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Abstract

Most computational methods that infer somatic copy number alterations (SCNAs) from bulk

sequencing of DNA analyse tumour samples individually. However, the sequencing of

multiple tumour samples from a patient’s disease is an increasingly common practice. We

introduce Refphase, an algorithm that leverages this multi-sampling approach to infer

haplotype-specific copy numbers through multi-sample reference phasing. We demonstrate

Refphase’s ability to infer haplotype-specific SCNAs and characterise their intra-tumour

heterogeneity, to uncover previously undetected allelic imbalance in low purity samples, and

to identify parallel evolution in the context of whole genome doubling in a pan-cancer cohort

of 336 samples from 99 tumours.

Background

As a consequence of genomic instability, cancers accumulate somatic mutations [1]. These

include somatic copy number alterations (SCNAs) affecting focal genomic segments,

chromosome arms, or entire chromosomes, and whole genome doubling (WGD) events that

alter the entire karyotype. SCNAs change the number of physical copies of a given genomic

region and often result in aneuploidy, which affects up to 90% of solid tumours [2,3]. These

mutational events may be clonal, shared by all cancer cells, or subclonal and thus present

only in a subset of cells, resulting in intra-tumour heterogeneity (ITH) [4,5]. It is now clear

that single-sample sequencing studies derived from single biopsies are often insufficient to

capture the extent of mutational heterogeneity and the field increasingly relies on

multi-sample bulk and single-cell analyses from the same tumour to better describe this

complexity. Such studies have permitted the mapping of the landscape of clonal and

subclonal SCNAs [6–12], and have revealed a relationship between SCNA intra-tumour

heterogeneity and poor prognosis in multiple tumour types [6,8,13–16]. Additionally,

chromosomal instability and aneuploidy have been associated with and proposed as causes

of cancer drug resistance [17] and linked to metastasis [18–21]. Inference of SCNAs and

quantification of their intra-tumour heterogeneity is therefore of clinical importance and a

prerequisite for understanding tumour evolution.

SCNAs are typically identified in an allele-specific manner from DNA sequencing or single

nucleotide polymorphisms (SNP) array data using two measures: the log read-depth ratio

(LogR) of a genomic locus between the tumour and a matched normal sample, which

2

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.511885doi: bioRxiv preprint 

https://paperpile.com/c/izoeFZ/M1mQ
https://paperpile.com/c/izoeFZ/RRwx+PiC5
https://paperpile.com/c/izoeFZ/NDvk+toKl
https://paperpile.com/c/izoeFZ/K3dF+6HNy+lOG0+9btI+jw6F+vqOB+mw6F
https://paperpile.com/c/izoeFZ/K3dF+lOG0+DhnX+mpTe+MH2C+AmrN
https://paperpile.com/c/izoeFZ/4OdI
https://paperpile.com/c/izoeFZ/PnSW+vyhm+CE9S+q5Ok
https://doi.org/10.1101/2022.10.13.511885
http://creativecommons.org/licenses/by/4.0/


informs total copy number estimates; and the B-allele frequency (BAF) at heterozygous

SNPs, which informs allelic imbalance (AI) estimates [22]. BAF and LogR profiles are

sensitive to sequencing noise and sample purity. The difficulty of characterising SCNAs in

low tumour purity bulk samples can lead to many being discarded [23]. Imposing such purity

thresholds on analyses is likely problematic as sample purity co-segregates with other

important clinical covariates and survival [23]. Therefore, approaches that accurately resolve

copy number states in low purity samples are of clinical interest.

Additionally, while BAF and LogR allow inference of allele-specific SCNAs, the resulting copy

number profiles and underlying SNPs are often not phased, meaning that SCNAs cannot be

assigned to the physical haplotypes they reside on. Instead, allele-specific copy number

states are typically reported in an unphased major/minor configuration, where major and

minor refer to the greater and lesser copy number at a genomic locus respectively. However,

phasing of SCNAs can offer additional insights into the clonality of mutational events, giving

resolution on whether the same parental allele has been gained or lost across different

samples in a single tumour.

Statistical phasing utilises large collections of genotypes [24] and local linkage disequilibrium

structure to phase SNPs [25,26]. Multiple groups have previously implemented statistical

phasing approaches in the context of whole-genome sequencing (WGS) [27], single-sample

bulk sequencing studies [27,28] and in single-cell studies, using DNA [29] and RNA [30].

However, while highly accurate locally, statistical phasing accuracy rapidly decreases with

increasing genomic distance, limiting the genomic span within which a SNP and the

corresponding SCNA can accurately be assigned to its haplotype-of-origin. Therefore,

statistical phasing for SCNA detection is mostly restricted to WGS data, ignoring a large

proportion of cancer genomics studies based on whole-exome (WES) or targeted panel

sequencing. Additionally, while single-cell sequencing removes the complications of sample

purity, it is so far not routinely used in clinical studies and genomic coverage typically

remains low, impeding allele-specific copy number readouts.

To address these challenges, we present Refphase. Refphase implements multi-sample

reference phasing [9] to infer haplotype-specific copy number states, rescue previously

undetected SCNAs in low purity samples, and standardise quantification of SCNA-based

ITH. Refphase is, to our knowledge, the first long-range phasing algorithm applicable to all of

multi-sample WGS, SNP array, exome and targeted sequencing data. Unlike statistical
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phasing, Refphase does not require reference haplotype panels or large collections of

genotypes. Instead, it leverages the common germline background between multiple

samples from the same patient to phase heterozygous SNPs and SCNAs. We have

previously used reference phasing to describe MSAI, independent SCNAs that occur on

opposite haplotypes in different samples from the same tumour, and to identify parallel and

convergent copy number events [8,9].

Refphase integrates SCNAs pre-segmented using single-sample approaches [22,31–33]

across multiple samples from the same tumour. It takes input from ASCAT [22] and other

common copy number callers and provides output compatible with MEDICC2 [34], enabling

streamlined processing of multi-sample copy number data from raw read counts to

event-based SCNA phylogenies.

Here, we demonstrate Refphase’s ability to infer SCNAs and characterise their intra-tumour

heterogeneity; implement its grouping functionality to compare the SCNA landscapes in

primary and metastatic tumour samples from a single patient’s disease; showcase its ability

to uncover previously undetected AI in low purity samples; and use it to identify parallel

evolution in the context of whole genome doubling in a pan-cancer cohort.

Results

Refphase algorithm

Refphase takes as input a copy number segmentation for each of N tumour samples from

the same patient which it processes in four discrete steps or modules (Figure 1, Methods).

First, a minimum consistent segmentation is created from the union of all start and end

positions of the input copy number segmentations of each tumour sample. Breakpoints with

distance smaller than a user-defined maximum gap size (default = 100kbp) are subsequently

merged. This step excludes breakpoints that belong to the same sample-of-origin to

preserve focal gains and losses present in the original samples (Figure 1a, Methods) and

yields a final set of m bins.

Next, using this set of m bins, multi-sample reference phasing is performed (Figures 1b-e).

Heterozygous SNPs are either defined by the user or identified from the BAF values of the

normal sample (Methods). For each bin mi, the sample with the highest degree of AI is then
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identified, which will act as a reference nref for mi (Figure 1b, Methods). This reference

sample nref is then used to assign alleles of all heterozygous SNPs within mi to the “A” or “B”

haplotype based on their BAFs being greater than or less than a threshold of 0.5 (Figure 1c).

This haplotype assignment in turn is then applied to all other tumour samples for the same

bin mi (Figure 1d) and each tumour sample is assessed for the presence of any additional

previously undetected AI using an effect size threshold based on Cohen’s d (Methods).

Haplotype-specific integer copy number states are then re-estimated for all reference

phased segments (Figure 1e, Methods).

