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Abstract1

Social learning can facilitate information spread within groups and is generally assumed to increase learning2

efficiency in animals. Here, we asked how individual learning is affected by skill level of a demonstrator3

present during learning. We predicted that both task-naive and task-experienced individuals benefit from a4

task-experienced, conspecific demonstrator. We used the all-female clonal Amazon molly (Poecilia formosa)5

for our experiments. We further propose a model framework which lets us directly relate each research question6

to a single model parameter. First, following a classical conditioning paradigm over five days, half the fish7

were trained to find food inside a cylinder, while the others were provided with food randomly dispersed8

in their tank. As a result trained individuals visited the cylinder with a higher likelihood than randomly fed9

individuals and showed consistent individual differences in their learning performance. In a second step,10

we allowed these fish to observe a conspecific while we continued (for those trained) or started (for naives)11

individual training. We found that trained individuals did not benefit from a partner, regardless of the partners’12

proficiency, but showed higher average performances compared to naives. Naive individuals showed a decrease13

in learning performance when paired with experienced partners but not when paired with other naive ones.14
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Our results suggest that Amazon mollies learn a foraging task individually and differ consistently in their15

individual learning ability. Further, social learning depends on own, as well as the demonstrator’s skill level in16

a way that observing informed conspecifics may hamper own learning.17

18

Keywords Behaviour, Learning, Clonal, Individuality, Social Information19

Highlights20

• Naturally clonal fish learn operant conditioning tasks21

• Individuals show consistent differences in learning abilities22

• Experienced social partners are not helpful during learning23

Introduction24

In 1514 Machiavelli already stated that "Men nearly always follow the tracks made by others and proceed in25

their affairs by imitation". This is not unique to humans alone, as many gregarious animal species often acquire26

information about their environment from their social partners [Dall et al., 2005, Giraldeau and Caraco, 2018]27

and is commonly referred to as observational or social learning [Bikhchandani et al., 1998, Brown and Laland,28

2003, Webster and Laland, 2008]. It contrasts private learning, where information is gained by exploring29

solutions alone and in absence of others [Laland et al., 2011, Kao et al., 2014]. In general, social learning30

involves the observation of others and the copying of the observed actions [Galef and Laland, 2005]. For31

example, task-naive Amazon Parrots (Amazona amazonica) have been shown to copy the behaviour of other,32

more experienced individuals in order to access an obstructed food source [Picard et al., 2017]. Reader et al.33

[2003] demonstrated that wild guppies (Poecilia reticulata) could copy the food patch preference and predator34

avoidance behaviour from other conspecifics. However, how such social learning processes are affected by the35

initial skill levels of both, observer and demonstrator is only poorly understood.36

For one, observed demonstrators may differ in performance skills and thus in the quality of the information37

they can provide. Variation in information quality can in turn lead to error propagation and accumulation,38

giving rise to a potential trade-off between individual and social information use [Giraldeau et al., 2002,39

Kendal et al., 2005]. Nevertheless, there is evidence that demonstrators’ skill levels per se do not determine40

the extent to which they are copied by less experienced observers. For example, in the guppy, familiarity41
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among observer and demonstrator seems to be much more important than demonstrator skills when it comes42

to being copying [Kendal et al., 2005]. Similarly, Roy and Bhat [2017] found that utilizing social information43

led to food income equality in zebrafish (Danio rerio), where observers relied on visual behavioural cues44

of successful demonstrators to find food themselves. While these studies allowed for full contact among45

individuals and targeted leader-follower interactions, it still remains unclear how an observer’s performance in46

learning a complex task by pure visual interaction with a demonstrator is, in turn, affected by the performance47

skills of this demonstrator. Nevertheless, some pioneering work has been done decades ago, on which the here48

presented work heavily builds on, investigating the relationships and potential costs and mismatches between49

observer and demonstrator Kohn [1976], Biederman and Vanayan [1988], Nicol [1995].50

Although numerous studies have highlighted the benefits of social learning to the observing or eavesdropping51

individuals as it allows an individual to circumvent exploring all possible solutions on its own, and thus saves52

time and energy, e.g., opportunity costs are reduced [Swaney et al., 2001, Pike et al., 2010, Webster and53

Laland, 2012] [Brown and Laland, 2001, 2003, Reader et al., 2003, Harpaz and Schneidman, 2020], these54

benefits might not be shared mutually with the observed and copied demonstrators [Toyokawa et al., 2019,55

Zonca et al., 2021]. While the mere presence of more individuals is beneficial during predator encounters56

[Krause and Ruxton, 2002], experienced demonstrators may lose task solving performance when interacting57

with inexperienced naive individuals, either due to distraction [Roy and Bhat, 2017] or changed time budgets58

as more time is allocated to social interactions than to the task at hand [Gartland et al., 2021]. But also direct59

negative effects of the copying behaviour are known. For example, in many fish species males copy the mate60

choice decisions of other males by observing these copulating with females which may help the observer61

determine high quality females. However, this behaviour will likely increase the risk for sperm competition62

and thus is costly for the copied male that initially mated with the female [Plath and Bierbach, 2011]. As a63

counter strategy, males may change their mate choices to mislead others and conceal their real preferences,64

which is referred to as audience effects [Plath et al., 2008, Zuberbühler, 2008], a form of social deception65

[Wiley, 1994]. In the context of complex task learning by observation alone, the question remains of how a66

demonstrator’s performance is affected by being copied and whether the observer’s skill levels play a role in67

this.68

In addition to situations where there is an information discrepancy among observers and demonstrators,69

individuals may also face a social counterpart with the same prior experience as themselves. Here, one can70

assume that individuals may spend more time exploring individually, thus leading to increased learning and71

final performance. This assumption is based on the idea that no additional task-specific, social information can72

be gained from observing such a partner, as the information would be highly correlated to the own experience73

3/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/


and therefore deemed redundant [Strandburg-Peshkin et al., 2013, Kao et al., 2014].74

