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Abstract 
 

Background: The cerebellum critically contributes to higher-order cognitive and emotional functions 
such fear learning and memory. Prior research on cerebellar volume in PTSD is scant and has neglected 
neuroanatomical subdivisions of the cerebellum that differentially map on to motor, cognitive, and 
affective functions. 
 
Methods: We quantified cerebellar lobule volumes using structural magnetic resonance imaging in 4,215 
adults (PTSD n= 1640; Control n=2575) across 40 sites from the from the ENIGMA-PGC PTSD working 
group. Using a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation, 
we obtained volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects 
models controlling for age, gender, intracranial volume, and site were used to compare cerebellum total 
and subregional volume in PTSD compared to healthy controls. The Benjamini-Hochberg procedure was 
used to control the false discovery rate (p-FDR < .05). 
 
Results: PTSD was associated with significant grey and white matter reductions of the cerebellum. 
Compared to controls, people with PTSD demonstrated smaller total cerebellum volume. In addition, 
people with PTSD showed reduced volume in subregions primarily within the posterior lobe (lobule VIIB, 
crus II), but also the vermis (VI, VIII), flocculonodular lobe (lobule X), and cerebellar white matter (all p-FDR 
< 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining 
symptom severity rather than diagnostic status.  
 
Conclusions: These findings implicate regionally specific cerebellar volumetric differences in the 
pathophysiology of PTSD. The cerebellum appears to play an important role in high-order cognitive and 
emotional processes, far beyond its historical association with vestibulomotor function. Further 
examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar 
structure and function may disrupt cognitive and affective processes at the center of translational 
models for PTSD. 
 
Keywords: PTSD, cerebellum, structural MRI, volume 
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Introduction 

Exposure to trauma is common, and nearly 10% of trauma survivors develop chronic symptoms of 
posttraumatic stress disorder (PTSD; (1)), a debilitating psychiatric condition characterized by a 
constellation of symptoms including intrusive memories, avoidance, hypervigilance, and negative 
changes in mood and cognition (2). An extensive body of research has illuminated key brain regions that 
differentiate PTSD patients from trauma-exposed controls (3-5). Notably, PTSD has been consistently 
linked to smaller volume of brain regions including the hippocampus (6-9), ventromedial prefrontal cortex 
(vmPFC; (10-12)), amygdala (13-15), insula (16-18), and anterior cingulate cortex (ACC; (9, 19, 20)). 
These regions are part of a critical neural circuit supporting diverse cognitive and affective functions that 
are disrupted in PTSD, including threat processing, emotion regulation, and emotional memory(21, 22). 

Relatively little attention has been paid to areas of the brain outside these canonical regions. Notably, 
research emerging over the past three decades clearly demonstrates that the cerebellum contributes 
immensely to higher-order cognition and emotion (23-25). Historically known for its central role in the 
vestibulomotor system (26), the human cerebellum has rapidly (and disproportionately) evolved over time 
(27-29). Despite being approximately 10% of the brain’s overall size (30), the cerebellum houses the vast 
majority of the brain’s total neurons (31) and occupies nearly 80% of the neocortical surface area (29). 
The cerebellum shares rich anatomical connections with much of the brain, including with prefrontal and 
limbic areas (27, 32-34), strongly suggesting that it participates in processes beyond motor coordination 
that may be highly relevant to PTSD. Moreover, the cerebellum’s widespread connectivity with stress-
related regions (such as with the amygdala, hippocampus, and periaqueductal gray) may make it 
especially vulnerable to traumatic stress, potentially leading to the development of PTSD symptoms by 
disrupting typical brain-mediated stress responses via cerebro-cerebellar circuits (35, 36). Recent 
studies have also demonstrated that the cerebellum is involved in fear learning and memory (37-40); 
considering PTSD is characterized by aberrancies in threat detection and processing (41, 42), this 
accumulating evidence makes a compelling case that the cerebellum is involved in the pathophysiology 
of PTSD.  

A growing body of structural and functional magnetic resonance imaging studies provide evidence of 
altered cerebellar volume and function in PTSD (37). Specifically, smaller cerebellar volume has been 
observed in both adult (43, 44) and pediatric (45, 46) PTSD samples. PTSD has also been linked to 
disrupted functional connectivity between the cerebellum and key cognitive and affective regions, 
including the amygdala (47). Although meta-analytic work has suggested cerebellar activation 
differentiates PTSD patients from healthy controls (48-50), other studies have failed to observe any 
cerebellar volumetric differences related to PTSD (51-53), necessitating additional studies to resolve 
these discrepant findings. Collectively, these results highlight the importance of incorporating the 
cerebellum into well-established translational models of PTSD.  