Reference phasing as described above accurately phases the haplotypes of all samples for

each bin relative to one another, but independently of other bins. To phase bins along the

genome “horizontally”, we next estimate this horizontal phasing by using an evolutionary

criterion. Briefly, the assignment of heterozygous SNPs to “A” and “B” haplotypes for all bins

within a single chromosome is chosen to minimise the number of copy number breakpoints

across all tumour samples [34,35] (Figure 1e, Methods, Supplementary Figure 1). The

relative phasing between samples from the previous step therefore remains unchanged.

The third module then uses the re-estimated copy number and updated AI states to

determine whether a segment from a tumour sample may be categorised as an SCNA

relative to the ploidy of that specific tumour sample, in keeping with both previous genomics

studies [8,9,36] and clinical practice [37]. This relative-to-ploidy classification enables the

comparison of the same area of the genome in bin mi between samples with differing

ploidies and classifies segments as either an amplification, gain, neutral, or loss relative to

sample ploidy (Figure 1f, Methods). Loss of heterozygosity (LOH), copy-neutral loss of

heterozygosity (CNLOH) and homozygous deletion events are also classified (Methods).

The fourth and final module integrates the multi-sample reference phasing and

relative-to-ploidy classification to produce a tumour-level estimate of SCNA event clonality

across all samples and to infer the presence of mirrored subclonal allelic imbalance (MSAI)

(Figure 1g). All events are then summarised as clonal (present in all tumour samples without

MSAI) or subclonal (present in only a subset of tumour samples, or in all samples but with

MSAI detected) (Methods).
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Figure 1: Overview of Refphase algorithm. a) Refphase creates a minimum consistent
segmentation across the single-sample segmentations input for each tumour. b) In each segment in
which at least one sample had allelic imbalance in the tumour input, an optimal reference sample for
phasing is determined. c) The phasing of each reference sample is derived from its BAF. d) Phasing

6

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.511885doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.511885
http://creativecommons.org/licenses/by/4.0/


is then applied to the BAFs in all other samples which are not the reference. e) Allele-specific copy
numbers are re-estimated for each sample utilising the reference phasing, and the most parsimonious
phasing solution along each chromosome is then chosen in horizontal phasing optimization. f) In each
segment, event categories relative to the input ploidy of the corresponding sample are defined using
LogR values. g) Tumour-level events are called and intra-tumour heterogeneity metrics calculated.

Refphase identifies mirrored subclonal allelic imbalance and

parallel evolution

We first demonstrated the functionality of Refphase by analysing WES data from three

spatially separated primary tumour samples and a matched normal from a non-small cell

lung cancer patient CRUK0034 from the TRACERx 100 cohort [8]. All three tumour samples

were pre-segmented with ASCAT [22] and subjected to reference phasing. Dividing the

genome into 178 bins, Refphase identified either clonal or subclonal AI in 88.6% of the

genome, with the remaining 11.4% of the genome allelically balanced. Figure 2 shows parts

of the Refphase output for this tumour. A more complete output example is available in

Supplementary Figure 2. For this example and the remainder of the text, we refer to

unphased copy number states in major/minor configuration as e.g. 4/1 and to phased copy

number states as e.g. 1|4, in line with genotype notation conventions.

While some SCNAs (e.g. gain on 1q) are clonal and present in all samples from the tumour,

Refphase also identifies substantial inter-sample heterogeneity (Figure 2a-b, Supplementary

Figure 2). For example, 3p demonstrates AI only in R2, where even after reference phasing,

no AI was detectable in the other samples, as can be seen from the well mixed BAF values

for both haplotypes (orange and blue) on 3p in R1 and R3. Refphase identifies subclonal

SCNA events including subclonal gain of 5q affecting R1 and R3, and a subclonal gain of 6p

affecting R2.

Reference phasing also permitted the identification of both MSAI and parallel evolution in

this tumour. One additional copy of chromosome 4 relative to diploid (Figure 2c) (copy

number state 2/1) is present in all tumour samples. Reference phasing revealed that this

additional copy was derived from the “A” haplotype (orange) in samples R1 and R3, and

from the “B” haplotype (blue) in sample R2, an example of MSAI [8]. A second instance of

MSAI on chromosome 5p co-occurs with relative-to-ploidy gains in all three samples with

copy number states of 4|2 in R1 and R3 but of 2|3 in R2 (Figure 2d). A schematic outlining

the distinction between the classifications applied to the MSAI affecting chromosome 4 and
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the parallel gains affecting 5p can be seen in Figure 2e. In addition to the detection of MSAI

on chromosome 4 and parallel evolution of 5p gain, Refphase also identified an additional

instance of MSAI affecting 1p (Figure 2b).

Since MSAI and parallel events are not detectable from the analysis of single tumour

samples nor from unphased data, Refphase’s ability to identify haplotype-specific copy

number states and its event classifications provide a refined view of the evolution of this

tumour.
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Figure 2: Detection of mirrored subclonal allelic imbalance and parallel evolution. a) LogR and
BAF tracks in chromosomes 1 to 6 from tumour CRUK0034. LogR tracks show LogR values in light
grey points. The black line shows the median LogR within a minimum consistent segment. BAF tracks
show phased BAF as either orange “A” haplotype points or blue “B” haplotype points. Unphased BAF
values are shown as light grey points. b) SCNA summary tracks showing (top) gains relative to ploidy.
The full height grey bar indicates that a gain is identified in every sample from tumour CRUK0034. A
light yellow background indicates the presence of a subclonal gain, and the height of the stacked
darker yellow bar indicates the proportion of samples in which a subclonal gain is present. (middle)
Track indicates the presence of MSAI between at least two samples, shown by purple fill. (bottom)
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Track indicates the presence of parallel gains, shown by red fill. c) MSAI detected from tumour
CRUK0034 affecting chromosome 4. d) Parallel evolution of chromosome arm 5p gain from tumour
CRUK0034. e) Schematic of the copy number states related to MSAI and parallel evolution.

Refphase quantifies SCNA heterogeneity in complex multi-sample

cases

The increasing availability of DNA sequencing data from multiple tumour samples from the

same patient has begun to address complex questions regarding SCNA intra-tumour

heterogeneity and changes in SCNAs during metastatic dissemination. However, there are

no standardised frameworks in which such questions may be addressed and compared

between studies. Refphase not only supports the quantification of SCNA clonality across all

samples from the same patient but also allows standardised analysis and comparisons of

user-defined subgroups of samples within a single patient’s disease. In addition, Refphase

produces correctly formatted input for the state-of-the-art SCNA phylogenetic reconstruction

algorithm MEDICC2 [34], as well as the option to output its own naive haplotype-specific

clustering of minimum consistent segments.

Patient CRUK0063, previously analysed in work by Abbosh et al. in 2017 [38], was

examined through the PEACE post-mortem study 24 hours after death. WES data from five

post-mortem tumour samples (paravertebral and lung metastases) and five primary tumour

samples were pre-segmented using ASCAT and subjected to reference phasing using

Refphase. We leveraged Refphase’s group analysis capability to specifically investigate

differences between primary and metastatic samples (Figure 3). MEDICC2 [34] was run on

the Refphase output and grouped the metastasis samples together in one clade and the

primary samples in a separate clade (Figure 3a). Refphase identified SCNA events present

in both primary and metastatic samples (Figure 3b), present in primary samples only (Figure

3c), and present in metastatic samples only (Figure 3d).

Examining all CRUK0063 samples together revealed clonal SCNAs (SCNAs here

encompassing relative-to-ploidy gains and losses, and LOH events) affecting 25% of the

genome, subclonal SCNAs affecting 69% of the genome, MSAI affecting 26% of the genome

and parallel evolution evident in 8% of the genome. Refphase’s group analysis feature

allows us to analyse the five primary and five metastatic samples separately, while using the

phasing derived from all samples. In this grouped analysis, differences between the two

groups emerged and enabled us to distinguish between SCNAs that are clonal and
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subclonal in the primary samples (primary-clonal/primary-subclonal) and those that are

clonal and subclonal in the metastatic samples (metastasis-clonal/metastasis-subclonal).