In the current study we aimed at testing how variation in skill levels between observers and demonstrators75

affected their learning performances (for naive observers), as well as overall task performances (for experienced76

demonstrators). We used the Amazon molly (Poecilia formosa), a naturally occurring clonal fish species that77

reproduces gynogenetically and gives birth to live offspring that are genetically identical to their sisters and78

mothers [Schartl et al., 1995, Lampert and Schartl, 2008, Stoeck et al., 2010]. Through its clonal genetic79

background as well as its gregarious life-style, this species has been proposed to represent a useful model80

organism for the study of individual behavioural differences and the influence of behavioural traits on the social81

functioning of groups [Doran et al., 2019, Laskowski et al., 2019, 2021, Makowicz et al., 2022]. However, to82

date no research has been conducted on the learning abilities of these fish. Due to this intricate natural history83

all individuals in this study were of same genetic composition and near identical rearing background. In a first84

step (private information acquisition), an operand conditioning procedure (5 days, 3 times training per day) was85

used to produce two differently experienced cohorts of otherwise genetically identical individuals: One cohort86

was trained to find food in a opaque cylinder (the task, see Figure 1) and therefore given the opportunity to learn87

to solve the task (task-experienced/trained individuals). The second cohort was trained to find food distributed88

randomly, with no ability to learn an association between food and cylinder location (task-inexperienced/naive89

individuals). In a second step (social information acquisition), we paired two individuals to have visual access90

to each other, enabling them to observe each other while we continued (for trained individuals) or started (for91

those naive) the conditional training (5 days, 3 times training per day). Our full factorial design allowed us to92

create pairs of fish with all possible experience combinations: naive-naive, naive-trained and trained-trained.93

With this design, we tested first whether Amazon mollies are able to learn the task and whether there were94

consistent individual differences in both the learning rate and overall task performance at the end of the private95

information acquisition phase. We then explored how the skill level of the partner affected learning and96

overall performance when social information becomes available. The prediction was that naive fish paired97

with a trained partner will have a higher probability to reach a novel food source compared to individuals that98

were paired with another task-naive partner. For experienced Amazon mollies, the prediction was that the99

task performance would be worse when paired with naive individuals, compared to those interacting with a100

similarly proficient individual. The reasoning behind this assumption being, that individuals paired with a101

similarly skilled partner which provides redundant information may allocate more time and efforts towards102

acquiring private information - this can outweigh the potential opportunity costs that arise through the social103

interactions and which should be apparent when paired with both naive and experienced partners.104
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Materials and Methods105

Study organism and maintenance106

For our experiments we used the Amazon molly (P. formosa), a naturally occurring clonal freshwater fish.107

This is an all-female species that originated from a rare hybridisation event between a male Sailfin molly (P.108

latipinna, ♂) and a female Atlantic molly (P. mexicana, ♀) about 100.000 years ago [Hubbs and Hubbs, 1932,109

Schartl et al., 1995, Schultz, 1973, Lampert and Schartl, 2008, Stoeck et al., 2010, Warren et al., 2018]. This110

species reproduces through gynogenesis which means that females require sperm from males of closely related111

Poeciliid species to induce embryogenesis [Evans et al., 2011]. However, no paternal genetic material is112

incorporated into the embryo, thus Amazon mollies produce broods of offspring that are genetically identical113

to each other and their mothers [Schartl, 1995]. The herein used clonal linage has been reared for many114

generation in captivity and regular molecular checks confirm that individuals are clones. Fish were bred with115

Atlantic molly males as sperm donors at the animal care facilities of XXXXXX Fish were reared in 200-L116

tanks filled with aged tap water at a temperature of 26 °C and fed twice daily ad libitum with commercially117

available flake food as well as defrosted blood worms (Chironomidae sp.). All animal experiments were118

conducted under the animal experiment number #0089/21 of the XXXXXX.119

Experimental design120

For our experiment, we first generated two different treatment groups, one that was fed three times per day for121

one week only inside an opaque cylinder (‘trained cohort’, Figure 1), while the other one was fed with food122

dispersed randomly in the experimental tank (‘naive cohort’). In a second step, we visually paired fish with123

individuals from the same or a differing training regime and either continued (for those already trained) or124

started to feed only in the cylinder (for those habituated, but naive).125

To start the experiment, we placed pairs of size-matched, unfamiliar fish (N=36, 23±2 mm) in each of six126

identical test aquariums (300 × 600 × 200 mm). Fish were taken from multiple husbandry tanks ensuring127

that familiarity was not given, and size-matched in order to reduce dominance effects and most importantly128

to account for any age differences. All individuals were randomly distributed across all experimental tanks.129

An opaque divider separated each tank into two same-sized compartments, each containing one fish. This130

divider could be exchanged with a transparent one during experimentation to allow visual interactions (see131

Figure 2). Each two-compartment tank was externally filtered (EHEIM Professional 3 250) throughout the132

entire trial in order to maintain water quality and to provide olfactory cues to the fish. Water quality was133
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checked weekly (SERA pH, NH3/NH4,NO2,NO3) and 50 percent of the water was exchanged at the same134

interval. The temperature was maintained within the range of 23-26 °C and adjusted through the ambient135

room temperature. Water levels were maintained at 70 mm, resulting in a total of 18.7 l per tank and 3.5 l per136

individual compartment. In order to enhance the learning outcome, the fish were kept on a continuous light137

cycle, which has been shown to have no effect on the stress level of a closely related species, while improving138

the learning abilities [Kurvers et al., 2018]. All fish were fed with frozen blood worms, which were thawed139

approximately 30 min. before each experiment.140

Figure 1. A Schematic of the general recording setup. Each inlet and outlet was attached to an individual
circulating filter system. B Concealed food source used in the conditioning trials. Food was presented
within an opaque cylinder, that could only be accessed through a horizontal opening. Entry into the
cylinder was monitored through the top opening, vertically facing the camera. The cylinders were glued
to ceramic plates to ensure stability. This further ensured that food particles and olfactory cues were
contained within the cylinder.

Food conditioning experiments141

Private Information Acquisition - Week 1142

For the individual conditioning, we randomly selected future demonstrators and observers within each of143

six simultaneously trained pairs. Demonstrators were then trained on six occasions per day, for at least five144

consecutive days without visual access to the conspecific partner. Each training instance, consisting of eight145

minutes, was recorded using consumer-grade webcams (c920 HD Pro Logitec, USB 3.0, 432 × 240 px, gray146

scale, 30 fps) mounted above each individual tank. It was ensured that the camera was centered precisely147

above the tank in order to keep occlusions and perspective distortion minimal and evenly distributed among148

both individuals being recorded. During a training instance the individual was either presented with an opaque,149

vertical PVC cylinder (height: 100 mm, �: 50 mm, see Figure 1), containing food as stimulus or with a mock150
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stimulus (50:50 - mock:real). This resulted in three mock treatments and 3 actual training instances per day,151

for every individual. To standardize the starting distance of the fish to the food source, individuals were limited152

to one side of the compartment at the beginning of each instance. This was done using a small separator (see153