Prior research on cerebellar volume in PTSD has been limited by largely neglecting to consider important 
neuroanatomical subdivisions of the cerebellum that differentially map onto motor, cognitive, and 
affective functions. Gross anatomy delineates two major fissures dividing the cerebellum into three 
anatomical divisions: the anterior (lobules I-V), posterior (lobules VI-IX), and flocculonodular (lobule X) 
lobes (54). The anterior lobe receives spinal afferents via spinocerebellar tracts and shares reciprocal 
connections with motor cortices to help support motor movements, gait, and equilibrium (55). By 
contrast, extensive non-motor functions have been identified within the evolutionarily newer posterior 
cerebellum (56), which lacks spinal cord inputs and has connections with cortical areas integral to higher 
order processes, including the prefrontal cortex and cingulate gyrus (57, 58). Activation within the 
posterior lobe has been observed during language and verbal working memory (lobule VI, crus I), spatial 
processing (lobule VI), and executive function (lobule VI and VIIB, crus I) tasks (24, 56, 59). Aversive 
stimulus processing, such as noxious heat and unpleasant images, also appears to involve the posterior 
cerebellum (lobules VI and VIIB and crus I), implicating these regions in defensive responding (60). The 
vermis - the medial cortico-nuclear column connecting the left and right cerebellar hemispheres - is 
considered an extension of the Papez emotion circuit (61) and is activated during affective processing 
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(23, 25, 62). Vermal lobules also interact with other regions critical for emotional associative learning 
including the amygdala, hypothalamus, and periaqueductal gray (23, 63, 64). Taken together, these 
careful studies on functional topography have identified three broad subdivisions of the cerebellum 
comprising sensorimotor, cognitive, and limbic areas (24).  

As a heterogenous disorder linked to dysfunction within multiple cerebellum-supported processes, it is 
unclear whether structural differences in the cerebellum in PTSD are global or may be localized to 
specific subregions. Indeed, prior work has identified differences in cerebellar volume and function 
distributed across the cerebellum, including within the vermis (43, 46), crus (44, 65), and lobules VI and 
VII (66-68). Yet, these diffuse subregional findings are often not replicated, contributing to a lack of 
consensus regarding the cerebellum’s role in PTSD. Importantly, better understanding the relevance of 
cerebellar structure in the pathophysiology of PTSD may help elucidate potential mechanisms that 
perpetuate chronic symptoms of PTSD and aid in our ability to develop targeted, effective interventions.  

To this end, the present study employed a mega-analysis of total and subregional cerebellar volumes in 
a large, multi-cohort dataset from the Enhancing NeuroImaging Genetics through Meta-Analysis 
(ENIGMA)-Psychiatric Genomics Consortium (PGC) PTSD workgroup. By contrast with a meta-analysis, 
a mega-analysis centralizes and pools data from multiple sites and fits statistical models to the 
aggregated data while adjusting for site effects. We used a novel, standardized ENIGMA cerebellum 
parcellation protocol (Kerestes et al., 2022) to quantify cerebellar lobule volumes using structural MRI 
data from 4,215 adults with (n=1,640) and without (n=2,575) PTSD. We examined the effects of PTSD on 
cerebellar volumes, adjusting for age, gender, and total intracranial volume. Based on prior work (43-46), 
we hypothesized that PTSD would be associated with smaller total cerebellum volume. Considering 
functional topography indicates the ‘limbic’ and ‘cognitive’ cerebellum localize to the vermis and 
posterior lobes, respectively, we hypothesized PTSD would be associated with smaller volumes within 
these two anatomical divisions (23-25). 

Methods and Materials 

Sample.  
Clinical, demographic, and neuroimaging data from the ENIGMA-PGC PTSD working group included in 
the current study are presented in Table 1. MRI scans from 4,215 subjects, including 1640 PTSD 
patients and 2,575 healthy controls (trauma-exposed or naïve), were automatically segmented into 
cerebellar subregions. All study procedures were approved by local institutional review boards (IRB), and 
participants provided written informed consent. The present analyses were granted exempt status by the 
Duke University Health System IRB. 
 
Table 1. Sample characteristics by site. 

