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Abstract 1 

 2 

Analysis of high-dimensional datasets often involves usage of summary statistics, one of 3 

which is the correlation coefficient. These values are then used to inform downstream analysis, 4 

whether in feature selection or in subsequent construction of networks and heatmaps. 5 

Condensing pairwise scatterplots into these singular values however, often results in a loss of 6 

information. Originally proposed by F. J. Anscombe in his famous ‘Anscombe’s Quartet,’ this 7 

phenomenon has been canonically used to demonstrate the importance of plotting and the 8 

limitations of summary statistics such as correlation or variance [F.J. Anscombe, (1973) American 9 

Statistician. 27 (1), 17-21]. While numerous methods exist for the generation of visually distinct 10 

datasets that share similar summary statistics, the converse has not been extensively studied. To 11 

address this gap, we propose ICLUST (Image CLUSTering), an image classifier tool that can 12 

visually distinguish correlations with similar summary statistics in simulations and identify 13 

meaningful clusters in real data. Such a tool can potentially benefit those performing exploratory 14 

analysis or feature selection in a complementary fashion by identifying relationships between 15 

variables that traditional summary metrics cannot provide. 16 

 17 

 18 

Significance Statement 19 

 20 

Distilling large-scale, multidimensional datasets via analysis of pairwise relationships 21 

often employs a single value to describe the relationship between variables. However, as 22 

demonstrated through simulations, such summarization fails to retain the nuances of the data. 23 

Characteristics such as the type of relationship (linear versus nonlinear, etc.) and the spread of 24 

the data are commonly lost when using correlations. Here we propose a transfer learning 25 

framework, borrowing from image clustering and classification software, to visually classify 26 

graphs. We apply our method towards separation of scatterplots with similar correlation statistics 27 
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but visually distinctive patterns in both simulations and real data, demonstrating its broad 28 

applicability.  29 

 30 

 31 

Main Text 32 

 33 

Introduction 34 

 35 

Exploratory analysis of large multidimensional datasets often relies on summary statistics 36 

such as correlation coefficients for the construction of networks and heatmaps. However, the 37 

usage of such summary statistics results in the loss of information encoded in the scatterplots of 38 

pairwise relationships.  Anscombe’s quartet has canonically been used to illustrate the 39 

importance of graphing and the limitations of summary statistics such as correlation or variance - 40 

Anscombe himself stated, “make both calculations and graphs. Both sorts of output should be 41 

studied; each will contribute to understanding” [1]. This is especially critical in biological fields as 42 

Pearson and Spearman correlation are the default analytical tools when performing exploratory 43 

analysis in the gene expression and microbiome domains respectively [2-4]. 44 

Several methods have been developed to generate these kinds of datasets, analogous to 45 

Anscombe’s Quartet. The Datasaurus is one such dataset, generated using either a genetic 46 

algorithm or a simulated annealing method [5, 6]. However, there is a lack of tools that can 47 

separate these plots once they have been generated. Even the more modern exploratory data 48 

analysis tools still collapse pairwise relationships into summary statistics such as the s-Corrplot 49 

package or the MIC, which like Spearman, only quantifies strength of relationship without 50 

specifying the nature of that association [7, 8] 51 

Here we propose ICLUST, a tool that employs transfer learning based on the pre-trained 52 

VGG16 convolutional neural network. Although the model had been trained to distinguish images 53 

of cats and dogs, by extracting the last layer of the network (4096 features), we can use the pre-54 
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trained weights to distinguish images of plotted pairwise correlations in an automated fashion, 55 

thus seeking to find ‘visual’ similarities in a way that would be impossible manually. We apply this 56 

tool to the separation of pairwise correlations from simulations and real data with the hypothesis 57 

that ICLUST can visually distinguish correlations with similar summary statistics (with 58 

performance inversely proportional to noise) and identify clusters in real data, some of which 59 

would have been masked by using correlation coefficients alone as a clustering criterion. 60 