Figure 2). For mock treatments the fish underwent all steps, as if it was an actual training instance, being154

constrained to one side of the compartment and having this separator subsequently removed, but without155

the following stimulus presentation. The choice for true conditional or mock stimulus was randomized over156

the course of the day, while ensuring that each accounted for 50% of the total daily tests (3 true, 3 mock).157

Mock treatments were introduced to reduce any association with other neutral stimuli of the procedure and to158

ensure that the focus was drawn to the actual task being learned Courville et al. [2006], Robinson et al. [2014],159

Anselme and Güntürkün [2019]. For the trained cohort of fish, the cylinder was stocked with blood worms160

(N≈8) which were visually occluded from the fish and only accessible through a round opening in the side of161

the vertically oriented cylinder (see Figure 1). Fish of the naive cohort were treated with identical conditions162

as their trained counterparts, with the only difference being the location at which food was presented. Here,163

the same amount of food was distributed randomly within the tank and accessible for the duration of the test164

instance. At the end of each test instance the cylinder as well as any remaining food particles were removed165

from the tank using a pipette.166

Social Information Acquisition - Week 2167

In the second week of the experiment, individuals were regrouped with a new size-matched partner and168

randomly redistributed across the six experimental tanks. This was done to ensure that each individual was169

relocated to a new test tank. Regarding the individual’s own and the partner’s initial training, the following170

social treatments were created: trained paired with trained individuals (TT), naive paired with trained (NT) or171

trained with naive (TN) as well as naive paired with naive (NN). The previously opaque division, separating172

the two individuals was replaced by a clear one, enabling full visual access between both individuals (see173

Figure 2). This clear division was left in place for the entire duration of the social trial, which lasted for five174

consecutive days. During this period all individuals were being trained and tested according to the individual175

conditioning procedure previously described, receiving food only within the cylinder (see Figure 1).176

Video Analysis177

In order to quantify the learning outcome, fish were tracked using a custom developed tracking function (see178

Appendix - Python Code: track2h5) implemented in Python and using the computer vision library OpenCV179
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Figure 2. Top-down view of the holding tanks, showing the
central most compartments, housing one individual on each
side. The location at which the cylinder as food source was
placed is denoted as region of interest and marked in red. The
exchangeable central division, which could be either clear or
opaque is shown in the middle. The position of the separator
to standardize the starting distance at the beginning of each
test instance is shown as green dashed line.

[Bradski, 2000]. The fish were detected by using frame-wise motion tracking, based on simple background180

averaging and subsequent background subtraction. Detected objects were further filtered based on size, speed181

and using an isolation forest algorithm to limit detections to actual fish and reduce noise due to reflections182

and moving particles to an absolute minimum. Individual positions were given as two-dimensional Cartesian183

coordinates, calculated as the center of mass of each filtered detection contour. Since background subtraction184

can result in missing observations due to little movement of the animal, all coordinates were interpolated185

linearly over time to account for this. The first 30 s of each test instance were considered the acclimation phase,186

in which the animals were allowed to settle after having the separator removed. This period was exempted187

from further analysis. To further standardize recordings, all recordings were restricted to a maximum duration188

of 433 s, leading to a total duration from start to end of 403 s. Given that each individual was restricted to its189

specific compartment, identities were maintained based on spatial discrimination. Presence and position of the190

stimulus cylinder were automatically determined by using an implementation of the Hough transformation,191

returning the coordinates of the center of mass and the radius of the detected cylinder. This enabled the exact192

measurement of the Euclidean distance of each individual to the cylinder center at each given time point. In193

addition to the automated process, all videos were manually checked for validity of cylinder detection and194

tracking results.195
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Statistical analysis196

All statistical analysis was run in R (R version 3.6.3 ‘Holding the Windsock’) and statistical inference based197

on generalized mixed effects models (more specifically logit models) which were composed using the function198

glmer in library lme4. After tailoring models to the experiment and research questions, further model199

selection was done based on Akaike’s information criterion (AIC) or conditional AIC, where applicable, using200

the library cAIC4. Validation and estimation of accuracy was done using the check_model function in the201

performance library. Test statistics and calculations were done using tab_model in the library sjPlot. For202

testing variance components, we use the boundary correction described by Stram and Lee [1994] for linear203

mixed effect models. Significance is reported on a 95%-level and all confidence intervals (CIs) provided are204

given as 95% CIs.205

Individuals i = 1, . . . ,36, equipped with universal unique identifiers (UUIDs), are defined to have reached206

the region of interest (i.e. solved the task) in test instance j = 1, . . . ,15 (response yi j = 1) if their distance207

to the cylinder center was smaller than 2.5 cm over a duration of 1 s or more, and to fail otherwise (yi j = 0).208

Predicting that fish should increase the likelihood to solve the task when being fed within the cylinder, we209

associate the learning performance of individual i with its probability of reaching the region of interest and210

employ a statistical learning model based on logit regression reflecting each of our main hypotheses in a single211

model coefficient. Two slightly different model variants are used for experiments of Week 1 (Model 1) and212

Week 2 (Model 2). Model 1, addressing questions of private information acquisition, is given by213

log ODDSi j = Ai +Bi ti j = α0 +α1xTi +ai +
(
β0 +(β1 +bi)xTi

)
ti j (1)

where probabilities Pi j of success yi j = 1 are modelled via odds ODDSi j =
Pi j

1−Pi j
of ‘expected # solved :214

expected # failed’, allowing for interpretation via odds ratios (OR). The combined intercept Ai determines the215

baseline odds of reaching the region of interest. This corresponds to the baseline likelihood of an individual216

reaching the region of interest, before having any prior experience on entering it (Test Instances 1-2, illustrated217

in Figure 3). The slope Bi reflects the learning rate of individual i, with ODDSi j expected to increase with the218

number of visits ti j after initially solving the task (count variable, Time since solved ≤ 15, illustrated in Figure219

3). For the probability pi j of solving the task, this results in a sigmoidal learning curve in ti j (Figure 5). With220

xTi = 1 if individual i is trained and 0 otherwise dummy-coding the training status, Bi = β0 +(β1 +bi)xTi is221

composed of a reference slope β0 reflecting the learning behaviour of un-trained individuals and the gain in222

the learning rate β1 for trained individuals as fixed effects, plus a random effect bi reflecting subject-specific223

deviations of trained individuals. This applies analogously for Ai as well. The random effects ai and bi are224
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assumed normally distributed with standard deviations τa and τb, respectively, and correlation ρ . The random225

slope bi is restricted to trained individuals, which are of major interest. In this model, β1 > 0 corresponds to226

