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Abstract

In recent years, machine learning approaches for de novo protein structure predic-
tion have made significant progress, culminating in AlphaFold which approaches
experimental accuracies in certain settings and heralds the possibility of rapid in
silico protein modelling and design. However, such applications can be challenging
in practice due to the significant compute required for training and inference of
such models, and their strong reliance on the evolutionary information contained
in multiple sequence alignments (MSAs), which may not be available for certain
targets of interest. Here, we first present a streamlined AlphaFold architecture
and training pipeline that still provides good performance with significantly re-
duced computational burden. Aligned with recent approaches such as OmegaFold
and ESMFold, our model is initially trained to predict structure from sequences
alone by leveraging embeddings from the pretrained ESM-2 protein language
model (pLM). We then compare this approach to an equivalent model trained on
MSA-profile information only, and find that the latter still provides a performance
boost – suggesting that even state-of-the-art pLMs cannot yet easily replace the
evolutionary information of homologous sequences. Finally, we train a model that
can make predictions from either the combination, or only one, of pLM and MSA
inputs. Ultimately, we obtain accuracies in any of these three input modes similar
to models trained uniquely in that setting, whilst also demonstrating that these
modalities are complimentary, each regularly outperforming the other.

1 Introduction

Proteins are the building blocks of all cellular life. Understanding their 3D structure is essential to
understanding their function and, in principle, these structures are predictable from only the amino
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acid sequence [1, 2]. However, in practice this is highly challenging due to the complex many-body
atomic interactions. In recent years, deep learning based approaches have made significant strides
in protein folding – with recent models such as AlphaFold [3] and RoseTTAFold [4] approaching
experimental accuracies in certain settings and heralding a new era of structurally-rich bioinformatics.

However, this remarkable performance is delivered by a considerable computational workload
during training and inference, that makes both deployment and further model development practically
challenging. Moreover, despite these costs, current state-of-the-art approaches do not predict structure
from sequence alone. For example, AlphaFold is heavily reliant on large multiple sequence alignments
(MSAs) and, to a lesser degree, templates of similar sequences with known structure. Indeed,
generating sufficient MSAs is an extensive process requiring searching though large structural
databases, and, even then, these can be of low-quality for rare proteins that lack known homologs [5].

Within the last year, an alternative to MSA-based models has emerged – leveraging information
contained in pre-trained protein language models (pLMs) [6, 7]. These pLMs are trained on vast
sequence databases in a self-supervised manner (with the objective of predicting labels for masked
amino acids in a protein sequence). The internal representations (embeddings) learned have proven
successful for many downstream tasks, including predicting structural attributes of the protein [6–11].
An appealing approach is therefore to replace explicit representations of external sequence/structural
databases (i.e. MSAs/templates) with pLM embeddings, which has been the foundation of recent
models that predict 3D structures from protein sequence alone [5, 12, 13].

In this work, we begin by presenting a streamlined AlphaFold-like model (MonoFold) that offers
faster inference and can be trained to a reasonably strong level of performance within a more limited
compute budget (∼1 day on a v2-128 Google TPU). Using this, we train different models that take
in either pLM embeddings (from the state-of-the-art ESM-2 pLM [12]) or a compressed statistical
representation of the MSA. We find that even our smaller model with a reduced training budget can
approach or outperform the accuracy of existing pLM-based approaches. Moreover, using the target
MSA-profile provides a consistent boost in performance over our pLM-only model, which suggests
that whilst protein embeddings do contain relevant structural information, they can not immediately
replace explicit search for homologous sequences without cost.

Next, we consider the potential synergies between pLM and MSA information by training a model that
takes both as input (PolyFold). Initially, this model achieves similar performance to the MSA-only
model previously trained, from which it could be interpreted that the pLM embeddings are not useful.
However, after an additional targeted fine-tuning, our PolyFold model is able to predict structures
using only the pLM or MSA inputs as accurately as the equivalent MonoFold variants, without loss
of performance in the pLM+MSA setting. In addition to the increased flexibility this provides, we
also find that different targets are better predicted using different inference modalities, with none of
the three options (pLM-only, MSA-only, pLM+MSA) either dominating or being uniformly inferior.
Ultimately, this underlines the utility of our unified model and opens the door to further pushing the
limits of performance with multiple complimentary sources of input information.