 61 

 62 

Results 63 

 64 

We first applied ICLUST to Anscombe’s quartet, taking the original data and adding to 65 

each point a specified amount of noise according to a bivariate normal distribution. Five plots 66 

were created for each class at each level of noise; the resulting set of images was then passed 67 

through ICLUST and the PCA plots are shown in Fig. 1a. A v-measure score (VMS) for each 68 

level of noise was computed to quantitatively assess the quality of clustering in accordance with 69 

the true labels. VMS as a function of noise (orange) is shown in Fig. 1b with error bars reflecting 70 

the standard deviation over one hundred such trials. The baseline for comparison (shown in blue) 71 

is the VMS obtained using clustering based on distances of the Pearson correlation summary 72 

statistic alone. Consistent with our hypothesis, increasing the level of noise reduces the accuracy 73 

of clustering as plot classes begin to overlap upon visual examination (Fig. 1c). 74 

Given the relative efficacy of ICLUST on distinguishing clusters in canonical simulated 75 

data, we tested whether or not ICLUST could identify distinct clusters in real data. We applied 76 

ICLUST to data obtained from the WHO on a variety of health statistics for each country by 77 

computing pairwise correlations between all variables and arbitrarily choosing a window of 78 

Pearson correlation values in which to examine scatterplots. By doing so, we emulate the 79 

simulation approach described earlier, generating a dataset with similar values but potentially 80 

differing shapes and relationships. Here, we arbitrarily choose a window of correlation magnitude 81 
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and select all correlations with Pearson’s r with a magnitude between 0.8975 to 0.9025. 82 

Hierarchical clustering based on Euclidean distance between correlation strength yields the 83 

dendrogram in Figure 2a, while clustering using ICLUST 4096-component feature vectors yields 84 

the structure in Figure 2b. Clustering assignment was determined by the best silhouette score, 85 

which corresponded to k = 2 clusters. The average image of the scatterplots in clusters 1 (red) 86 

and 2 (teal) are shown for correlation strength-based clustering and ICLUST in Figure 2c and 87 

Figure 2d, respectively. The PCA plot obtained based on Euclidean distance of the image 88 

fingerprints is shown in Figure 2e. Notably, variables that fall in cluster 1 tend to be normalized 89 

rates (e.g. immunization per 1000), while variables that fall in cluster 2 tend to be less uniformly 90 

distributed because of the presence of outliers. An example of this is population of a country, as 91 

countries such as India and China that are expected to be outliers skew the distribution.  92 

We then applied ICLUST to an airline delays dataset, containing various metrics for 93 

flights (such as time spent taxiing). In this dataset, we can not only distinguish visual differences 94 

in shape (across a variety of correlation strengths, from r = 0 to r = 1) but also observe 95 

correlations that share similar correlation coefficients but distinct visual structure. When 96 

performing clustering analysis, the algorithm chooses k = 2 as the best silhouette score both 97 

when using correlation strength (Fig. 3a) or image fingerprints (Fig. 3b). The average image 98 

corresponding to these clusters for correlation strength and image fingerprints are shown in 99 

Figure 23 and Figure 3d respectively. In Figure 3c, cluster 1 corresponds to the teal cluster in 100 

Figure 3a while and cluster 2 corresponds to the red cluster. In Figure 3d, Cluster 1 is the teal 101 

portion of the dendrogram in Figure 3b. The PCA plot of these clusters based on the neural 102 

network fingerprints is shown in Figure 3e. , correlations with similar strength can appear 103 

drastically different, while correlations with different strength can appear more similar (Fig. 3f-g). 104 