Metastasis-clonal SCNAs were far more prevalent than primary-clonal SCNAs, both in terms

of proportion of the genome affected (55% vs. 36%), and of proportion of segments with any

SCNA event (relative-to-ploidy gain or loss, or LOH) for which a clonal SCNA was identified,

quantified within the respective group of samples (55% vs. 33%). Metastasis-clonal AI and

LOH were particularly prevalent, affecting 72% and 34% of the genome respectively, while

primary-clonal AI and LOH affected only 39% and 27% of the genome. The majority of LOH

was found to be shared between primary and metastatic samples.

In line with the high levels of metastasis-clonal SCNAs in CRUK0063, the metastatic

samples are also characterised by a relative absence of both MSAI and parallel evolution

compared to the primary samples (proportion of genome: MSAI, 0.3% vs. 13%; parallel

events, encompassing parallel gains, parallel losses and parallel LOH events, 0% vs. 5%).

Examples of specific events observed when analysing the primary samples alone are visible

in Figure 3 and include parallel gain of 2p (i), and multiple parallel LOH events including on

4p (ii) and 10q (iii). Specifically, primary tumour sample R3 had a different major haplotype to

other primary samples at these loci. The divergence of sample R3 from other primary

samples is reflected in it branching earlier than the remaining four primary samples in the

accompanying MEDICC2 phylogeny. In the Abbosh et al. study [38], mutational phylogenetic

analysis suggested that all metastatic samples arose from a single ancestral subclone;

similar results are observed using the MEDICC2 phylogenies with all metastatic samples

belonging to a single clade. There is also MSAI affecting 13% of the genome and an

instance of parallel evolution of LOH affecting 6q between the primary and metastatic

samples that are not identified within either the primary samples or metastatic samples alone

(Figure 3c,d (iv)). Collectively, these MSAI and parallel evolution results suggest that the

metastatic samples demonstrate less inter-sample heterogeneity than the primary samples

in CRUK0063 and the presence of MSAI and parallel evolution between the primary samples

and metastatic samples suggests continued copy number evolution. One area of the

genome subject to parallel gain in CRUK0063 is a region of chromosome arm 2p (i),

encompassing 2p16, that overlaps the second most commonly amplified locus in lung

squamous cell carcinoma revealed by TCGA through GISTIC2 analysis [39,40]. This locus

contains the transcription factor BCL11A, a known oncogene in triple-negative breast cancer

[41] and B-cell lymphoma [42], that has been described as integral to the pathology of lung
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squamous carcinoma through its interaction with SOX2 to control the expression of

epigenetic regulators [43].

In summary, Refphase revealed novel insights into the evolution of this tumour. The

heterogeneity of the primary samples and continued and parallel evolutionary events would

have remained hidden without reference phasing and the results from Refphase.
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Figure 3: Grouping analysis of CRUK0063 multi-sample and multi-time point NSCLC case. a)
MEDICC2 phylogeny. Multi-sample reference phased allele-specific copy number output from
Refphase can be passed directly to MEDICC2 to produce a phylogenetic reconstruction. b) SCNA
summary tracks for all samples - primary and metastases - from patient CRUK0063. c) BAF profiles
and SCNA summary tracks for the primary samples from CRUK0063 are indicated by a red border. d)
SCNA summary tracks and BAF profiles from five post-mortem metastatic samples with a blue border.
Sample BAF tracks are ordered by their position in the MEDICC2 phylogenetic reconstruction. Green
boxes, arrowheads and associated Roman numerals highlight selected examples of MSAI on
chromosomes 2p, 6q, 4p and 10q, described in the main text. WGD indicates whole genome doubling
events inferred by MEDICC2.

Refphase reveals previously undetected events in low purity
samples
To quantify the extent to which Refphase reveals previously undetected SCNAs, we applied

Refphase to multi-sample cohorts from two highly-cited studies: (1) a multi-sample

investigation of primary colorectal adenocarcinoma and adenoma [44] (15 tumours, 140

samples), and (2) a matched primary sample and metastatic sample cohort of various

primary cancer types and their brain metastases [45] (84 tumours, 196 samples) (Figure 4).

These datasets demonstrate a range of copy number landscapes, purity levels, and data

types (SNP array and WES) found in both research and clinical studies.

As already described, Refphase’s multi-sample phasing permits the detection of MSAI not

otherwise discernible with single-sample data or unphased copy number profiles. Examining

our cohort utilising the multi-sample reference phasing of all samples of each tumour, we

detected MSAI in 65% of tumours (64/99), affecting up to 34% of the genome (IQR across all

tumours [0%,3%]; Figure 4a, Methods). In addition to revealing MSAI, multi-sample phasing

can be used to identify previously undetected AI. This newly identified AI is often not MSAI

but simply AI with the same major haplotype as the other samples from the same tumour

previously identified as demonstrating AI. Refphase detected new AI not previously detected

by ASCAT in 77% of tumour samples (256/334). The greatest degree of new AI identified

was in sample MET019 in which 66% of the genome was identified to be allelically

imbalanced by Refphase which had not been identified as such by ASCAT (Figure 4b).

We observed a significant negative association between sample purity and newly identified

AI (Figure 4c; LME coefficient = -0.28 (2.s.f), LME ANOVA p<0.0001, adjusted for patient

and cohort - the latter defined by tumour type and profiling platform - as random effects,

Supplementary Figure 3a). This result is consistent with Refphase’s ability to rescue low

purity samples and is in accordance with previous work demonstrating that SCNA detection
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using methods designed for single samples is drastically impaired by low tumour purities

when sequencing coverage remains unchanged [46]. No significant association was

observed between purity and MSAI detection (LME ANOVA p=0.5, adjusted, Supplementary

Figure 3b). Schematic examples of the effect of tumour purity and copy numbers states on

BAF and LogR profiles are shown in Supplementary Figure 4.

We further explored the relationship between purity and SCNA event detection for the

specific case of tumour MET019 from Brastianos et al., a lung adenocarcinoma containing

the sample (M3) which demonstrated the highest amount of newly identified AI in our cohort

when analysed with Refphase (66% of the genome affected). Notably, this M3 sample

showed a markedly lower level of inferred tumour purity compared to the tumour’s other

samples (M3 - 21% compared to R1 - 47%, M1 - 80%, M2 - 86%). Using the same phasing

that revealed the newly identified AI, we re-estimated the copy number states for all samples

across the genome and compared Refphase results to the previous ASCAT-derived

estimates. We focussed analysis on detection of CNLOH. ASCAT identified CNLOH affecting

five chromosomes in M3 compared to Refphase finding CNLOH on 15 chromosomes, with

an increase of 24% of the genome affected when quantified using Refphase. The same

analysis of the purer M2 sample yielded an increase of just 0.09% of the genome affected by

CNLOH using Refphase (Figure 4d-e). This result supports the previous observation of a

negative association between sample purity and the extent of newly identified AI using

Refphase.

Finally, to systematically compare ASCAT and Refphase’s ability to resolve AI as a function

of purity, we simulated BAF values for CNLOH events at varying tumour purities in samples

from multi-sample NSCLC tumours [8] (125 events; each simulated at tumour purities from

1% CCF to 30% CCF at 1% CCF intervals; 200x sequencing coverage) (Methods, Figure

4f). CNLOH events were investigated to ensure that there were no changes to overall

sample ploidy and that LogR changes did not influence event detection. Using these

simulation parameters, ASCAT was able to detect AI at all simulated CNLOH events at

tumour purities of 15% or greater and Refphase at purities of 4% or greater (Figure 4f).