 N Age  Gender  
 

Diagnosis Diagnostic 
Tool 

Sample PTSD 
Severity  

Severity  
Tool 

Site 
 M  

(SD) 
F M PTSD Ctrl   M % 

(SD) 
 

ADNI DoD 103 68.53  
(4.05) 

2 101 43 60 CAPS-IV Military 21.00  
(20.71) 

CAPS-IV 

Amsterdam AMC 73 40.01  
(9.97) 

34 39 36 37 CAPS-IV Police 26.37  
(24.57) 

CAPS-IV 

Beijing 87 48.49 
(10.29) 

53 34 41 46 PCL-5 Civilian 35.52  
(20.00) 

PCL-5 

Cape Town 106 26.78  
(6.39) 

106 0 6 100 CAPS-IV Civilian 46.14  
(21.74) 

CAPS-IV 

Columbia 151 34.96 
(10.65) 

90 61 72 79 CAPS-IV, 
SCID 

Civilian 34.07  
(26.55) 

CAPS-IV, CAPS-
5 

Duke 376 39.24 
(10.02) 

72 304 111 265 CAPS-IV, 
CAPS-5, SCID 

Military 20.04  
(23.44) 

CAPS-IV, CAPS-
5, DTS 

Emory GTP 59 40.24 
(11.97) 

59 0 13 46 CAPS-IV Civilian 21.04  
(16.31) 

CAPS-IV 
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Ghent 65 37.15 
(12.22) 

65 0 8 57 MINI Civilian --- --- 

Groningen 37 38.81  
(9.46) 

37 0 37 0 CAPS-IV Civilian 49.24  
(9.63) 

CAPS-IV 

LIMBIC-CENC 1045 40.10 
(9.84) 

144 901 354 691 PCL-5 Military 32.12 
(23.73) 

PCL-5 

Mannheim 40 35.83 
(11.50) 

40 0 40 0 SCID Civilian 53.95  
(22.26) 

DTS 

Masaryk 269 51.72 
(18.67) 

166 103 109 160 PCL-C Civilian 34.59  
(12.00) 

PCL-C 

McLean 1 78 34.56 
(12.49) 

78 0 51 27 CAPS-5 Civilian 42.85  
(31.99) 

CAPS-5 

McLean 2 94 34.15  
(8.89) 

52 42 21 73 CAPS-IV Civilian --- CAPS-IV 

Michigan 62 30.42  
(7.71) 

0 62 40 22 CAPS-IV Military, 
Civilian 

35.92  
(25.10) 

CAPS-IV 

Milwaukee 70 32.48 
(10.05) 

35 35 19 51 CAPS-5 Civilian 17.45  
(15.34) 

CAPS-5 

Minnesota 62 42.85  
(9.51) 

5 57 12 50 CAPS-IV Military 13.54  
(14.39) 

CAPS-IV 

Missouri 64 32.02  
(9.73) 

64 0 57 7 CAPS-IV Civilian --- --- 

Münster 43 26.41  
(6.85) 

38 5 19 24 SCID Civilian --- --- 

Nanjing 132 57.23  
(5.94) 

73 59 48 84 SCID Civilian 20.83  
(13.44) 

CAPS-IV 

South Dakota 114 29.29 
(10.44) 

21 93 71 43 PCL-C, PCL-
M 

Military 44.67 
(18.56) 

PCL-C, PCL-M 

Stanford 146 33.59 
(10.44) 

67 78 73 73 CAPS-IV Military, 
Civilian 

26.57  
(23.64) 

CAPS-IV 

Toledo 77 35.38 
(11.40) 

35 42 15 62 CAPS-IV Military, 
Civilian 

17.49  
(18.42) 

CAPS-IV 

Tours 39 28.23  
(9.88) 

39 0 9 30 CAPS-IV Civilian 31.11  
(14.41) 

CAPS-IV 

Wisconsin 1 104 33.00  
(8.25) 

104 0 83 21 CAPS-5, SCID Civilian 47.26  
(24.62) 

PCL-5, PCL-C 

Wisconsin 2 24 29.96  
(5.52) 

3 21 12 12 CAPS-IV Military 25.77  
(24.68) 

CAPS-IV 

VA Minneapolis 241 32.64  
(7.80) 

13 226 91 150 CAPS-IV Military 29.40  
(19.16) 

CAPS-IV 

VA Waco 91 39.75 
(11.02) 

11 80 63 29 PCL-5 Military 54.10 
(26.21) 

PCL-5 

VA West Haven 55 33.55  
(8.77) 

6 49 32 23 CAPS-IV Military 34.16  
(21.94) 