Hypothesis I that clonal fish are capable of learning to feed inside the provided cylinder, in that it reflects227

deviation from zero in the learning rate, and τb > 0 corresponds to Hypothesis II that learning behaviour is228

subject specific, as it describes the variation among individual learning abilities. Including an indicator xsolved i j229

as additional covariate into Model 1, which is 1 if the ith individual has reached the region of interest before230

the jth training instance and 0 otherwise, has been considered to enable less gradual learning behaviour but231

turned out unfavorable in AIC-based model selection.232

Model 2, designed for comparing learning behaviour of individuals in pairs with different training history, is233

given by234

log ODDSi j = Ai +Bi ti j = α0 +α1xNTi +α21TN(i)+α3xTTi +ai (2)

+(β0 +β1xNTi +β2xTNi +β3xTTi +bi) ti j

where xNTi = 1 if individual i is in group NT, i.e. was not trained in Week 1 but has an experienced partner,235

and 0 otherwise. Analogously for TN and TT. Accordingly, β0 describes the baseline learning rate in reference236

group NN and β1,β2,β3 reflect the deviation from that in the other treatment groups. In particular, β1 6= 0237

indicates differences in learning behaviour of naive fish with trained partners (Hypothesis III). Random effects238

ai and bi are specified analogously to Model 1 to account for subject-specific variations.239

Results240

I. Amazon mollies are able to quickly learn foraging task241

Our first question was whether clonal fish were capable of learning to feed inside the provided cylinder.We242

verify this based on Model 1, which captured the variance within the data well, while random effects accounted243

for a large proportion of the variance (marginal R2: 0.083, conditional R2: 0.839, following Nakagawa et al.244

[2017]). At baseline, we obtain odds of about 1 : 9 (probability Pi j = 0.10) for an untrained fish to reach the245

region of interest within a test instance (given by intercept α0 =−2.18, CI = [−2.80,−1.57], for bi = 0). This246

corresponds to the probability of an individual to enter the region of interest without having ever entered it247

before (see Figure 3: Test Instance 0-2). For individuals being trained, and thus not being fed outside the248

region of interest, we obtain a slightly higher baseline probability, with the odds increased by a factor of249
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Figure 3. Definition of the ‘time since solved’ ti j used as
variable for individually describing the learning process.
Until the food inside of the cylinder was first found by
individual i at test instance Ji = min{ j : yi j = 1}, no
training effect can occur and ti j = 0 for j < Ji. After
that, individual training commences and training time
monotonically increases as ti j = j− Ji.

Figure 4. Overview of space use across treatment groups in the second week of training
(order from left to right: NN, NT, TN, TT). Only instances where the cylinder was present are
shown. Darker coloration represents higher number of occurrences, lighter lower. Sample
trajectories are shown for random individuals of each treatment group. All trajectories where
centered on the cylinder, for better visualization.

exp(α1) = 1.55 (CI = [0.67,3.56], p = 0.302), which is, however, not significantly different to those not being250

trained. While we even observe a slightly negative ‘learning effect’ of entering the cylinder (β0 = −0.14,251

CI = [−0.35,0.065], not significant) for individuals not being trained, a significant positive learning effect252

is obtained for trained individuals (β1 = 1.37, CI = [0.60,2.14], p < 0.001***).The likelihood of trained253

individuals to reach the food source significantly increased, once they had solved the task for the first time (see254
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Figure 3: Test Instances > 3), with an odds ratio of OR = exp(β0 +β1) = 3.42, CI = [1.60,7.30] more than255

tripling the odds for the next visit (in a conditional ceteris paribus interpretation used also in the following).256

Figure 5 depicts estimated mean learning curves with and without training, showing probabilities Pi j of solving257

the task in dependence on ti j, and illustrates how the time spent by fish in the region of interest increases with258

ti j.259

Figure 5. Learning outcome of the two treatment groups (trained/naive) in the first
week. Both graphs show results from 36 individuals: Naive: N=18, Trained: N=18.
A: Model output the first week of training in form of estimated marginal means
(lines, thin: individual; bold: group mean) and raw data (points). Instances along
the x-axis are in respect to the first time the goal was reached. Confidence intervals
are based on the Upper Control Limit (UCL) and the Lower Control Limit (LCL)
at a 95% confidence level. B: Visualization of time spend within goal area across
both treatment groups (trained/naive) and over all test instances in the first week. A
truncated linear fit is shown as trend line (between instance 5-11), estimated over
all data points and for each treatment group. A slight jitter was applied along x in
order to reduce overlap.
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II. Clonal Amazon mollies individually differ in learning ability260

We approached the question, whether individual variability was observable among the learning abilities,261

and more specifically the probability to reach the goal area, using the same model as in I (Equation (1)) by262

investigating the the random effect bi on the learning rate of trained individuals. A standard deviation of263

τb = 0.74 is estimated for bi which bespeaks considerable variation across individuals accounting for about264

τb/(β0 +β1) = 60% of their mean learning rate, and testing for τb > 0 confirms significant inter-individual265

differences in the learning behaviour (p < 0.001***). Aside of differences in the learning rate, the standard266

deviation τa = 0.43 of the random intercepts ai could be interpreted to reflect differences in the exploration267

behaviour of individual fish. It is, however, not significantly > 0 (p = 0.386). Inter-individual differences268

are also supported in terms of model selection, preferring Model 1 with random effects (marginal AIC = 314,269

condictional cAIC = 259) over an analogous model without random effects (AIC = 342).270

III. Evident social effects of informed partner can hinder own learning271

The pairwise interactions in the second week, allowed to assess whether task performance was worse in272

observers paired with naive demonstrators, compared to those interacting with task-proficient ones. For this273

purpose we refer to results of Model 2, which are also illustrated in Fig. 6 A. Overall the model (see Model274

2) to determine these effects captured the variance within the data well (marginal R2: 0.716, conditional R2:275

0.903). In Week 2, naive individuals showed similar baseline probabilities for initially entering the region of276

interest when paired with naive partners as they did in Week 1 (reference group NN: odds exp(α0) = 0.07,277