2 MonoFold and PolyFold models

The full AlphaFold model takes as input the raw sequence, MSAs – both clustered and additional
"extra" raw MSA sequences – and, optionally, templates of homologous proteins with resolved
structures. From these, 1D (per residue position with one set per MSA cluster) and 2D (between
pairwise residues) embeddings, are extracted and iteratively updated by a stack of Evoformer modules.
Finally, the Structure Module takes the first row of the 1D features – dubbed the "single representation"
– and the 2D "pair representation" to predict a final 3D geometry for the full protein.

Our models, henceforth called MonoFold and PolyFold for simplicity, remove the template and
"extra" MSA components of the original AlphaFold entirely. The input information is modified to
include one (MonoFold), or both (PolyFold), of pLM embeddings and an MSA profile. As well as
reducing the dimension of the 1D processing track to match these modified inputs, the Evoformer is
also made less computationally burdensome by removing or streamlining certain expensive operations.
This section highlights key modifications, with further details of our input pre-processing pipeline
and architectural changes in Appendix A. Architectural and data pipeline details that are unchanged
from AlphaFold are provided in [3].
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Figure 1: The summarised architecture of our PolyFold model. For MonoFold, only one of the input
rows is used and the column-wise attention in the upper track is removed.

2.1 Input features

pLM embeddings We used ESM-2 with 650M parameters [12] as our pLM. Similarly to ESMFold
[12], we projected the output per-residue embeddings to obtain our 1D features. The 2D pair
representation is initialised with the pairwise relative positional encoding of AlphaFold [3], plus the
projection of the attention maps from each hidden layer of the ESM-2.

MSA statistics To maintain a lightweight architecture with the same input dimensions as in the
pLM case, we choose not to stack information from multiple MSA clusters. Instead, we follow an
approach closely inspired by the "no raw MSA" ablation of AlphaFold (detailed in SM 1.13 of [3] and
shown to provide only a small performance degradation). Concretely, our 1D input is the equivalent
to setting the number of MSA clusters to 1, with the cluster centre being the target sequence. In
addition to the pairwise relative positional encoding, the pair representation is initialised by projecting
1024 raw "extra MSA" features, followed by an OuterProductMean module (Alg. 10 in SM of [3]).

Combined pLM and MSA input We also train a model, PolyFold, that combines both the pLM
embeddings and MSA statistics detailed above into a single input. As the only the first row of the
1D features are passed from the Evoformer to the Structure Module, we found that the model was
biased by which input features we set as the first row. Therefore, we instead initialise the 1D features
by stacking a projection of the one-hot encoded target sequence (as the first row) with the 1D pLM
and MSA inputs. The 2D pair representation is initialised by combining both the pLM and MSA 2D
initialisations with the pairwise relative positional encoding.

2.2 Evoformer modifications

Our architecture is summarised in Figure 1, which details the operations contained in the modified
Evoformer. The Evoformer takes in 1D and 2D features, and returns updated features with unchanged
dimensions following a series of communication, attention and transition modules. The details of
these operations are unchanged to those presented in [3] with a few key exceptions.