Thus with both real examples and simulation, we demonstrate how Anscombe’s observation is 105 

indeed applicable to real world settings and that ICLUST can both separate visually distinct 106 

graphs that share summary statistics and cluster similar graphs with different correlation 107 

coefficients.  108 
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 109 

 110 

Discussion  111 

 112 

Given the prevalent usage of summary statistics in constructing models, networks, and 113 

other meaningful representations of data, we propose a transfer learning based image-clustering 114 

approach to the separation of scatterplots. Through simulations of Anscombe’s Quartet as well as 115 

representative real datasets (WHO, airline), we demonstrate the efficacy of ICLUST in identifying 116 

clusters of distinct patterns where summary statistics would otherwise fail to do so. Going 117 

forward, ICLUST can aid in exploratory data analysis in a complementary fashion to traditional 118 

methods, in a way consistent with Anscombe’s axiom of combining both graphs and calculations 119 

to arrive at the most accurate representation of data. 120 

 121 

 122 

Methods 123 

 124 

Plotting Simulated Data 125 

Bivariate independent uniform displacement was added to Anscombe’s Quartet in the following 126 

manner. Let (xi, yi) be a datapoint from the dataset. We define ���� � �0.1, 0.25, 0.5, 0.75, 1�; 127 

values were arbitrarily chosen to yield a representative range of noises. A new simulated dataset 128 

for each ���� was generated by computing �� � ��, �� � ��� where ��, ��~�����0, ����� for each 129 

dataset. Python’s Matplotlib and Seaborn libraries with were used to construct plots. Opacity of 130 

points was set to alpha = 0.1 such that overlapping points were treated differently when plotted. 131 

The default sns.lmplot function was used with palette=’set1’ and default marker size=36, 132 

shape=’o’. The origin of each plot was fixed at the center of the coordinate axes (which is 133 

hidden). The scales of the plots are allowed to vary per default plotting parameters and the 134 

method is thus scale invariant. For each set of parameters, 100 simulations were generated. Note 135 
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that images shown in Fig. 1. are enlarged and include the axes for better visibility; however the 136 

clustering analysis was performed on the raw images. 137 

 138 

 139 

Evaluating Performance on Simulation Data 140 

An unweighted v-measure score (VMS) was used to assess the performance of ICLUST on the 141 

labeled simulated data, as defined by: 142 

 143 

��� � 2����� ����!� " #��$%�!���&&�
���� ����!� � #��$%�!���&&  

Where homogeneity is defined as: 144 

���� ����!� � 1 ' ��#|)�
��#�  

where 145 

��#|)� � ' * ���

+
�,�

log ����

��

� 

 146 

��#� � ' * ∑ ����

#
�

log �∑ ����

# � 

And completeness is defined as: 147 

#��$%�!���&& � 1 ' ��)|#�
��)�  

Where  148 

��)|#� � ' * ���

+
�,�

log ����

��

� 

��)� � ' * ∑ ����

#
�

log �∑ ����

# � 

Where N is the total number of points, C is the total number of labels, and ��, ��,��� represent the 149 

number of elements with true label C, in cluster K, and in cluster K with label C, respectively.  150 
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 151 

This is a generalization of the weighted VMS, given by: 152 

�
 � �1 � 1�23
12 � 3  

Where 1 scales the VMS by a weighting towards homogeneity; here we set 1 � 1. 153 

 154 

 155 

Plotting WHO and Airline Delay Data 156 

For real-world datasets, Python’s Matplotlib and Seaborn libraries were used to construct 157 

scatterplots. Opacity of points was set to alpha = 0.1 such that overlapping points were treated 158 

differently when plotted. The default sns.lmplot function was used with palette=’set1’ and default 159 

marker size=36, shape=’o’. The upper and lower bounds for the x and y axes are dynamic and 160 

vary on a scatterplot by scatterplot basis, thus using the default parameters for determination of 161 

scaling and display. All correlations with a Pearson’s r between 0.8975 and 0.9025 in magnitude 162 

were plotted, yielding n = 51 scatterplots. The window was chosen based on a range likely to 163 

contain various shapes as described by Anscombe’s Quartet. Two plots were removed from the 164 

WHO dataset as outliers (identified via initial PCA), resulting in 49 plots. The outliers were 165 

removed to best demonstrate the two distinct clusters; visually, the outliers appeared distinct from 166 

the other plots consistent with ICLUST’s ability to distinguish visual differences between 167 

scatterplots. For the airline data, all scatterplots were plotted in the dataset (n = 80 scatterplots). 168 

WHO data and airline delay data were obtained from sources [8] and [9] respectively. 169 