CI = [0.02,0.25]). The baseline probabilities are substantially increased for experienced individuals (TN278

vs. NN: OR = exp(α1) = 24.74, CI = [2.82,216.76], p = 0.004**) in accordance with the training effect279

affirmed above. However, there was no evidence for a positive effect of the partner’s experience on own280

probability of initially entering the cylinder. By contrast, our data indicates a negative effect of having an281

experienced partner on both naive and trained individuals (NT vs. NN: OR= exp(α1) = 0.39, CI= [0.04,4.04],282

p = 0.432; TT vs. TN: OR = exp(α3−α2) = 0.92, CI = [0.10,7.79], p = 0.938) which is smaller for the283

trained: the odds to initially reach the goal area were decreased by ∼ 61% in naive individuals, when paired284

with an informed individual. For already trained individuals paired with another trained partner this effect285

was smaller, amounting for a 8% decrease. Although these effects on the initial detection probability are286

subject to considerable estimation uncertainty and not significant, a significant negative effect of the partner’s287

experience on the learning rate (reference NN: β0 = 2.03, CI = [1.14,2.92]) is found for naive individuals288

(β1 =−1.77, CI = [−2.99,−0.56], p = 0.004**). For NT vs. NN, the probability for reentering the region of289
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Figure 6. Learning outcomes of four treatment groups, depending on the focal
individual and partner denoted in brackets: Naive (Naive): N = 12, Naive (Trained):
N = 6, Trained (Naive): N = 6, Trained (Trained): N = 12. A: Model output the
second week of training in a social context. Results are shown in form of estimated
marginal means (lines, thin: individual; bold: group mean) and raw data (points).
Instances along the x-axis are in respect to the first time the goal was reached. B:
Visualization of time spent withing goal area across all treatment groups and over
all test instances in the second week. For better visibility, first solved instances
are shown with large icons and higher contrast. All remaining data is shown with
less contrast. A truncated linear fit is shown as trend line (between instance 5-11),
estimated over all data points, for each treatment group independently. In order to
reduce overlap in the plot a slight jitter was applied to the data.

interest after the first visit is, hence, significantly reduced with an odds ratio of OR = 0.17 (CI = [0.05,0.57]),290

when paired with a experienced social partner. For experienced individuals, the negative effect of having291

an experienced partner is less distinctly expressed, yielding OR = 0.87 (CI = [0.20,3.64], p = 0.847, not292
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significant) for TT vs. TN. In our experimental setup, we thus consistently find performance decreased for293

individuals with experienced partners when comparing them to individuals with naive partners – an effect that294

is significant, however, only for the learning rate of naive individuals with experience partners, where it is also295

most pronounced.296

Discussion297

In the present study, we found that clonal Amazon mollies can be trained according to a classical operant298

conditioning task, that they exhibited among-inter-individual differences in their learning performance, and299

that the presence of a task-experienced social partner reduces own learning and task-solving performance,300

especially for task-naive individuals.301

Clonal Amazon mollies can learn in an operant conditioning paradigm within a few days and a low number302

of repeated training sessions to associate food with a location in their laboratory environments. This is in303

line with current research on fish cognition, which shows that fish are avid learners and have sophisticated304

cognitive abilities [Brown et al., 2008, Kohda et al., 2019, Bshary and Triki, 2022, Bierbach et al., 2022].305

Further, Fuss and Witte [2019] and Fuss et al. [2021] found similar learning capabilities in both parental306

species of the Amazon molly, P. latipinna and P. mexicana, and also in the closely related guppy (P. reticulata).307

It was shown that both mollies and guppies are capable of operant conditioning as well as reversal learning,308

thus it is not surprising that we found similar cognitive capabilities in the clonal Amazon molly. Our results309

suggest consistent individual variation in the learning curves during the solitary phase of the experiment.310

There is substantial knowledge about consistent individual differences in behavioural traits [Réale et al.,311

2007], including clonal animals like Amazon mollies [Schuett et al., 2011, Freund et al., 2013, Bierbach et al.,312

2017]. However, learning as an individual trait has only recently been shown in great detail in the fruit fly D.313

melanogaster [Smith et al., 2022]. Here, we show that this individuality in learning can also be found in a314

naturally-occurring clonal vertebrate. Eager learning can be seen as an adaptation, allowing individuals to315

respond to environmental changes and unforeseen circumstances. Why even genetically-identical individuals316

differ in their learning performance may have multiple reasons, including pre-birth processes like epigenetics317

differences, maternal effects [Kasper et al., 2017] and developmental stochasticity [Honegger and de Bivort,318

2018], and may be due to post-birth processes like differences in previous experience [Kieffer and Colgan,319

1992] and encountered, environment conditions [Freund et al., 2013, Akhund-Zade et al., 2019]. In the here320

presented study all individuals were genetically identical and reared under near identical conditions. However,321

we used individuals from different mothers and individual variability among our test subjects can thus be due322

15/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/


to a variety of these variance-inducing processes [Bierbach et al., 2017]. Further experimentation is needed in323

order to point out which factors are the most prominent drivers of among-individual variation in the learning324

performance of this clonal vertebrate species.325

As shown here, the skill level and performance of a social partner indeed has a strong influence on own326

performance but in an unexpected way. We found that naive individuals paired with trained ones exhibited327

slowest learning, when compared to naive individuals paired with other naive ones. Trained individuals that328

were associated with naive partners did not significantly differ from trained individuals that were paired with329

other trained ones, although our results tend towards hindering, rather than supportive effects of observing330

trained partners. Therefore, it seems as though being accompanied by highly skilled conspecifics did not331

improve own learning performance, and that having a naive social partner was more beneficial during learning,332

when being naive to the task as well. So, how can such counter-intuitive effects be explained? First, the333

goal areas of both social partners were in mirrored locations (see Figure 2), such that the behaviour of the334

other would not necessarily lead to the same information, visual cues and ultimate learning outcome. Trained335

individuals have acquired experience and established a procedure of solving the task. This can manifest in336

behaviours such as accessing the goal from a certain direction, location or at a specific time, which in turn do337

not necessarily match those of the social partner leading to a dissonance between observed and performed338

behaviour. For two naive individuals performing the task together this could not have such an impact, since both339

individuals are acquiring the knowledge about the novel task at the same time, leading to more synchronous340

experience between both individuals. Following the logic that naive social partners simultaneously learning341

the task from initial non-proficiency show more undirected and variable behaviour, Kohn [1976] argued that342

a continued perception of change, as would be the case when watching another naive individual trying to343

perform a novel task, can maintain attention and act reinforcing to the observer. The experienced partner344

would merely repeat its already learnt behaviour and result in less variation and subsequent reinforcement for345

the naive observer. Second, our task was designed in a way that the observer did not see the demonstrator346

actually feed. In studies that found local or stimulus enhancement effects [Brown and Laland, 2003], observers347

could actually see demonstrators getting the benefit and we argue that a lack of seeing the direct benefit in our348

study hampered the social learning especially from experienced demonstrators that virtually disappeared when349

performing the task. This is underpinned by the fact that trained partners have little effect on initially reaching350

the cylinder and food source in their naive social partners, where we only observe a smaller, non-significant351

effect. However, the detrimental effect of having an experienced partner is clearly pronounced in the chance to352

subsequently re-visit the region of interest in the naive individuals, where we observe a strong and significant353

decrease in their learning rate. This indicates a more complex effect than pure spatial misguidance, due to mere354
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copying and also rules out positive effects such as stimulus enhancement [Spence, 1937] or local enhancement355