CAPS-IV 

Vanderbilt 46 31.24  
(4.64) 

9 37 12 34 CAPS-5 Military 10.76  
(14.49) 

CAPS-5 

VETSA 190 61.79  
(2.66) 

0 190 19 171 PCL-C Military 28.89  
(11.24) 

PCL-C 

Yale 69 29.61  
(7.65) 

11 58 31 23 CAPS-IV Military 20.69  
(20.97) 

CAPS-IV 

Overall 4215 40.08 
(13.72) 

1532 2677 1640 2575 --- --- 30.53 
(23.12) 

--- 

Note: CAPS-IV, Clinician Administered PTSD Scale for DSM-IV; CAPS-5, Clinician Administered PTSD 
Scale for DSM-5; DTS, Davidson Trauma Scale for DSM-IV; MINI, Mini Neuropsychiatric Interview; PCL-
C, PTSD Checklist-Civilian Version; PCL-M, PTSD Checklist-Military Version; PCL-5, PTSD Checklist for 
DSM-5; SCID, Structured Clinical Interview for DSM 
 
Image acquisition and processing.  
Whole-brain T1-weighted anatomical MR images were collected from each participant. Acquisition 
parameters for each cohort are detailed in Supplementary Table S2. Segmentation and quality control 
procedures were performed at Duke University. A subset of the data (n=1,045) from the Long-Term 
Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium 
(LIMBIC-CENC) were processed at University of Utah. Cerebellar parcellation was carried out using a 
deep-learning algorithm, Automatic Cerebellum Anatomical Parcellation using U-Net with Locally 
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Constrained Optimization (ACAPULCO) (69). Images were corrected for intensity inhomogeneity using 
N4, blurred with a 3D Gaussian kernel (SD=3mm), and transformed to MNI template space. ACAPULCO 
then employed a cascade of two convolutional neural networks to first define a 3D-bounding box around 
the cerebellum and then divide it into anatomically meaningful regions. This ultimately resulted in 
volumetric estimates for the total cerebellum and 28 subregions, including the hemispheric anterior 
(lobules I-III, IV, and V), posterior (lobules VI, VIIB, VIIIA, VIIIB, IX, and crus I-II), and flocculonodular 
(lobule X) lobes, vermal lobules VI, VII, VIII, IX, and X, and the corpus medullare (the white matter core of 
the cerebellum). ACAPULCO achieves results comparable to other established cerebellum parcellation 
protocols (e.g., CERES2), but may perform better for multi-site datasets (69).  
  
Following segmentation, a two-step quality control procedure was employed, consisting of (1) removal 
of statistical outliers ± 2.689 SD from the site mean, and (2) visual inspection of cerebellar parcels. Each 
subject’s segmentation was visually inspected and scored by a minimum of two trained raters (AH, SL, 
MB, LB) on a scale from 1 (good) to 3 (poor/failed). In the event of a discrepancy between raters, the 
parcellation was examined by a third rater for consensus. Segments were considered individually; 
therefore, select subregional volumes (e.g., statistical outliers, circumscribed segmentation errors) were 
excluded, while the remainder of segments were retained for analysis if correct. Subjects who scored 3 
were excluded from all analyses. Breakdown of ratings by site are noted in Supplementary Table S3.   

 

 
Figure 1. ACAPULCO cerebellum parcellation for a representative subject in three-dimensional (upper 
left), coronal (left), sagittal (middle), and axial (right) views. L, left; R, right. 
 
Statistical analysis.  
To examine whether PTSD diagnosis was associated with volume differences in the grey matter volumes 
of the whole cerebellum, hemispheric subregions, vermis, and cerebellar white matter, we fit a series of 
linear mixed effects models were performed. Statistical analyses were conducted using the lmer 
package (70) in R v4.1.3. In each model, age, gender, and total intracranial volume were treated as fixed 
effects, and site was treated as a random effect. The Benjamini-Hochberg procedure (71) was used to 
adjust significance values to control the false discovery rate (p-FDR < .05). Cohen’s d was calculated as a 
measure of effect size. Models were repeated implementing PTSD severity – rather than diagnosis – as a 
continuous predictor. Due to site measurement differences, PTSD severity was quantified as a 
percentage of the total score possible (see Table 1). 
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Given frequent co-occurrence of PTSD and likely independent effects on cerebellum volume, secondary 
analyses were conducted to examine the potential effects of depression (72, 73), alcohol use disorder 
(74, 75), and childhood trauma (76, 77) on cerebellar volumes. For sites with available covariate data (see 
Supplemental Material), an additional series of linear mixed effects models were conducted, including 
fixed effects of (1) major depressive disorder diagnosis, (2) alcohol use disorder diagnosis, and (3) total 
score on the Childhood Trauma Questionnaire (CTQ; (78)). 