Firstly, the communication from the 1D track to the 2D track is moved to the beginning of the block –
as was done for AlphaFold Multimer [14] to reduce the memory requirements for training – and is
performed using a custom OuterStackMean operation, replacing an outer product operation with a
cheaper concatenation operation (see Appendix Alg. 1). Secondly, we remove the two "triangular
self-attention" modules used to process the pair representation in the full AlphaFold model, retaining
only the "triangular update" modules, as the former are especially expensive during training and
inference. We also note that column-wise attention module is only meaningful (and, therefore, only
included) when processing the joint pLM and MSA features, to attend across all three input rows.
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3 Experiments

Training details We trained our models from scratch using three AlphaFold losses – the structure
module loss (weight 1), distogram loss (weight 0.3), and pLDDT loss (weight 0.01) – and a batch
sizes of 128. When a pLM is used, samples are first uniformly cropped (or padded) to a contiguous
section of 1024 residues, before being processed through ESM-2 – which is frozen throughout
training – and then subsequently cropped to a reduced length of 256 residues before being passed
to the folding model. Note that we did not perform any fine-tuning on larger crops or deploy
self-distillation on extended datasets of predicted structures. We use an Adam optimizer [15] with
default parameters and learning rate of (10−3, with a linear warm-up of 1000 steps. Each model was
initially trained for 20 k steps on Google TPUs v2-128 (one sample per core), which is approximately
25-29 hours of wall-clock time depending on the model. To run our experiments, we extended our
Jax-based library for training AlphaFold and related models [16], which is publicly available at
https://github.com/instadeepai/manyfold.

Validation and metrics The models were validated on exponentially weighted averaged (EWA)
parameters using a decay of 0.999. During inference, we used 3 recycling iterations. As performance
metrics, we considered the standard lDDT score [17] (0-1) and TM-score [18] (0-100), widely used
in previous works and CASP challenges. We run the validation inference on an NVIDIA A100 GPU.

Datasets The training set consists of entries in the Protein Data Bank (PDB) [19] with a release
date before 2020-05-14, a resolution < 9Å, and no single amino acid accounting for more than 80%
of the sequence. This adds up to approximately 490 k structures. During training the same stochastic
filters as in [3] were used to sample each batch.

To validate our models, we used targets from the CAMEO [20] and CASP14 [21] competitions. For
the former, we collected 143 CAMEO targets released from March to May 2022, with less than
700 residues. This includes samples of the three levels of difficulty (easy, medium and hard). For
the latter, we extracted the domain-level targets from the Free-Modeling (FM) and Template-Based
Modeling hard (TBM-hard) categories of CASP14, only considering contiguous domains that are
part of protein chains added to the PDB. This results in 34 target domains with a maximum sequence
length of 405 residues. The full list of validation targets can be found in Appendix B.

Baselines Our primary baseline is AlphaFold (model_1_ptm), which utilises both MSAs and
templates, as provided by the offical release code. We also run AlphaFold “sequence-only”, i.e.
without MSAs or templates (model_5_ptm zeroing and masking MSA features). We compare to
recent pLM-based models trained for protein structure prediction from sequence alone – specifically
OmegaFold [5] and HelixFold-Single [13], in both cases using the official publicly available code and
checkpoints. The recent ESMFold [12] model (which is a minimally modified AlphaFold Evoformer
and Structure Module operating on ESM-2 embeddings) does not yet have a public release, and so
we cannot report a direct comparison given the different validation sets between their paper and ours.
However, as detailed below, we can still infer the approximate relative performance of our models
from the reported results and do so to provide context, rather than as an absolute comparison.

3.1 Inference and training timings

To assess the efficiency of our models, we measure the inference and training timings of our PolyFold
model compared to AlphaFold model_1_ptm. For inference, we run forward passes on a NVIDIA
A100 GPU of individual samples with lengths varying from 100 to 700 residues, and average the
resulting times at each length over 5 samples. Figure 2 shows the inference timings, where we see
that our PolyFold model scales better with the sequence length, reaching ×6 time reduction with
respect to AlphaFold for the longer lengths. For a full comparison, here we also include the inference
times we obtain for OmegaFold, using its official implementation [5]. We see that the OmegaFold
model is slightly faster than AlphaFold for shorter sequences, but scales worse with sequence length.
To measure the training step times, we use batches of 128 samples with a crop size of 256. We run
AlphaFold on TPUs v3-8 and PolyFold on TPUs v2-128, obtaining approximately 13.9 seconds for
AlphaFold and 4.7 seconds for PolyFold. This reduction in both training time and memory load
makes our models more efficient to train and validate, allowing more experiments and analyses to be
performed in less time, while requiring fewer computing resources.
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Figure 2: Inference timings measured for different input sequence lengths on the CAMEO dataset.