[Thorpe, 1956] due to the trained demonstrator.356

Conclusion357

In congruence with our results, weak or absent positive effects of highly skilled partners have been found in358

studies using full-contact designs during demonstrator-observer interaction and path learning tasks. In the359

guppy, naive individuals were following familiar, but less skilled partners more readily through unknown360

maze setups [Swaney et al., 2001]. Similarly, in zebrafish food income equality was enforced via social361

information, where observers relied on visual, behavioural cues of successful demonstrators to find food362

themselves [Roy and Bhat, 2017]. In pigeons, Biederman and Vanayan [1988] showed that naive individuals363

observing demonstrators performing a task at chance and gradually improving, outcompeted those observing364

well proficient demonstrators in speed of learning and overall task accuracy. Further, although near identical365

and clonal, our tested individuals show consistent differences in their learning behaviour which is in line366

with previous studies proposing consitent among-individual differences being common also in clonal animals367

[Schuett et al., 2011, Bierbach et al., 2017, Freund et al., 2013] In sum, this study builds upon the well368

established field of operant learning and conditioning, utilizing a naturally clonal fish species as model369

organism, in which learning has not yet be studied. The here presented work adds a sleek and interpretable370

approach to analysing both the learning efficiency, as well as the inter-individual differences in the learning371

performance. This is done by carefully constructing a statistical model, along side the experimental design, in372

which all components represent key aspects of interest, and biologically relevant terms such as learning rate373

and overall exploration.374

The here highlighted insight, that prior knowledge, or information contained within one’s social partners has375

an effect on the own performance in certain contexts has broad implications for collective behaviour and group376

performance. It has already been shown that information differences can explain dynamics within animal377

collectives [Ioannou et al., 2011, MacGregor et al., 2020]. Information quality [Kao et al., 2014], such as378

uncertainty and redundancy, as well as the processes by which novel information is generated or affected379

by the social environment most likely play a key role in the learning behaviour of gregarious individuals380

[Hofmann et al., 2013, Rodriguez-Santiago et al., 2020]. In light of learning - a process of information uptake381

and integration over time - the here presented results give a concise approach to shed light on the timing of382

such events. The process of learning and timing of informational cues gives rise to a multitude of interesting383

questions, such as how information is being distributed in a multi agent system, or fish school, in order to384
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achieve optimal exposure and learning for each of its individual members.385

In more biological terms, what drives an individual to take on a certain role in the group, move to a specific386

location or perform a given behaviour is still very much an open question, which yearns to be answered. As387

shown here, the experience and prior knowledge of social partners has an effect on the learning performance388

of individuals. Therefore, the social environment during certain experiences likely effects the ability of389

individuals to learn and adapt to novel situations. These insights, as well as the unique modelling approach390

shown here to address such learning processes and their timing, should pave the way for more experiments in391

this exciting direction.392

Supporting Material393

All supplemental files, such as code for tracking and statistical analysis, as well as the data used in this study394

can be found here: https://github.com/XXXXX395

1. [dataset] Author: F.Francisco, 2022, Learning Data, Data_AmazonMollyLearning.csv396

2. Statistical Code, Rstats_AmazonMollyLearning.Rmd, 2022, Authors: F.Francisco, J. Lukas, A. Stöcker397

3. Tracking Code, TrackingCode_AmazonMollyLearning.py, 2022, Author: F.Francisco398

Author Contributions399

FF, DB and PR derived the research question and experimental design. FF conducted the experiments. FF, JL400

and AS conducted the statistical analysis and designed the analytical structure. FF wrote the initial draft of the401

manuscript with input from all coauthors. All authors acknowledge no conflict of interests and have proofread402

the final version of the manuscript and agreed on submission.403

Ethical Note404

Animal experiments were conducted under the animal experiment number #0089/21 of the German State405

Office for Health and Social Affairs (LAGeSo). A total of N=36 fish were used over the course of this406

experiment. All animals used for this research were kept under best possible holding conditions, in order to407

assure healthy, natural behaviour. After the experiment, animals were released to designated holding tanks.408

All animal facilities and maintenance protocols were kept in accordance to the LAGeSo.409

18/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Funding410

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)411

under Germany’s Excellence Strategy – EXC 2002/1 “Science of Intelligence” (Project number 390523135).412

19/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

Jamilla Akhund-Zade, Sandra Ho, Chelsea O’Leary, and Benjamin de Bivort. The effect of environmental

enrichment on behavioral variability depends on genotype, behavior, and type of enrichment. Journal of

Experimental Biology, 222(19), 2019.

Patrick Anselme and Onur Güntürkün. How foraging works: uncertainty magnifies food-seeking motivation.

Behavioral and Brain Sciences, 42, 2019.

GB Biederman and Marina Vanayan. Observational learning in pigeons: The function of quality of observed

performance in simultaneous discrimination. Learning and Motivation, 19(1):31–43, 1988.

David Bierbach, Kate L Laskowski, and Max Wolf. Behavioural individuality in clonal fish arises despite

near-identical rearing conditions. Nature communications, 8(1):1–7, 2017.

David Bierbach, Luis Gómez-Nava, Fritz A Francisco, Juliane Lukas, Lea Musiolek, Verena V Hafner, Tim

Landgraf, Pawel Romanczuk, and Jens Krause. Live fish learn to anticipate the movement of a fish-like

robot. Bioinspiration & Biomimetics, 2022.

Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. Learning from the behavior of others: Conformity,

fads, and informational cascades. Journal of economic perspectives, 12(3):151–170, 1998.

Gary Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 25

(11):120–123, 2000.

Culum Brown and Kevin N Laland. Social learning in fishes: a review. Fish and fisheries, 4(3):280–288,

2003.