Results 

Associations between PTSD diagnosis and cerebellum volumes. Effects of PTSD diagnosis on 
cerebellum volumes are presented in Table 2. Consistent with hypotheses, after adjusting for age, 
gender, and total intracranial volume, PTSD diagnosis was associated with significantly smaller total 
cerebellar volume, b = -976.90, t = -2.779, p-FDR = 0.005. PTSD diagnosis was also associated with 
smaller volume of the corpus medullare, b = -157.47, t = -2.234, p-FDR = 0.026. 
 
Within the anterior cerebellum (lobules I-V), PTSD diagnosis was associated with smaller volume of right 
lobule V, b = -44.040, t = -2.541, p-FDR = 0.036. 
 
Within the posterior cerebellum (crus, lobules VI-IX), PTSD diagnosis was associated with smaller 
volume of left crus II, b = -111.602, t = -2.678, p-FDR = 0.028, left lobule VIIB, b = -122.22, t = -3.478, p-FDR 
=.004, and right lobule VIIB, b = -137.74, t = -3.663, p-FDR = 0.001.  
 
No significant effects of PTSD diagnosis were observed on volumes within the flocculonodular lobe 
(lobule X). There was an effect of PTSD on left lobule X volume, but this did not survive multiple 
comparisons corrections (p-FDR = 0.052).  
 
There was a significant effect of PTSD diagnosis on volumes of vermal lobules VI, b = -20.790, t = -
2.684, p-FDR = 0.018, and VIII, b = -28.649, t = -2.703, p-FDR = 0.007. There were no other significant 
effects of PTSD within the vermis.  
 
Table 2: Effects of PTSD diagnosis on cerebellum volume. 

ROI N b SE t p-FDR d 
Anterior 

Left I-III 4185 -8.780 6.576 -1.335 0.546 -0.041 
Left IV 4164 -16.152 17.77 -0.909 0.546 -0.028 
Left V 4119 14.472 15.948 0.907 0.365 0.028 
Right I-III 4186 -5.663 6.924 -0.818 0.621 -0.025 
Right IV 4162 -5.196 18.644 -0.279 0.781 -0.009 
Right V 4114 -44.040 17.33 -2.541 0.036* -0.080 

Posterior 
Left Crus I 3979 -28.24 63.46 -0.445 0.767 -0.014 
Left Crus II 4112 -111.602 41.67 -2.678 0.028* -0.084 
Left VI 4165 -2.681 42.062 -0.064 0.949 -0.002 
Left VIIB 4098 -122.22 35.14 -3.478 0.004** -0.109 
Left VIIIA 4037 -18.93 35.49 -0.534 0.832 -0.017 
Left VIIIB 3897 -37.84 21.54 -1.757 0.166 -0.056 
Left IX 4037 -20.26 20.80 -0.974 0.578 -0.032 
Right Crus I 4109 -93.41 62.50 -1.494 0.315 -0.047 
Right Crus II 4164 -77.101 44.34 -1.739 0.287 -0.054 
Right VI 4175 35.54 43.57 0.816 0.484 0.025 
Right VIIB 4029 -137.74 37.60 -3.663 0.001*** -0.115 
Right VIIIA 3814 -29.42 32.32 -0.910 0.635 -0.030 
Right VIIIB 3856 -14.00 21.96 -0.638 0.524 -0.021 
Right IX 4044 -17.64 21.19 -0.832 0.567 -0.028 

Flocculonodular 
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Left X 4176 -6.407 2.881 -2.224 0.052 -0.069 
Right X 4175 -3.868 2.954 -1.309 0.191 -0.041 

Vermis 
Vermis VI 4187 -20.790 7.746 -2.684  0.018* -0.084 
Vermis VII 4189 -3.419 5.704 -0.599 0.549 -0.019 
Vermis VIII 4191 -28.649 10.599 -2.703    0.007** -0.084 
Vermis IX 4186 -13.816 10.412 -1.327 0.185 -0.045 
Vermis X 4175 -3.143 1.940 -1.620 0.175 -0.052 
Total Volume 4192 -976.9 351.6 -2.779 0.005** -0.086 
Corpus Medullare 4162 -157.47 70.48 -2.234 0.026* -0.069 