Taken together, multi-sample reference phasing improves the limits of detecting allelic

imbalance and offers potentially exciting avenues for improving the sensitivity of SCNA

detection at low cancer cell fractions, especially in non-WGS contexts.
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Figure 4: Low cancer cell fraction SCNA detection and cohort-level analysis. a) Barplots
showing the proportion of the genome affected by MSAI in each tumour sample in the pan-cancer
cohort grouped by tumour type. b) Barplots showing the proportion of the genome with allelic
imbalance that was identified using multi-sample reference phasing and that was previously
undetected using ASCAT. Each tumour sample in the pan-cancer cohort is arranged by tumour type.
Light blue bars represent the proportion of the genome in each sample affected by previously
undetected allelic imbalance that did not result in an alteration in the previously estimated integer
allele-specific copy number. Dark blue bars represent instances in which newly detected allelic
imbalance that resulted in new integer copy number state being estimated. c) Barplots representing
the estimated cancer cell fraction of each sample in the pan-cancer cohort grouped by cancer type. d)
Unphased BAF and integer copy number states across the genome from two samples analysed using
ASCAT. e) Phased BAF and haplotype-specific copy number states across the genome from two
samples analysed using Refphase. f) Line plot showing the proportion of simulated copy-neutral loss
of heterozygosity events identified at differing non-cancer proportions of a sample using ASCAT (red)
or Refphase (blue).

Refphase improves SCNA intra-tumour heterogeneity estimates
Using the same pan-cancer cohort (Figure 5a), we next leveraged Refphase’s

relative-to-ploidy SCNA event classification and standardised SCNA intra-tumour

heterogeneity quantification (Methods) to explore cancer evolution in a range of cancer

types.

We first quantified the total proportion of the genome affected by SCNAs (here

encompassing relative-to-ploidy gains and losses, and LOH) and the proportion of clonal,

early SCNAs, compared with subclonal, late SCNAs (Methods, Figure 5b). We identified

clonal SCNAs in every tumour and found that 96% (95/99) of the tumours examined had

clonal and 95% (94/99) harboured subclonal SCNAs affecting at least 1% of the genome. A

median of 31% of the genome was subject to clonal SCNAs and 25% to subclonal SCNAs

meaning that in over half of tumours (52/99), 25% or more of the genome was subject to

subclonal SCNAs. The SCNA heterogeneity observed in these 99 tumours of various cancer

types supports recent work suggesting that ongoing chromosomal instability is pervasive in

cancer [9,10].

Importantly, detection of MSAI at a genomic segment renders any clonal SCNA at that

segment subclonal since different haplotypes represent the major allele in different tumour

samples. This means that Refphase can resolve additional SCNA heterogeneity which would

not be possible with methods relying on unphased data. Notably however, despite the

detection of MSAI in a subset of tumours (Figure 4a), the cohort-level effect of multi-sample

reference phasing was to decrease the average level of SCNA heterogeneity compared to

estimates from ASCAT runs on independently analysed tumour samples (paired Wilcoxon
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signed rank tests, p<0.05, Supplementary Figure 5). This suggests that segments previously

defined as harbouring subclonal SCNAs are now identified to be clonally affected across all

tumour samples. This may in part be due to the increased SCNA detection in low tumour

purity samples explored in the previous section.

Overall, these analyses highlight how Refphase can provide potentially more accurate

overall estimation of SCNA heterogeneity than approaches relying on unphased data.

Refphase offers new insights into associations between parallel

evolution and WGD in a pan-cancer cohort

Whole genome doubling (WGD) is considered a transformative event in tumour evolution

[47], and tumours with WGD events show increased prevalence of MSAI [8,9]. In order to

explore this relationship in our pan-cancer cohort, we determined WGD status using

MEDICC2 run on Refphase output to classify the tumours in our pan-cancer cohort as clonal

WGD, subclonal WGD, or non-WGD (Methods, Figure 5a). In keeping with previous results,

a higher proportion of the genome was observed to be affected by MSAI in whole genome

doubled tumours (clonal and subclonal) than non-WGD tumours (Kruskal-Wallis p=2e-04,

Supplementary Figure 6).

We next probed further into the nature of MSAI in our cohort. Specifically, we quantified the

extent of parallel evolution of the same type of SCNA event (e.g. gains, losses, LOH)

occurring in different samples within the same tumour but affecting different haplotypes,

which represents just a subset of MSAI events. Using relative-to-ploidy and LOH definitions

of parallel evolution (Methods), we observed parallel evolution in all tumour types in our

cohort with the exception of the benign colorectal adenomas (Figure 5c). However, this

tumour type also had the lowest levels of SCNAs overall with on average <1% of the

genome affected by either clonal or subclonal SCNAs (Figure 5b; median percentage of

genome affected: clonal 0.7%, subclonal 0.7%). Notably however, we observed parallel

evolution of gains in the Sottoriva et al. (malignant) colorectal adenocarcinoma dataset,

indicating independent evolution of similar SCNAs in spatially separated areas of tumours,

adding additional resolution to the original study [44] (Supplementary Figure 7).

Intriguingly, we observed some tumours, such as colorectal adenocarcinoma U from

Sottoriva et al. [44] (Figure 5d), with greater than 30% of their genomes affected by MSAI
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but with only a very small subset of this MSAI constituting parallel gains and losses relative

to ploidy (2% of the genome, Figure 5c). Upon exploring MSAI in genomic regions matching

the overall ploidy of their respective tumour samples (Methods), we observed that MSAI

commonly occurred in a copy-neutral context of arm-level and chromosomal triploidy.

Tumour U harboured nine chromosome arms affected by this phenomenon and was found to

have undergone a clonal and therefore likely relatively early WGD event. This may suggest

parallel evolution of losses from a tetraploid to a sub-tetraploid state (Figure 5e). Consistent

with this, 2|1 and 1|2 copy number states were simultaneously observed in 22 tumours, of

which 21 were determined to have undergone clonal or subclonal WGD using MEDICC2

(Figure 5a, Figure 5c, Methods) [34]. Other groups have observed such parallel losses in in

vitro models of WGD [48] or inferred their presence from single-sample data [49], but to our

knowledge this is the first time that such independent losses have been observed using

phasing in multi-sample data. The parallel evolution of losses from a tetraploid state offers

new insights into the potential selective pressure for triploidy and the ability to further

determine the timing of such events in tumour evolution.

Together, these results highlight the importance of leveraging information from multiple

samples to quantify SCNA heterogeneity during tumour evolution and demonstrate the

technical advances offered by Refphase compared to single-sample copy number callers,

including its ability to identify MSAI, its increased sensitivity of CNLOH detection, and its

potentially more accurate overall estimation of SCNA heterogeneity.
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Figure 5. a) Barplot showing the number of samples per tumour and colored by WGD clonality status
with clonal WGD (dark orange), subclonal WGD (light orange), and non-WGD (blue). b) Barplot
showing proportion of the genome classified as affected by clonal SCNA (grey) and subclonal SCNA
(yellow) from the pan-cancer cohort. c) Barplot showing proportion of the genome affected by parallel
evolution of SCNAs relative to ploidy or LOH (red) and parallel evolution of 2|1 copy number states
(dark blue). d) BAF of heterozygous SNPs across the genome from tumour samples from colorectal
adenocarcinoma U. Heterozygous SNPs in regions of the genome affected by MSAI are coloured
orange and blue according to the phased haplotype they are assigned to. Heterozygous SNPs in
regions of the genome unaffected by MSAI are colored grey. Regions of the genome demonstrating
parallel evolution of a 2|1 and 1|2 copy number states are highlighted with a dark blue outline. e)
Schematic demonstrating whole genome doubling and independent subsequent copy number loss
events revealed by MSAI.

Conclusions

We have shown that Refphase provides phasing of heterozygous SNPs into long-range

haplotypes, allows the identification of SCNA-mediated parallel evolution and MSAI [8], and

improves the limits of detection of AI in low purity samples.