3.2 Single-input models: pLMs versus MSAs

The performance of models trained (from scratch for 20 k steps) on only ESM-2 embeddings or
MSA-profile statistics are shown in Figure 3. We first note that even with this limited training budget,
these compressed models still provide quite strong performance, with TM-scores of 79.5 and 82.6 on
the CAMEO dataset (thus achieving 89% and 93% of the performance of AlphaFold).

Indeed, our MonoFold-pLM model outperforms HelixFold-Single and is already approaching the
performance of OmegaFold. As our training budget is not sufficient to reach convergence, this gap
would likely close further, though it is unclear whether it would be expected to match or exceed
OmegaFold (which has a different architecture and pLM). Whilst we can not directly compare
to ESMFold, the original paper [12] reports a TM-score of 82.8 on a CAMEO dataset of similar
difficulty (as judged by AlphaFold’s full strength performance of 88.3 and 89.1 on their and our
dataset, respectively). This suggests that MonoFold-pLM is approaching, but below, the accuracy of
ESMFold, which is unsuprising as ESMFold has a larger Evoformer and training budget.

Notably, MonoFold-MSA is even better, already matching the strongest pLM-only models whilst
again not being trained to convergence. This suggests that MSAs still appear to be more informative
even with our considered ESM-2 model, and so pLM’s can not yet be used as a complete replacement
for the evolutionary information of homolgous sequences.

The CASP14 dataset is more challenging for all models and, whilst this further emphasises the
difference between models, the relative comparisons and analysis remain largely unchanged.

3.3 Combining pLM embeddings and MSA-profile

Combined pLM and MSA input We next train PolyFold, which takes both ESM-2 embeddings
and MSA-profile statistics as input. The performance after 20 k training steps are shown in the left

pLM MSA Full Sequence
only OmegaFold HelixFold

Single

0.75 79.5 0.77
82.6 0.86 89.1

0.16 13.5

0.78 81.7
0.73 78.1

MonoFold AlphaFold pLM-based

(a) CAMEO dataset lDDT TM-score

pLM MSA Full Sequence
only OmegaFold HelixFold

Single

0.49 47.9
0.57 58.3

0.72 75.1

0.17 15.2

0.59 61.0

0.45 44.9

MonoFold AlphaFold pLM-based

(b) CASP14 dataset lDDT TM-score

Figure 3: Performance of MonoFold, with pLM or MSA inputs, on (a) CAMEO and (b) CASP14
datasets. Baselines include AlphaFold and recent pLM-based folding models.
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pLM+MSA pLM MSA pLM+MSA pLM MSA Ensemble

0.77
82.9

0.31 27.7 0.31 28.7

0.78 83.4
0.75 79.9 0.75

80.6 0.80
85.0

Initial training Fine-tuning

(a) CAMEO dataset lDDT TM-score

pLM+MSA pLM MSA pLM+MSA pLM MSA Ensemble

0.58 58.6

0.30
24.5 0.26 21.3

0.61 63.4

0.49 48.2
0.58 59.9 0.64 66.5

Initial training Fine-tuning

(b) CASP14 dataset lDDT TM-score

Figure 4: Performance of PolyFold, with pLM+MSA, pLM-only and MSA-only inference. After
fine-tuning for strong performance across all inference modes, the "Ensemble" performance – where
the best score from each mode is used – significantly outperforms full pLM+MSA inference.

columns of Figure 4 where we see that this combined model has essentially the same performance
as MonoFold-MSA. This suggests that the information in the pLM and MSAs are not jointly more
informative than MSAs alone, albeit training to convergence may reveal a difference in top-end
performance. However, when either of the inputs is removed (by zeroing and masking the features),
the performance significantly drops, so pLM embeddings are not simply being ignored.