*** p-FDR < 0.001, ** p-FDR < 0.01, * p-FDR < .05 
 
PTSD severity.  
When examining PTSD symptom severity (rather than diagnostic status), results were similar, if generally 
more robust (see Table 3). Specifically, PTSD symptom severity was associated with significantly smaller 
total cerebellum volume, b = -682.00, t = -3.688, p-FDR = 0.0002, and corpus medullare volumes, b = -
112.75, t = -3.030, p-FDR = 0.0002. Effects were consistent across the posterior cerebellum and vermis, 
with significant effects of PTSD symptom severity on volumes of left crus II, b = -64.30, t = -2.943 p-FDR = 
0.011, left lobule VIIB, b = -64.83, t = -3.529, p-FDR = 0.003, right lobule VIIB, b = -77.51, t = -3.903, p-FDR 
= 0.0007, and vermal lobules VI, b = -14.464, t = -3.554, p-FDR = 0.002, and VIII, b = -17.150, t = -3.061, 
p-FDR = 0.006.  
 
By contrast, the significant effect of PTSD on volume of right lobule V was no longer significant when 
examining symptom severity instead of diagnosis (p-FDR = 0.060). Additionally, PTSD symptom severity 
was associated with significantly smaller volume of the flocculonodular cerebellum, with effects 
observed in both hemispheres of lobule X (left: b = -3.606, t = -2.361, p-FDR = 0.018; right: b = -4.507, t = 
-2.881, p-FDR = 0.008).  
 
Table 3: Effects of PTSD severity on cerebellar volumes. 

ROI N b SE t p-FDR d 
Anterior 

Left I-III 3757 -5.818 3.450 -1.686 0.276 -0.055 
Left IV 3731 -9.481 9.305 -1.019 0.462 -0.033 
Left V 3688 -4.207 8.310 -0.506 0.613 -0.017 
Right I-III 3756 -3.565 3.628 -0.983 0.489 -0.032 
Right IV 3733 -3.532 9.740 -0.363 0.717 -0.012 
Right V 3685 -21.279 9.169 -2.321 0.060 -0.078 

Posterior 
Left Crus I 3555 -11.17 33.37 -0.335 0.861 -0.011 
Left Crus II 3681 -64.30 21.85 -2.943 0.011* -0.097 
Left VI 3736 -6.793 22.091 -0.307 0.758 -0.010 
Left VIIB 3667 -64.83 18.37 -3.529 0.003** -0.117 
Left VIIIA 3606 -28.31 18.83 -1.503 0.233 -0.050 
Left VIIIB 3478 -18.45 11.45 -1.612 0.250 -0.055 
Left IX 3608 -14.84 10.93 -1.358 0.245 -0.047 
Right Crus I 3678 -53.11 32.83 -1.617 0.186 -0.053 
Right Crus II 3733 -52.86 23.42 -2.257 0.084 -0.074 
Right VI 3742 -11.92 23.08 -0.516 0.606 -0.017 
Right VIIB 3595 -77.51 19.86 -3.903 <0.001*** -0.130 
Right VIIIA 3386 -32.00 17.22 -1.858 0.147 -0.064 
Right VIIIB 3434 -6.575 11.762 -0.559 0.672 -0.019 
Right IX 3618 -13.20 11.08 -1.191 0.328 -0.044 

Flocculonodular 
Left X 3742 -3.606 1.528 -2.361 0.018* -0.077 
Right X 3741 -4.507 1.564 -2.881 0.008** -0.094 

Vermis 
Vermis VI 3755 -14.464 4.069 -3.554 0.002** -0.117 
Vermis VII 3756 -5.019 3.002 -1.672 0.118 -0.055 
Vermis VIII 3759 -17.150 5.603 -3.061 0.006** -0.102 
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Vermis IX 3754 -7.908 5.659 -1.397 0.162 -0.052 
Vermis X 3743 -1.915 1.014 -1.691 0.152 -0.059 
Total Volume 3758 -682.0 184.9 -3.688 <0.001*** -0.120 
Corpus Medullare 3728 -112.75 37.21 -3.030 <0.001*** -0.100 

*** p-FDR < 0.001, ** p-FDR < 0.01, * p-FDR < .05 
 
Potential confounding variables.  
When including covariates assessing depression, alcohol use, and childhood trauma, effects of PTSD on 
cerebellar volumes were somewhat diminished (See Supplemental Material). Yet, detecting significant 
effects in these additional analyses presented a challenge to statistical power. There was high 
collinearity between PTSD and covariates, and - in the case of alcohol use disorder and childhood 
trauma severity - substantially reduced sample size because not all sites reported these variables. In 
cases where the effect of PTSD diagnosis was non-significant upon inclusion of covariates, we followed 
up by testing whether depression, alcohol use, or childhood trauma predicted cerebellar volumes on 
their own; in no instance were covariates found to independently predict cerebellar volumes when PTSD 
status was excluded from the model, demonstrating that our initial findings were specific to PTSD.  
 