The long-range haplotypes derived by Refphase augment existing haplotype-specific

approaches for copy number calling in single-cell DNA [29] and RNA [30,50] sequencing

technologies, and are distinct from haploblocks produced by population-level statistical

phasing approaches [25,51–53] or those derived from chromatin structure data [54,55] or

long read sequencing [56,57]. Reference-phasing haploblocks are not limited in length by

recombination rates, read lengths, or structural constraints, and instead stretch the full length

of the evolutionary gain or loss event that gave rise to the AI, frequently a whole

chromosome or chromosome arm. Refphase haploblocks have the advantage that all variant

alleles within regions of AI with sufficient sequencing depth can be assigned to their

haplotype-of-origin. Refphase is therefore able to phase rare and private variants or those

from understudied ethnic groups for whom reference sets of haplotypes are unavailable,

doing so at a fraction of the computational cost of statistical phasing approaches, and with

broad applicability to a variety of different experimental techniques, including WGS, WES,

SNP arrays and targeted sequencing approaches, and without reliance on external

databases.

Besides haplotype reconstruction and phasing of SCNAs, Refphase offers a standardised

characterisation and quantification of SCNA intra-tumour heterogeneity from bulk

multi-sample tumours, where the field previously relied on simple metrics such as the
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weighted genome instability index [58] or fraction of genome altered [59]. In the context of

multi-sample sequencing, only a few algorithms utilise data from multiple samples for SCNA

estimation and either do not produce haplotype-specific copy number estimates [60,61] or

use less powerful statistical phasing limited to WGS [62] in concert with reference haplotype

databases. Refphase is broadly applicable, supporting multiple formats of user-provided

single-sample copy number segmentations as input, including those from commonly used

copy number callers such as ASCAT [22], to provide reproducible estimates of SCNA

intra-tumour heterogeneity that allow comparisons both between datasets and within

grouped sets of samples within a patient’s disease, for example to contrast primary samples

with metastases. Downstream integration with MEDICC2 [34] also permits standardised

detection of WGD.

It is through this joint analysis of samples from a single tumour, utilising WGD detection and

Refphase’s relative-to-ploidy classifications, that we observe previously undetected

copy-neutral MSAI of arm-level and chromosomal triploidies in WGD tumours. This finding,

indicating parallel evolution from a tetraploid to a sub-tetraploid state, may suggest selective

pressure for triploidy and offers a new avenue for the exploration of tumour copy number

evolution. Additionally, the detection of MSAI and parallel events using reference phasing

indicates a hitherto underappreciated number of independently occurring SCNAs.

Despite its many advantages, our method is not without its limitations. Refphase chooses a

single best reference sample to inform phasing for any given bin meaning that the same

heterozygous SNPs are assayed across multiple samples from the same tumour; however,

each sample with AI may provide useful phasing information. While Refphase characterises

inter-sample heterogeneity by determining the presence and absence of SCNAs in each

tumour sample, it does not attempt to identify within-sample subclonal SCNAs present in

only a subset of cells in a single sample, in contrast to tools such as TITAN [63] and

Battenberg [27] designed for use with WGS. Refphase also does not attempt to identify

subclonal clusters of co-occurring SCNAs present across multiple samples [61]. Additionally,

while Refphase updates ploidy estimates of each sample as it performs its phasing, it is

reliant on robust initial estimates of purity, ploidy, and input segmentation.

The SCNA heterogeneity and parallel evolution revealed and characterised by Refphase is

indicative of ongoing chromosomal instability in the tumours examined. However, it should

be noted that this is likely still an underestimate of the actual ongoing chromosomal
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instability present in these tumours, as only a small proportion of each tumour is sequenced

[64]. Whilst no significant correlation was observed between the number of samples per

tumour and SCNA heterogeneity in this pan-cancer cohort (LME ANOVA p=0.1, adjusted,

Supplementary Figure 8a), further analysis in cohorts with a greater range of per-tumour

sample numbers and tumour types is required. Additionally, whilst Refphase’s ability to infer

SCNA events at low tumour purities exceeds that of single-sample copy number calling

methods (Figure 4f), even with Refphase, we observe a moderately significant association

between the range of purities within a tumour (‘Tumour Purity Difference’) and the degree of

SCNA subclonality (LME coefficient = 0.28, LME ANOVA p=0.04, adjusted, Supplementary

Figure 8b), indicating that tumour purity may interfere with the estimation of SCNA clonality.

Finally, while multi-sample reference phasing reveals instances of parallel evolution from

distinct haplotypes, parallel evolution from the same haplotype cannot be detected and as

such the amount of parallel evolution found in this cohort may be an underestimate.

Detection of such parallel events from the same haplotype instead can be resolved with

phylogenetic methods which allow for multiple mutations of the same site, such as MEDICC2

[34].

Despite these limitations, no other tool provides phasing, detection of AI in low purity

samples, estimation of copy number states and parallel evolution, and systematic

characterisation of SCNA heterogeneity.

In the future, combining statistical population-based phasing with multi-sample reference

phasing will further strengthen this approach, in particular for genomic regions with weak AI.

As multi-sample bulk DNA sequencing data of tumours and their metastases become

increasingly common, new opportunities for improving our understanding of tumour evolution

and how it relates to prognosis and response to treatment, will arise. Algorithms such as

Refphase that are able to leverage such data to quantify mutations and their intra-tumour

heterogeneity across a patient’s disease will be vital to support new insights to inform care

for cancer patients.

Methods

Nomenclature

We report integer allele-specific copy numbers from SCNA estimation tools that do not

perform either statistical or multi-sample reference phasing in the major/minor configuration.
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We use the / symbol to separate the most common allele and least common allele for a copy

number segment or bin covering a genomic region. For example, in two samples (S1 and

S2) from the same tumour in which we observe the same unphased allele-specific integer

copy number state of 2 of one allele and 1 of the other allele at the same genomic region, we

report the allele-specific integer major and minor allele copy number estimate of this bin as

2/1 in S1 and 2/1 in S2. We would also report the non-allele specific total copy number in

sample S1 as 3 and in sample S2 as 3.

In the context of multi-sample reference phasing as performed by Refphase, we report

phased haplotype-specific “A” haplotype and “B” haplotype copy number written in the

format haplotype “A” | haplotype “B”. If Refphase identified MSAI between our example S1

and S2, maintaining the total copy number states of 3 in both, with haplotype “B” being

present at 1 copy in S1 but at 2 copies in S2, we would report the copy number in S1 as 2|1

and in S2 as 1|2.

Refphase input data requirements

To perform multi-sample reference phasing for a tumour with N samples, an initial

single-sample copy number segmentation and initial estimates of tumour purity and ploidyρ
𝑗

must be obtained as input for Refphase by applying a single-sample SCNA callingψ
𝑗

algorithm to each tumour sample independently.𝑗 ∈ {1 ..  𝑁}

Single-sample tools typically follow a common approach for the detection of allele-specific

SCNAs, as defined in [22]. Briefly, for each tumour sample, sequencing reads are

aggregated at heterozygous germline variants in each tumour and paired normal sample

over both parental alleles, yielding two readouts: the log ratio of read counts at variant𝐿
𝑖

𝑖 

compared to the matched normal (LogR) and the relative frequency of the minor (B) allele

read counts over the total read counts (B-allele frequency, BAF) at variant position .𝐵
𝑖

𝑖

SCNAs are called by segmenting both BAF and LogR tracks into homogeneous segments

and determining fractional or integer copy numbers for each segment, jointly inferring the

purity of sample (the fraction of cancer cells over total number of cells) and the averageρ
𝑗

𝑗

ploidy of the tumour sample as free parameters [22]. Copy numbers are determined perψ
𝑗

𝑗

allele, but due to unknown phasing of the underlying germline variants, the values are

reported as major (larger) and minor (smaller) copy number instead.
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Refphase currently directly supports input derived from the popular segmentation algorithms

ASCAT [22] and Sequenza [31], but will run on any user-supplied initial segmentation result

which includes estimates of: allele-specific copy number segments (genomic positions and

major and minor allele copy number states); sample purity and ploidy estimates; log ratios

(LogR) and B-allele frequencies (BAFs) of single nucleotide polymorphisms (SNPs); and -

for non-ASCAT input - SNP heterozygosity annotations, for each of the N tumour samples (N

2) and a matched normal from the same patient.≥

Refphase algorithm overview

Refphase achieves long-range phasing and haplotype-specific estimation of SCNAs through

application of the multi-sample reference phasing algorithm. We assume that the input purity

estimates for each tumour sample are correct and Refphase utilises these, alongside the

LogR and BAF, to characterise SCNA heterogeneity of the genome in m bins of variable

sizes. These bins are derived from a minimum consistent segmentation (see below) created

from the input copy number segments for each tumour sample.