Fine-tuning for optional input To further investigate the different operating modes of PolyFold,
we fine-tuned the model for a further 20 k training steps while masking either the MSA-profile, the
pLM embeddings, or neither (with equal probability). Validation results are summarised in the right
columns of Figure 4. We see that the pLM+MSA accuracy is only slightly improved, however,
inference with MSA- or pLM-only inputs is significantly more performant – approaching, or reaching,
the performance of MonoFold models trained specifically in just these settings.

Besides the practical utility of being able to train and run a single model in multiple modalities
depending on the available information, it is also interesting to consider how the performance of
varies between these (recalling, for example, that one motivation for pLM-based models is that MSAs
can be difficult to obtain for certain sequences). Strikingly, we find the single-masked-input inference
modes regularly outperform the full-information inference, with MSA-only (pLM-only) inference
providing better TM-scores than pLM+MSA inference on 34.3% (31.5%) of the CAMEO validation
set. Moreover, the MSA- and pLM-only modes are themselves better on different targets – if we
always the score the best performing inference-mode on the CAMEO dataset, the overall TM-score
rises to 85.0 with contributions split 25%:32%:43% across pLM:MSA:pLM+MSA modes.

4 Discussion

The ability to train performant protein folding models with reduced computational burden is an
important step towards the efficient development of next-generation models. The specific directions
explored in this work provide already insights and results in this direction. The clear utility of, even
a compressed statistical representation of MSAs, in comparison to (and in combination with) pLM
embeddings further underlines that even state-of-the-art foundational biology models such as ESM-2
cannot readily replace a more explicit representation of homologous sequences.

However, with pLM-based and MSA-based models each having unique advantages and disadvantages,
we believe that architectures able to operate in multiple modes can provide a powerful tool adaptable
to specific settings (e.g. the low-MSA settings of orphan or fast-evolving proteins). Moreover,
generating multiple structure predictions for a single target, whether informed by different biases in
the inputs such as in our case or otherwise, can further provide ensembling benefits and flexibility to
practitioners using deep learning models. In this light, additional exploration of whether different
inference modalities are indeed preferable in identifiable regimes (e.g. antibodies) and to what degree
the ensembling performance improvement is related to a variety of input-information settings, as
opposed to natural variation across models, are interesting avenues for further analysis that we
presently defer to ongoing and future work.
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A Model architecture

We detail here the modifications done in our models with respect to AlphaFold. For the remaining
unchanged details see [3].

A.1 Input pre-processing

A.1.1 1D input features

pLM features We use the 650M parameters ESM-2 [12] with 33 transformer layers, embedding
dimension of 1280 and 40 attention heads trained on UniRef50 [22]. As in ESMFold, we learn a
weighted sum of the pLM embeddings for each layer as part of the folding model (Algorithm 2, SM
1.3 of [12]) producing a 1024-dimensional embedding feature.

MSA features Similarly to the "no raw MSA" ablation of AlphaFold (SM 1.13 of [3]), we by-pass
the MSA clustering pre-processing step, which is equivalent to setting the number of clusters to 1
and then concatenating the target sequence, the MSA-profile, and additional MSA features into a
49-dimensional representation (see Table 1 in [3]). The MSA-profile is defined as in SM 1.13 of [3]
and corresponds to the empirical distribution of amino acids for each position in the sequence.

1D projection In both cases, we project the 1D input representations using a 2-layer MLP with
hidden dimension of 2056 and output dimension of 256.

A.1.2 2D input features

pLM features As in the experiments without folding block in ESMFold [12], we extract and
linearly project the pLM attention maps to initialise the pair representation. The projection produces
a 128-dimensional pair feature.