Depression status was available for the majority of subjects (n=3978). When adjusting for major 
depressive disorder diagnosis, PTSD diagnosis remained significantly associated with smaller volume of 
both left and right lobule VIIB, and vermis VI. While initially significant, effects of PTSD diagnosis on right 
lobule V (p-FDR = 0.096) and left crus II (p-FDR = 0.133) volumes did not survive correction for multiple 
comparisons. PTSD symptom severity was associated with smaller total cerebellum and vermis VIII 
volumes. Uniquely, depression diagnosis was associated with smaller volume of right lobule X, b = -
8.282, t = -2.356, p-FDR = 0.038.  
 
When adjusting for alcohol use disorder, PTSD was associated with significantly smaller volume of 
vermal lobule VI. Effects of PTSD diagnosis (p-FDR = 0.151) and symptom severity (p-FDR = 0.087) on total 
cerebellar volume did not reach significance when including alcohol use disorder in the model. Including 
CTQ severity as a covariate resulted in null effects of PTSD diagnosis; significant effects in left lobule 
VIIB (p-FDR = 0.133) and vermal lobule VI (p-FDR = 0.075) were no longer significant after correction for 
multiple comparisons. PTSD symptom severity, however, was significantly associated with vermal lobule 
VI (p-FDR = 0.022) and total cerebellar (p-FDR = 0.036) volume after adjusting for childhood trauma. 

Discussion 

Leveraging an international, multisite dataset from ENIGMA-PGC PTSD, we conducted a mega-analysis 
of total and subregional cerebellar volume in PTSD. Consistent with hypotheses based on published 
work (43-46), PTSD was associated with smaller total cerebellar volume. We found subregional 
specificity linking PTSD to smaller volumes in the posterior cerebellum, vermis, and flocculonodular 
cerebellum. Effects of PTSD on cerebellum volume were consistent (and generally more robust) when 
examining symptom severity rather than diagnostic status. Overall, these findings contribute to an 
emerging literature that underscores the relevance of cerebellar structure in the pathophysiology of 
PTSD. Although the appreciation of the cerebellum for its contributions to cognitive and affective 
function is relatively recent, the current results bolster a growing literature confirming the cerebellum is 
not exclusively devoted to motor function and may, in fact, have unique relevance to psychiatric 
conditions including PTSD (34, 37, 79).  
 
Multiple neuroimaging studies have suggested that altered structure and function of the posterior 
cerebellum may be a neural correlate of PTSD. For instance, structural differences in lobules VIIB, VIIIA, 
and VIIIB were found in combat-exposed veterans with PTSD (68). Functionally, PTSD has been linked 
to increased activation during attentional and emotional tasks (66, 67) and decreased resting-state 
amplitude of low-frequency fluctuation (80) in lobule VI. In a sample of sexual assault survivors, PTSD 
severity was negatively associated with activation in lobules VI, VIII, IX, and crus I during the 
performance of an emotional go/no-go task, and positively associated with activation in left cerebellar 
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lobules VII-IX and crus I-II when retrieving positive memory during a mental imagery task (81). PTSD has 
also been linked to decreased global connectivity within the posterior cerebellum during symptom 
provocation (82). As the most phylogenetically recent part of the cerebellum (27), the posterior lobe is 
intricately linked with paralimbic and association cortical areas and plays an integral role in the 
integration of perception, emotion, and behavior (24, 25). Accordingly, the posterior cerebellum 
contributes to the salience network (lobules VI and VII; (23, 83)) and diverse cognitive-affective 
processes including working memory, attentional allocation, and associative learning (24, 84). In the 
context of the current findings, smaller volume of lobule VIIB and crus II may be implicated in the 
pathophysiology of PTSD, perhaps mapping directly onto symptoms such as hypervigilance and 
concentration difficulties.  
 