The four outputs from Refphase are: (1) a phasing of heterozygous SNPs, (2) an updated

set of phased fractional and integer copy number states across the genome for each

sample, (3) a sample-level summary of SCNA events, and (4) a summary of SCNA clonality

and intra-tumour heterogeneity, defined either at tumour level or between and across

user-defined subgroups of samples.

For a schematic overview of the Refphase algorithm see Figure 1.

Minimum consistent segmentation

Having internally preprocessed input data to a standard Refphase format, Refphase

combines individual single-sample segmentations to generate a minimum consistent

segmentation (MCS) for the set of all N samples of a tumour (Figure 1a). To do this,

Refphase first defines the combined set of breakpoints as the union of the set of individual

breakpoints, keeping track of the samples-of-origin. Of the new set of segments defined by

this union of breakpoints, only segments present in all samples are retained in the

subsequent analysis. An iterative merging strategy is then employed which merges
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breakpoints that originated from different samples if their pairwise distances are below a

user-defined maximum gap threshold (default = 100kbp). These slight variations in

breakpoint position typically result from variability in the estimation of breakpoint positions in

individual samples even if the true underlying breakpoint is the same. The restriction to only

merge breakpoints that originated from different samples of origin preserves focal

amplifications and losses present prior to merging in individual samples and yields a final set

of m bins.

Reference sample selection

Once the MCS is established, Refphase employs the multi-sample reference phasing

algorithm to achieve long-range phasing of germline variants and assignment of SCNAs to

haplotypes (Figures 1b-e). Multi-sample reference phasing leverages the fact that the phase

of the underlying germline genetic variants is constant between samples from the same

patient. In a segment affected by allelic imbalance, variants whose alternative alleles are

residing on the chromosome with higher copy number will show a theoretical BAF above the

segment mean, whereas those residing on the minor copy number chromosome will show

BAF values below the segment mean, effectively providing phasing information about the

variants contained in the segment.

To leverage this information, for each MCS segment, Refphase first iterates through all

segments and samples and, for those segments determined to have a bimodal BAF profile in

at least one sample, Refphase assigns the sample with the highest mirrored mean BAF as

the reference sample (Figure 1b), where the mirrored mean BAF is defined as:

(Eq. 1)𝐵
𝑚𝑖𝑟𝑟

 = 1
𝑚

𝑘=1

𝑚

∑ 𝑎𝑏𝑠(𝐵
𝑘
 − 0. 5)

where is the BAF at variant position k; m is the total number of variants within the𝐵
𝑘
 

segment indexed from 1; and where abs() returns the absolute value (≥0) of the expression

contained in brackets.

Segments without AI in at least one sample in the input are not considered for reference

phasing.
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Haplotype phasing of reference sample segments

Within each reference sample, Refphase then assigns alternative alleles to haplotypes by𝐻
𝑖
 

comparing the empirical BAF of each variant against the segment mean (Figure 1c):𝑖

(Eq. 2)𝐻
𝑖
 =  𝐼[𝐵

𝑖
 >  1

𝑚
𝑘=1

𝑚

∑ 𝐵
𝑘
]

where is the BAF at variant position ; m is the total number of variants within the segment𝐵
𝑖

𝑖

indexed from 1; and is an operator assigning each variant position to one of two haplotypes𝐼

based on the evaluation of the logical expression in square brackets.

Reference phasing across non-reference sample segments

In the next step, Refphase applies this phasing information to the variants in the same

segment in all other non-reference samples to determine haplotype-specific BAF values for

every other sample (Figure 1d).

Haplotype-specific copy number quantification

After the variants have been assigned to haplotypes, Refphase uses haplotype-level BAF

and LogR values for re-estimation of haplotype-specific copy numbers (Figure 1e).

Here, each sample is tested for AI using a Wilcoxon rank-sum test between the BAF values

of each haplotype (5% family-wise error rate) and the effect size of AI is determined using

Cohen’s d [65]. If additional AI is detected compared to the initial copy number states, or if

the option is applied universally by the user, copy numbers are re-estimated using either a

default parametric or a non-parametric model for each haplotype separately. The parametric

model estimates the new haplotype-specific copy number in segment based on the𝑛
𝑖

𝑖

mean BAF and LogR of that segment as well as sample purity and average tumour𝐵
𝑖

𝐿
𝑖
 ρ

ploidy obtained from the initial segmentation as follows [22]:ψ

(Eq. 3)𝑛
𝑖
 = (ρ − 1 +  𝐵

𝑖
 2

𝐿
𝑖(2(1 − ρ) +  ρψ)) / ρ
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The alternative non-parametric model employs a Gaussian naive Bayes classifier to predict

a haplotype-specific copy number configuration from the mean BAF and LogR values of a

segment. To train the model, Refphase uses the mean BAF and LogR values of all other

segments of the same sample and from the same segment in all other samples as training

data to account for the typical BAF/LogR distributions of the current sample as well as those

values from homologous segments in other samples. After re-estimation of all copy number

segments, the average tumour ploidy of each sample is re-calculated as the sum over theψ 

total copy numbers of all segments weighted by their genomic width (in bp)𝑖 = 1.. 𝑚 𝑤
𝑖

relative to the total width of the genome (in bp).

(Eq. 4)ψ =
𝑖=1

𝑚

∑ (𝑛
𝐴𝑖

+ 𝑛
𝐵𝑖

)𝑤
𝑖
 / 

𝑖=1

𝑚

∑ 𝑤
𝑖

Re-estimated fractional and integer copy numbers are available to the user.

Horizontal phasing

After individual segments have been phased across all samples, there is still no phasing

relationship between neighbouring segments ‘horizontally’ along the genome. We employ a

method for phasing along the genome that uses a parsimony assumption, i.e. the data can

be explained with the least amount of copy number changes between neighbouring

segments (Figure 1e). For this we compare every segment with its preceding segment and

flip the haplotype assignment across all samples such that the overall Hamming distance

between neighbouring segments is minimal (Supplementary Figure 1). The overall Hamming

distance of segment i is defined as

(Eq. 5)𝐷
𝑖

=
𝑠=1

𝑁

∑ 𝐻  𝑛𝑠
𝐴𝑖

,  𝑛𝑠
𝐴𝑖−1( ) +  𝐻  𝑛𝑠

𝐵𝑖
,  𝑛𝑠

𝐵𝑖−1( ) 

where we sum over all N samples and calculate the Hamming distance H between the copy

number and its predecessor for both haplotypes A and B. The Hamming distance 𝐻(𝑥,  𝑦)

computes to 1 if and 0 otherwise. Flipping the haplotypes of segment i amounts to𝑥 ≠ 𝑦

exchanging and for all samples s. If flipping the haplotype assignment of segment i𝑛𝑠
𝐴𝑖

𝑛𝑠
𝐵𝑖

does not result in a change of distance (i.e. , the segment i is compared𝐷
𝑖
 𝐷

𝑖
 =  𝐷𝑓𝑙𝑖𝑝𝑝𝑒𝑑

𝑖
)
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to its next predecessor (segment i-2). This is repeated until or the beginning𝐷
𝑖
 ≠  𝐷𝑓𝑙𝑖𝑝𝑝𝑒𝑑

𝑖

of the current chromosome is reached.