Culum Brown, Kevin Laland, and Jens Krause. Fish cognition and behavior. John Wiley & Sons, 2008.

Culumn Brown and Kevin Laland. Social learning and life skills training for hatchery reared fish. Journal of

Fish Biology, 59(3):471–493, 2001.

Redouan Bshary and Zegni Triki. Fish ecology and cognition: insights from studies on wild and wild-caught

teleost fishes. Current Opinion in Behavioral Sciences, 46:101174, 2022.

Aaron C Courville, Nathaniel D Daw, and David S Touretzky. Bayesian theories of conditioning in a changing

world. Trends in cognitive sciences, 10(7):294–300, 2006.

20/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sasha RX Dall, Luc-Alain Giraldeau, Ola Olsson, John M McNamara, and David W Stephens. Information

and its use by animals in evolutionary ecology. Trends in ecology & evolution, 20(4):187–193, 2005.

Carolina Doran, David Bierbach, and Kate L Laskowski. Familiarity increases aggressiveness among clonal

fish. Animal Behaviour, 148:153–159, 2019.

Jonathan P Evans, Andrea Pilastro, and Ingo Schlupp. Ecology and evolution of poeciliid fishes. University of

Chicago Press, 2011.

Julia Freund, Andreas M Brandmaier, Lars Lewejohann, Imke Kirste, Mareike Kritzler, Antonio Krüger,

Norbert Sachser, Ulman Lindenberger, and Gerd Kempermann. Emergence of individuality in genetically

identical mice. Science, 340(6133):756–759, 2013.

Theodora Fuss and Klaudia Witte. Sex differences in color discrimination and serial reversal learning in

mollies and guppies. Current zoology, 65(3):323–332, 2019.

Theodora Fuss, Simone Flöck, and Klaudia Witte. Sex-specific cognitive flexibility in atlantic mollies when

learning from male demonstrators exploring a new food source. Animal Behaviour, 173:9–19, 2021.

Bennett G Galef and Kevin N Laland. Social learning in animals: empirical studies and theoretical models.

Bioscience, 55(6):489–499, 2005.

Lizzy A Gartland, Josh A Firth, Kate L Laskowski, Raphael Jeanson, and Christos C Ioannou. Sociability as a

personality trait in animals: methods, causes and consequences. Biological Reviews, 2021.

Luc-Alain Giraldeau and Thomas Caraco. Social foraging theory, volume 73. Princeton University Press,

2018.

Luc-Alain Giraldeau, Thomas J Valone, and Jennifer J Templeton. Potential disadvantages of using socially

acquired information. Philosophical Transactions of the Royal Society of London. Series B: Biological

Sciences, 357(1427):1559–1566, 2002.

Roy Harpaz and Elad Schneidman. Social interactions drive efficient foraging and income equality in groups

of fish. Elife, 9:e56196, 2020.

Volker Hofmann, Juan I Sanguinetti-Scheck, Silke Künzel, Bart Geurten, Leonel Gómez-Sena, and Jacob

Engelmann. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish. Journal of

Experimental Biology, 216(13):2487–2500, 2013.

21/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kyle Honegger and Benjamin de Bivort. Stochasticity, individuality and behavior. Current Biology, 28(1):

R8–R12, 2018.

Carl L Hubbs and Laura C Hubbs. Apparent parthenogenesis in nature, in a form of fish of hybrid origin.

Science, 76(1983):628–630, 1932.

Christos C Ioannou, Iain D Couzin, Richard James, Darren P Croft, and Jens Krause. Social organisation and

information transfer in schooling fish. Fish cognition and behavior, 2:217–239, 2011.

Albert B Kao, Noam Miller, Colin Torney, Andrew Hartnett, and Iain D Couzin. Collective learning and

optimal consensus decisions in social animal groups. PLoS Comput Biol, 10(8):e1003762, 2014.

Claudia Kasper, Mathias Kölliker, Erik Postma, and Barbara Taborsky. Consistent cooperation in a cichlid fish

is caused by maternal and developmental effects rather than heritable genetic variation. Proceedings of the

Royal Society B: Biological Sciences, 284(1858):20170369, 2017.

Rachel L Kendal, Isabelle Coolen, Yfke van Bergen, and Kevin N Laland. Trade-offs in the adaptive use of

social and asocial learning. Advances in the Study of Behavior, 35:333–379, 2005.

James D Kieffer and Patrick W Colgan. The role of learning in fish behaviour. Reviews in Fish Biology and

Fisheries, 2(2):125–143, 1992.

Masanori Kohda, Takashi Hotta, Tomohiro Takeyama, Satoshi Awata, Hirokazu Tanaka, Jun-ya Asai, and

Alex L Jordan. If a fish can pass the mark test, what are the implications for consciousness and self-awareness

testing in animals? PLoS biology, 17(2):e3000021, 2019.

Bruno Kohn. Observation and discrimination learning in the rat: Effects of stimulus substitution. Learning

and Motivation, 7(2):303–312, 1976.

Jens Krause and Graeme D Ruxton. Living in groups. Oxford University Press, 2002.

Ralf HJM Kurvers, J Drägestein, F Hölker, A Jechow, J Krause, and D Bierbach. Artificial light at night

affects emergence from a refuge and space use in guppies. Scientific reports, 8(1):1–10, 2018.

Kevin N Laland, Nicola Atton, and Michael M Webster. From fish to fashion: experimental and theoretical

insights into the evolution of culture. Philosophical Transactions of the Royal Society B: Biological Sciences,

366(1567):958–968, 2011.

KP Lampert and M Schartl. The origin and evolution of a unisexual hybrid: Poecilia formosa. Philosophical

Transactions of the Royal Society B: Biological Sciences, 363(1505):2901–2909, 2008.

22/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kate L Laskowski, Carolina Doran, David Bierbach, Jens Krause, and Max Wolf. Naturally clonal vertebrates

are an untapped resource in ecology and evolution research. Nature ecology & evolution, 3(2):161–169,

2019.

Kate L Laskowski, Frank Seebacher, Marie Habedank, Johannes Meka, and David Bierbach. Two locomotor

traits show different patterns of developmental plasticity between closely related clonal and sexual fish.

Frontiers in physiology, 12, 2021.

Hannah EA MacGregor, James E Herbert-Read, and Christos C Ioannou. Information can explain the dynamics

of group order in animal collective behaviour. Nature communications, 11(1):1–8, 2020.