 170 

 171 

Image Classification, Transfer Learning and Image Clustering 172 

Image classification in ICLUST uses the VGG16 model, a convolutional neural network trained on 173 

the ImageNet dataset [10]. Briefly, input images (.PDFs, .PNGs, etc.) are scaled via the keras PIL 174 

image library which converts them into VGG16 inputs i.e. RGB (3-channel) images, each of 175 

dimensions 224 x 224 pixels. With each successive layer of the network, these pixels are 176 
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converted into features using pre-trained functions. Instead of using the original output layer 177 

however, in a transfer learning setting, we adopt the penultimate layer (4096 features) as the 178 

feature map for our problem and use these as fingerprints for each image. Unsupervised 179 

clustering is performed using UPGMA after calculating the Euclidean distance between feature 180 

vectors corresponding to each image. Silhouette score is computed for each possible number of 181 

clusters, iterating from 2 through max_clust (default=10). Code for image processing and transfer 182 

learning were obtained from an open-source GitHub repository (see acknowledgements). The 183 

software was adapted from an earlier version and streamlined for use with the addition of new 184 

functionality such as concatenation of images, creation of dendrograms, generation of average 185 

images, and clustering based off of silhouette score. The average image for a given cluster is 186 

obtained by averaging the pixel intensities across the entire image for all members in the cluster. 187 

If the true class labels are given, clustering accuracy is assessed using VMS; otherwise, 188 

unsupervised clustering is performed in which the program iterates through cluster numbers 189 

(default range is 2-20) with the cluster number chosen based on the k that yields the highest 190 

silhouette score. All raw data and code used to generate analysis and figures are located at 191 

https://github.com/kbpi314/ICLUST. 192 

 193 
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 223 

 224 

Figure Legends 225 

 226 

Fig. 1. ICLUST can resolve Anscombe’s Quartet. (A) Principal coordinate analysis (PCA) plots 227 

(with PCA computed on the transfer learning features) at varying noise levels where points 228 

represent images of scatterplots derived from Anscombe’s quartet with the addition of noise. (B) 229 

V-measure score (VMS) as a function of noise level for the clustering structure in Anscombe’s 230 
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Quartet (obtained via cutting the hierarchical clustering tree at k = 4). (C) Examples of how the 231 

plots become distorted as noise levels increase.  232 

 233 

Fig. 2. ICLUST identifies distinct clustering in WHO data. A subset of scatterplots were obtained 234 

by selecting all pairwise correlations in the WHO dataset with Pearson correlation between 235 

0.8975 and 0.9025, with two outlier plots removed. Clustering assignment was determined by 236 

selecting the number of clusters with the highest silhouette score. (A) Dendrogram obtained by 237 

hierarchical clustering of scatterplots based on correlation strength alone. (B) Dendrogram 238 

obtained by hierarchical clustering of scatterplots based on Euclidean distance between 4096-239 

component feature vectors of the images as processed by ICLUST. (C) Average image in each 240 

cluster as determined by correlation strength-based clustering, corresponding to the dendrogram 241 

in (A). (D) Average image in each cluster according to visual similarity clustering via ICLUST. (E). 242 

Principal Coordinate Analysis (PCA) of the scatterplots based on the 4096-component feature 243 

vector for each image with colors pertaining to the clustering obtained in (B). 244 

 245 

Fig. 3. ICLUST identifies distinct clustering in airline data. All scatterplots in the dataset were 246 

plotted and clustered using (A) correlation strength alone and (B) image 4096-component feature 247 

vectors. (C) Average image in each cluster as determined by correlation strength-based 248 

clustering, corresponding to the dendrogram in (A). (D) Average image in each cluster according 249 

to visual similarity clustering via ICLUST. (E). Principal Coordinate Analysis (PCA) of the 250 

scatterplots based on the 4096-component feature vector for each image with colors pertaining to 251 

the clustering obtained in (B). (F) Examples of scatterplots with similar correlation size but 252 

different visual shape. (G) Example of correlations with similar shape but different correlation 253 

strength.  254 
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