As the assignment to haplotype A and B is arbitrary across chromosome boundaries, for

plotting purposes, we flip the A and B allele assignment for all samples on a

chromosome-by-chromosome level to ensure that on average haplotype A has a higher copy

number than haplotype B.

Sample-level SCNA calling

Following reference phasing, Refphase uses the re-estimated sample ploidies, input purities

and segment-level LogR data to call SCNA events in each sample (Figure 1f).

We consider an SCNA to be a deviation of any length from the diploid major/minor copy

number state of (1,1). SCNAs with an unequal number of copies on both parental alleles

(corresponding to a significant deviation of the BAF from its balanced value of 0.5) are

termed allelic imbalances (AI).

Specifically, Refphase calls segment amplifications, gains and losses relative to ploidy as

well as LOH events and homozygous deletions. Events are called for each segment and

sample independently of others by comparing the mean segment LogR distributions to

calculated purity-ploidy derived event thresholds (Equations 6-8).

The >2× ploidy threshold is the same threshold used for clinical decision making in HER2+

breast cancer using fluorescence in situ hybridization samples [37].

Amplifications are called if

, (Eq. 6)𝐿𝑜𝑔𝑅 >  𝑙𝑜𝑔
2

2 (1−⍴) + 2 ⍴ Ѱ 
2 (1−⍴) + ⍴ Ѱ⎡⎣ ⎤⎦

gains are called if

, (Eq. 7)𝐿𝑜𝑔𝑅 >  𝑙𝑜𝑔
2

2 (1−⍴) + 1.25 ⍴ Ѱ 
2 (1−⍴) + ⍴ Ѱ⎡⎣ ⎤⎦

losses are called if

(Eq. 8)𝐿𝑜𝑔𝑅 <  𝑙𝑜𝑔
2

2 (1−⍴) + 0.75 ⍴ Ѱ 
2 (1−⍴) + ⍴ Ѱ⎡⎣ ⎤⎦)
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with sample purity and sample ploidy .ρ Ѱ

By default, Refphase also provides additional versions of sample-level SCNA event calls

aside from comparing mean segment LogR values to the calculated thresholds (Eq.6-8). In

another version, LogR values within a segment are compared to the calculated thresholds

(Eq.6-8) using a one-tailed Student’s t-test, as in [9]. Additionally, a diploid reference can

also be used for both mean and t-test approaches rather than purity-ploidy derived event

thresholds. All versions of SCNA calls are available to the user in summary Refphase

objects after the completion of the core Refphase algorithm, and plotting options are

available to visualise the preferred SCNA event output graphically. For Figures 2 and 3 and

associated proportion-of-genome metrics, mean segment LogR values were compared to

purity-ploidy derived event thresholds.

LOH events are called for segments in which the rounded copy number state of one allele is

0 and the other strictly greater than 0. Homozygous deletion events are called for those

segments where both alleles within a sample have rounded copy number state of 0. Copy

neutral LOH (CNLOH) is called for segments in which the major rounded integer copy

number state equals the rounded tumour sample ploidy.

Patient-level SCNA calling

Finally, a tumour-level event summary is calculated (Figure 1g).

Inter-sample heterogeneity is quantified. The presence or absence of each class of

relative-to-ploidy event, loss of heterozygosity (LOH), and homozygous deletions (HDs) in

each tumour sample for each minimum consistent segment is noted. This presence or

absence classification is then examined in the context of MSAI detection to determine

whether each event affects the same allele in all samples.

For a given segment, an SCNA is considered to be clonal if it is present in every sample and

affects the same allele in all samples. An SCNA is assigned as subclonal if it is present in at

least one sample but simultaneously absent in at least one other sample (inter-sample

subclonality). Crucially, in cases in which the same relative-to-ploidy or LOH event type is

determined to occur in every sample of a given tumour but in the context of MSAI such that a
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different allele is deemed to be the major allele in different samples at the same segment,

the event is assigned as subclonal and parallel and not as clonal, since the SCNAs in

different samples are deemed to be of different origin and affecting different haplotypes.

Specifically, a mirroring of alleles must be observed between the specific samples

harbouring the event type of interest for the event to be called parallel. For example, in a

tumour composed of three samples, should a gain SCNA be called in Samples 1 and 2 only,

the major alleles must differ in Samples 1 and 2 for the gain event - already subclonal - to be

called parallel, regardless of allelic arrangement in Sample 3.

Having assigned individual SCNAs as clonal or subclonal, the proportion of the genome

affected by each specific event type (e.g. clonal relative-to-ploidy gains, parallel LOH, etc.) is

calculated. Proportion of genome measures are calculated over the sum of minimum

consistent segment widths for a tumour.

Plotting options are available to visualise tumour-level summary metrics and the degree of

reassignment of events from clonal to subclonal based on MSAI context.

Refphase user-defined grouping functionality

Refphase also offers the option for a user to define subgroups of samples and calculate

group-level (instead of whole-tumour-level) summary metrics and create within- and

between-group summary plots. Examples of primary-sample-specific and

metastases-sample-specific summary tracks in which clonality and heterogeneity analyses

are restricted to the respective subgroups of samples are shown in Figure 3.

Refphase plotting functionality

Figures 2 and 3 and Supplementary Figure 2 showcase selected tracks from Refphase

across-genome plots. Refphase provides several optional output plots as standard including

across-genome, chromosome-level, user-defined sample subgroup-oriented, and

tumour-level event summary plots.
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MEDICC2 implementation and whole genome doubling detection

The phylogeny showcased in Figure 3 was generated by applying MEDICC2 (version 0.6b1)

[34] to re-estimated integer copy number states derived from reference phasing of the

named 10 input samples for CRUK0063 using default parameters.

In order to derive the WGD status for the Brastianos et al. [45] and Sottoriva et al. [44]

datasets, MEDICC2 bootstrapping WGD detection was used. In short, we create 100

bootstrapping datasets by resampling the data chromosome-wise (i.e. drawing 22

chromosomes with replacement) and check whether MEDICC2 detects a WGD. If at least

5% of the bootstrap runs detect a WGD, the sample is labelled as WGD-positive. This low

threshold offsets the otherwise conservative WGD detection.

Definitions of newly identified AI and CNLOH (Figure 4)

ASCAT [22] AI was defined at sample-level and assigned for segments where ASCAT

non-integer copy number was not equal for the two alleles. Refphase AI was assigned for

segments at sample-level using the previously described methods (Methods -

Haplotype-specific copy number quantification). CNLOH was assigned to segments in which

the rounded major copy number state equalled the rounded sample ploidy and the rounded

minor copy number state equalled 0, using copy number states and ploidies from ASCAT

and Refphase accordingly. Newly identified AI and CNLOH specifically referred to scenarios

in which the respective event had not been identified in ASCAT and was identified using

Refphase. For cases in which multiple ASCAT segments overlapped with the Refphase

segment being assessed for AI or CNLOH, data for the ASCAT segment most overlapping

the Refphase segment under investigation was used.

Copy-neutral LOH event simulation (Figure 4)

CNLOH events were simulated in chromosomal segments from NSCLC multi-sample bulk

sequencing from the TRACERx100 cohort [8].

First, Refphase was run on the TRACERx100 tumour samples. Then, pairs of samples were

selected from tumours where at the same genomic region, defined by a Refphase bin, one

sample, referred to as “reference”, demonstrated AI allowing a reference phasing to be
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obtained and the other sample, referred to as “test” demonstrated total copy number equal to

the overall sample ploidy with no AI. Specifically, for a genomic bin, the reference sample

demonstrated AI if the condition in Equation 9 was satisfied:

* (| nA - nB |)  ≥ 0.5 (Eq. 9)⍴

where is the tumour purity, nA the copy number state of allele A and nB the copy number⍴

state of allele B.