Amber M Makowicz, David Bierbach, Christian Richardson, and Kimberly A Hughes. Cascading indirect

genetic effects in a clonal vertebrate. Proceedings of the Royal Society B, 289(1978):20220731, 2022.

Shinichi Nakagawa, Paul CD Johnson, and Holger Schielzeth. The coefficient of determination r 2 and

intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded.

Journal of the Royal Society Interface, 14(134):20170213, 2017.

CJ Nicol. The social transmission of information and behaviour. Applied Animal Behaviour Science, 44(2-4):

79–98, 1995.

Alejandra Morales Picard, Lauren Hogan, Megan L Lambert, Anna Wilkinson, Amanda M Seed, and Katie E

Slocombe. Diffusion of novel foraging behaviour in amazon parrots through social learning. Animal

cognition, 20(2):285–298, 2017.

Thomas W Pike, Jeremy R Kendal, Luke E Rendell, and Kevin N Laland. Learning by proportional observation

in a species of fish. Behavioral Ecology, 21(3):570–575, 2010.

Martin Plath and David Bierbach. Sex and the public: social eavesdropping, sperm competition risk, and male

mate choice. Communicative & integrative biology, 4(3):276–280, 2011.

Martin Plath, Dennis Blum, Ingo Schlupp, and Ralph Tiedemann. Audience effect alters mating preferences in

a livebearing fish, the atlantic molly, poecilia mexicana. Animal Behaviour, 75(1):21–29, 2008.

Simon M Reader, Jeremy R Kendal, and Kevin N Laland. Social learning of foraging sites and escape routes

in wild trinidadian guppies. Animal Behaviour, 66(4):729–739, 2003.

Denis Réale, Simon M Reader, Daniel Sol, Peter T McDougall, and Niels J Dingemanse. Integrating animal

temperament within ecology and evolution. Biological reviews, 82(2):291–318, 2007.

23/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mike JF Robinson, Patrick Anselme, Adam M Fischer, and Kent C Berridge. Initial uncertainty in pavlovian

reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive

cues. Behavioural brain research, 266:119–130, 2014.

Mariana Rodriguez-Santiago, Paul Nührenberg, James Derry, Oliver Deussen, Fritz A Francisco, Linda K

Garrison, Sylvia F Garza, Hans A Hofmann, and Alex Jordan. Behavioral traits that define social dominance

are the same that reduce social influence in a consensus task. Proceedings of the National Academy of

Sciences, 117(31):18566–18573, 2020.

Tamal Roy and Anuradha Bhat. Social learning in a maze? contrasting individual performance among wild

zebrafish when associated with trained and naïve conspecifics. Behavioural processes, 144:51–57, 2017.

M Schartl. Incorporation of subgenomic amounts of host species dna in the gynogenetic amazon molly. Nature,

373:68–71, 1995.

Manfred Schartl, Brigitta Wilde, Ingo Schlupp, and Jakob Parzefall. Evolutionary origin of a parthenoform,

the amazon molly poecilia formosa, on the basis of a molecular genealogy. Evolution, 49(5):827–835, 1995.

Wiebke Schuett, Sasha RX Dall, Jana Baeumer, Michaela H Kloesener, Shinichi Nakagawa, Felix Beinlich,

and Till Eggers. Personality variation in a clonal insect: the pea aphid, acyrthosiphon pisum. Developmental

psychobiology, 53(6):631–640, 2011.

RJ Schultz. Origin and synthesis of a unisexual fish. In Genetics and Mutagenesis of Fish, pages 207–211.

Springer, 1973.

Matthew A-Y Smith, Kyle S Honegger, Glenn Turner, and Benjamin de Bivort. Idiosyncratic learning

performance in flies. Biology Letters, 18(2):20210424, 2022.

Kenneth W Spence. Experimental studies of learning and the higher mental processes in infra-human primates.

Psychological Bulletin, 34(10):806, 1937.

Matthias Stoeck, Kathrin P Lampert, Dirk Möller, Ingo Schlupp, and Manfred Schartl. Monophyletic origin of

multiple clonal lineages in an asexual fish (poecilia formosa). Molecular Ecology, 19(23):5204–5215, 2010.

Daniel O Stram and Jae Won Lee. Variance components testing in the longitudinal mixed effects model.

Biometrics, pages 1171–1177, 1994.

24/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ariana Strandburg-Peshkin, Colin R Twomey, Nikolai WF Bode, Albert B Kao, Yael Katz, Christos C Ioannou,

Sara B Rosenthal, Colin J Torney, Hai Shan Wu, Simon A Levin, et al. Visual sensory networks and effective

information transfer in animal groups. Current Biology, 23(17):R709–R711, 2013.

Will Swaney, Jeremy Kendal, Hannah Capon, Culum Brown, and Kevin N Laland. Familiarity facilitates

social learning of foraging behaviour in the guppy. Animal Behaviour, 62(3):591–598, 2001.

William Homan Thorpe. Learning and instinct in animals. 1956.

Wataru Toyokawa, Andrew Whalen, and Kevin N Laland. Social learning strategies regulate the wisdom and

madness of interactive crowds. Nature Human Behaviour, 3(2):183–193, 2019.

Wesley C Warren, Raquel García-Pérez, Sen Xu, Kathrin P Lampert, Domitille Chalopin, Matthias Stöck,

Laurence Loewe, Yuan Lu, Lukas Kuderna, Patrick Minx, et al. Clonal polymorphism and high

heterozygosity in the celibate genome of the amazon molly. Nature ecology & evolution, 2(4):669–679,

2018.

MM Webster and KN Laland. Social learning strategies and predation risk: minnows copy only when using

private information would be costly. Proceedings of the Royal Society B: Biological Sciences, 275(1653):

2869–2876, 2008.

M.M. Webster and K.N. Laland. Social information, conformity and the opportunity costs paid by foraging

fish. Behavioral Ecology and Sociobiology, 66(5):797–809, 2012. doi: 10.1007/s00265-012-1328-1.

R Haven Wiley. Errors, exaggeration, and deception in. Behavioral mechanisms in evolutionary ecology, page

157, 1994.

Joshua Zonca, Anna Folsø, and Alessandra Sciutti. Dynamic modulation of social influence by indirect

reciprocity. Scientific reports, 11(1):1–14, 2021.

Klaus Zuberbühler. Audience effects. Current Biology, 18(5):R189–R190, 2008.

25/25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512085
http://creativecommons.org/licenses/by-nc-nd/4.0/

