4 CPU cores when multi-thread is supported for the method. 

Method (No. SNPs) Runtime (hours) Memory (GB) Required Storage (GB) 

SBayesRC (7M) 9.5  75.1 130 

LDpred-funct (7M) 6.0  120.6 40-50 per trait 

PolyPred-S (7M) 19.81 71.7 2,800 

LDpred2 (1M)  5.5  53.4 43 

SBayesRC (1M) 1.2  7.8 5.6 

SBayesR (1M) 0.5  27.0 22 

PRS-CSx (1M) 14.22 4.7 5.6 
1 In PolyPred-S, fine-mapping is the most time-consuming step and is suggested to run by blocks in parallel. 

Here we used a single core and divided the runtime by 4 for comparison to others.  
2 Per data set runtime: total runtime / number of training data sets (= 2). 
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