Additionally, for candidate samples and segments to be chosen, the following conditions

must also be satisfied: Genomic bins had to be ≥1/5 of the size of the chromosome on which

they were located and contain ≥1/5 of the heterozygous SNPs present on the same

chromosome; the ploidy of the test sample had to be between 1.8 and 2.2 or between 3.8

and 4.2 (lower and upper bounds inclusive); and the total rounded copy number in the

genomic bin should equal the total rounded ploidy of the test sample.

This candidate segment selection approach produced 125 segments that were then used to

simulate CNLOH at the genomic region in the test sample. CNLOH was simulated at various

cancer cell fractions (CCFs) of the sequenced sample, ranging from 1% to 30% in steps of

1%. Specifically, BAF values were assigned at each of the heterozygous SNP positions in

candidate segments using a binomial distribution (R rbinom function) with simulated

probability equal to the mean BAF which would be predicted for each phased allele at the

segment based on copy number and simulated purity and with the number of trials equalling

a simulated sequencing coverage of 200(x).

These simulated BAF profiles are then used as input to ASCAT allele specific piecewise

constant fitting segmentation and Refphase, making use of the phasing derived reference

sample, and detection of AI reported for each method independently for each of the 125

candidate segments at each simulated CCF value. Detection of AI was reported as detection

of a CNLOH event.
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Initial copy number estimates for data types

SNP Array

Tumour cellularity and ploidy for each sample assayed with SNP arrays were estimated

using the ASCAT algorithm [22]. ASCAT was then used to identify SCNAs that were

provided as the initial input for further clonality analysis. One dataset included in our cohort

consists of SNP array data [44]. Processed LogR and BAF values as generated in the

original papers were obtained from the GEO database. Copy number analysis was

performed using ASCAT v2.3 using  default parameters set to 1 for sequencing data [22].

Whole exome sequencing

All datasets downloaded were processed from FASTQ files using a previously described

pipeline [8,9]. Tumour cellularity and ploidy for each sample assayed with exome sequencing

were estimated using ASCAT [22] and these estimates as well as the copy number

segmentation were taken forward for analysis with our multi-sample SCNA clonality

approach.

Tables

Supplementary Table S1 - Cohort Overview for Tumours Analysed in Main Figures
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Supplementary Figures

Supplementary Figure 1: Workflow of the horizontal phasing algorithm. Adjacent segment or bin
boundaries are evaluated in both phasing configurations (standard, or “flipped”), where any haplotype
“flips” are maintained across all samples from the tumour. Distances between a diploid normal and
both configurations are calculated to determine which configuration is optimal. Ultimately this yields a
final phased copy number profile with minimal distance to a diploid normal.
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Supplementary Figure 2: Full Refphase across-genome plotting output for CRUK0034. The
upper three panels show tracks for log read-depth ratio (LogR), B-Allele Frequency (BAF),
re-estimated fractional copy number states, and somatic copy number aberration (SCNA) event
calling at a sample level. The bottom panel (‘Summary’) gives a tumour-level summary of SCNA event
clonality and detection of mirrored subclonal imbalance (MSAI), loss of heterozygosity (LOH) and
parallel events. Events are called relative-to-ploidy using a mean logR threshold.
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Supplementary Figure 3: Associations with sample purity. The association between sample purity
and (a) proportion of genome with newly identified allelic imbalance (LME coefficient = -0.28 (2.s.f.),
LME ANOVA p<0.0001), and (b) proportion of genome with MSAI (LME coefficient = 0.0045 (2.s.f.),
LME ANOVA p=0.5). Proportion of genome data is calculated using Refphase. Analyses are
undertaken for the 336 tumour samples from 99 tumours in the pan-cancer cohort described in Figure
4 and summarised in Supplementary Table S1. Linear mixed effect (LME) coefficients and ANOVA
p-values shown are adjusted for patient and study cohort (defined by tumour type and profiling
platform) as random effects, calculated using the nlme R package and maximum likelihood method.
Best fit lines shown are derived using the LME model coefficient and intercept values.
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Supplementary Figure 4: The effects of tumour purity and copy number states on B-Allele
Frequency (BAF) and log read-depth ratio (LogR) profiles. a) An example of the effect of
decreasing tumour purity on BAF band separation. b) The effect of varying copy number states on
BAF band separation for a tumour of fixed purity, here 50%. c) Example of typical BAF and LogR
profiles for a loss of heterozygosity (LOH) with total copy number loss (left) and copy-neutral LOH
(CNLOH) (right). Relative-to-ploidy thresholds are indicated by dashed lines and are derived for a
diploid 100% pure tumour using the formulae described in the Methods of this manuscript. Orange
and blue points throughout plots represent the phased “A” haplotype and “B” haplotype respectively.
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Supplementary Figure 5: Somatic Copy Number Aberration (SCNA) heterogeneity
comparisons between ASCAT and Refphase. a) Proportion of the genome subject to subclonal
SCNAs (ASCAT median = 0.28, Refphase median = 0.25, p=3.2e-08). b) Proportion of aberrant
genome subject to subclonal SCNAs, where aberrant genome is defined as the total length of
genomic segments in which any SCNA event (clonal or subclonal) is called (ASCAT median = 0.48,
Refphase median = 0.43, p=8.5e-08). c) Proportion of genome subject to clonal loss of heterozygosity
(LOH) (ASCAT median = 0.18, Refphase median = 0.22, p=5.8e-13). d) Proportion of the genome
subject to subclonal LOH (ASCAT median = 0.11, Refphase median = 0.07, p=1.0e-13). All p-values
shown are for paired Wilcoxon signed rank tests with continuity correction, across the n=99 tumours
described in Figures 4 and 5. SCNAs in (a) and (b) encompass relative-to-ploidy gains and losses,
and LOH events.
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Supplementary Figure 6: Association between whole genome doubling (WGD) and mirrored
subclonal allelic imbalance (MSAI). Median proportions by Patient WGD Status (cWGD = 0.02,
n=54 tumours; sWGD = 0.07, n=13 tumours; nWGD = 0, n=32 tumours). Kruskal-Wallis p-value is
shown (p=2e-04). Data is shown for n=99 tumours from the pan-cancer cohort showcased in Figure 5
for which MEDICC2 was used to infer WGD status. Proportion of genome data is assessed by
Refphase. cWGD = clonal WGD; sWGD = subclonal WGD; nWGD = non-WGD.
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Supplementary Figure 7: Examples of parallel SCNA events in the Sottoriva et al colorectal adenocarcinoma cohort. a) Examples of parallel gain
events on chromosome arm 7p, observed between glands on different sides of the tumour. b) Example of a parallel gain event on chromosome 2, observed
within glands on the same side of the tumour. Tumour IDs shown match those in the original publication [44].
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Supplementary Figure 8: The relationship between SCNA intra-tumour heterogeneity and
clinical variables. Association between proportion of aberrant genome with a) number of samples
(LME coefficient = 0.017, LME ANOVA p=0.1), and b) tumour purity difference - defined as the purity
difference between the most and least pure sample within a tumour (LME coefficient = 0.28, LME
ANOVA p=0.04). Proportion of aberrant genome is defined as the proportion of the total length of
genomic segments harbouring any relative-to-ploidy SCNA (gain or loss) or loss of heterozygosity
(LOH) event which contains a subclonal SCNA or LOH event. Proportion of the aberrant genome is
defined at the tumour level. Analyses are carried out for the pan-cancer cohort described in Figures 4
and 5 (n=99 tumours). Linear mixed effect (LME) ANOVA p-values and LME coefficients calculated
using the nlme R package are shown, with analyses adjusted for study cohort (defined by histology
and sequencing platform), indicated by the colour legend. Whole-exome sequencing (WES) data is
taken from the Brastianos et al. study [45]; SNP array data is taken from the Sottoriva et al. study [44].
Best fit lines shown have LME slope and intercept values.
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