In the present study, PTSD was also associated with smaller volume of vermal lobules VI and VIII. The 
cerebellar vermis is considered part of the ‘limbic’ cerebellum and appears to play a key role in 
emotional processing, learning, and memory (23, 25, 62). Prior work has demonstrated that PTSD is 
associated with smaller volume (43, 46) and increased signal variability (85) of the vermis. Importantly, 
structural abnormalities in the vermis may provide increased spatial specificity within existing 
translational models of PTSD, as converging evidence from both animals and human subjects has 
shown vermal activation is important for both acquisition (86-89) and extinction (90, 91) of conditioned 
fear. The cerebellar vermis has strong connections to brain regions (including the brainstem, amygdala, 
and hypothalamus) that regulate critical survival functions (92). The vermis may contribute to fear 
learning via threat-associated autonomic changes facilitating defensive behavior, such as increases in 
respiration, heart rate, and blood pressure (88). Animal research highlights mechanistic links between 
vermal-midbrain connectivity and defensive behavior; in rats, for instance, lesions of the pathway 
between the periaqueductal gray and vermal lobule VIII provoke fear-evoked freezing behavior (93). 
Importantly, vermal connectivity is also implicated in clinical human samples, and PTSD is associated 
with disrupted resting-state functional connectivity from the vermis to amygdala, periaqueductal gray, 
and ventromedial prefrontal cortex (94).  
 
Curiously, PTSD symptom severity was associated with reduced volume of bilateral lobule X (which 
comprises the flocculonodular lobe), but its association with PTSD diagnosis was non-significant. The 
flocculonodular lobe is primarily implicated in ocular tracking and regulation of the vestibular system 
(95). Yet, when depression diagnosis was added to the model, there was a significant negative effect of 
depression on right lobule X, whereas effects of PTSD were non-significant. Structural differences in 
lobule X have previously been observed in major depressive disorder (96), and these differences have 
been attributed to somatic complaints, such as dizziness, that are frequently endorsed by patients with 
depression. PTSD and major depressive disorder are highly comorbid (97, 98). Therefore, smaller lobule 
X volume may be unique to patients with prominent depressive features and/or a more somatic 
symptom profile.  
 
Limitations: 
This is the largest study of cerebellar volumetry in PTSD to date, however, there are several notable 
limitations. PTSD is a heterogeneous disorder and is highly comorbid with other psychiatric conditions 
(e.g., depression, substance use disorders) and environmental exposures (e.g., childhood trauma) that 
are also linked to alterations in cerebellar structure (72, 77, 79). Employing a mega-analysis in a large 
multi-cohort consortium dataset enabled us to observe small effect sizes of PTSD on cerebellar volume 
in our primary analyses, but many sites did not provide diagnostic or item-level data for relevant 
covariates. Consequently, we were unable to investigate effects of relevant covariates at the same scale. 
Future studies would benefit from investigating unique and shared phenotypes of PTSD and other 
psychopathology on the cerebellum to disentangle potential dissociable effects and complex 
interactions more elegantly. It is also critical for future work to examine how the cerebellum may be 
uniquely implicated in the dissociative subtype of PTSD. Dissociative symptoms in PTSD are linked to 
alterations within the midbrain that facilitate passive, rather than active, defensive responses (99, 100); 
observed differences in cerebellar functional activation and connectivity related to the dissociative 
subtype of PTSD (65, 67, 101, 102) may be mediated by the prominent neural pathways between the 
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cerebellum and midbrain. The current study was also focused solely on cerebellar volumetric differences 
in PTSD. Multiple studies have observed disrupted cerebellar activity both at rest (44, 65, 102) and 
during trauma-relevant tasks (47, 67, 81, 103) in patients with PTSD. Future work would benefit from 
improved localization of both functional and structural changes in the cerebellum that may be present in 
PTSD. Lastly, the current study is cross-sectional in nature; future longitudinal research will be 
imperative to better understand whether cerebellum volume confers risk for PTSD or changes as a 
function of the disorder. 
 
Conclusion:  
In a sample of over 4000 individuals from the ENIGMA-PGC PTSD Consortium, cerebellum volume was 
significantly smaller in patients with PTSD compared to pooled groups of trauma-exposed and trauma 
naïve controls. Specific subregional volume reductions in the vermis and posterior cerebellum (crus II 
and lobule VIIB) align with previous work demonstrating their involvement in cognitive and affective 
functions relevant to PTSD, such as fear learning and regulation. Overall, these findings argue for a 
critical role of the cerebellum in the pathophysiology of PTSD, bolstering support for the region’s 
contributions to processes beyond vestibulomotor function.  
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