MSA features We use the extra MSA to initialise the pair representation in this case. Specifically,
we first project 1024 extra MSA with a linear layer of size 128, then use an OuterProductMean
module as described in Algorithm 10, SM 1.10 of [3]. We finally apply a dropout operation resulting
in the pair representation of size 128.

pLM + MSA features When using both pLM and MSA, we also combine the previous 2D
representation. More specifically, we add the pLM pair representation and MSA pair representation
using residual connections and a dropout layer, resulting in the 128-dimensional pair representation
that is then fed to the Evoformer stack.

Relative position initialisation On top of the 2D input representation, we include the pairwise
relative positional encodings described in Algorithm 4 of [3], linearly projected to dimension 128.

A.2 Evoformer

Inference with the full AlphaFold model and CASP14 hyperparameters is particularly expensive
in memory and time. Not only do we want a faster inference time, but to perform a larger set of
experiments we make changes also aimed at decreasing the training step time. Motivated by the
expensive forward pass of AlphaFold [3], we chose to strip out the expensive modules which did not
seem to cause a significant drop in performance when ablated. One particularly expensive module is
the TriangleAttention in the 2D track, with slow execution time and a fairly large shard size of
activations in memory (see Table 1). In the MonoFold models, we either use pLM embeddings or
MSA statistics by setting the number of clusters to 1. This results in a single row for the 1D track,
therefore reducing the size of the original MSA track from AlphaFold. Having only one row, we also
remove the redundant column-wise attention operation for these models. The PolyFold model has
three rows for the 1D track, so we keep the column-wise attention in this case. To reduce memory
usage (to fit with 8GB v2 TPU codes), in the PolyFold model the number of heads in the column-
and row-attention modules of the 1D track is reduced from 8 to 4. Finally, for all models, we replace
the OuterProductMean with an OuterStackMean (see Algorithm 1). As we only have either one
or three rows in the 1D track, we do not need to apply sub-batching and can keep the time complexity
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O(Nmsa) = O(1) also considering Nres. For the rest of hyperparameters in the Evoformer modules
refer to [3].

Module Memory O(·) Time O(·)
MSARowAttnWithPairBias s1 ·N2

res +Nmsa ·Nres
1
s1
Nmsa · r(Nres)

MSAColumnAttention N2
msa · s1 +Nmsa ·Nres

1
s1

r(Nmsa) ·Nres

OuterProdMean Nmsa ·Nres +N2
res

1
s2

r(Nmsa) ·Nres

TriangleUpdate N2
res r(Nres)

TriangleSelfAttn s1 ·N2
res

1
s1

· r(Nres) ·Nres

MSAColumnGlobalAttn Nextra_msa ·Nres
1
s1

r(Nextra_msa) ·Nres

ExtraMsa-MSARowAttnWPB s1 ·N2
res +Nextra_msa ·Nres

1
s1
Nextra_msa · r(Nres)

ExtraMsa-OuterProdMean Nextra_msa ·Nres +N2
res

1
s2

r(Nextra_msa) ·Nres

Table 1: The table is calculated with respect to the AlphaFold repository v2.2.4 in the low-memory
setting, si are the sub-batching factors which are set to s1 = 4, s2 = 128. Note that r(n) is the
complexity of evaluating a dummy variable axis in einsum, which can be treated as a reduce operation
which can theoretically be computed in log(n) time.

Algorithm 1 OuterStackMean
Inputs: [x]
{msr} ← LayerNorm(x)
{lsr}, {rsr} ← Linear({msr}), Linear({msr})
{asrt} ← {concat[lsr, rst]}
{art} ← 1

Nmsa

∑
s{asrt}

return Linear(ReLU(Linear({art})))

Algorithm 2 Inference
Inputs: [aatype, residue_index, use_msa, use_plm], if use_msa, +[msa_profile]
z ← Linear(rel_pos(residue_index))
if use_msa then

s0 ← Linear(msa_profile)
else if use_plm then

s0 ← ESM-2(aatype)
else

s0 ← [Linear(aatype);Linear(msa_profile);ESM-2(aatype)]
end if
for n = 0, . . . , Nrecycle do

s′n, z ← Trunk(sn, z, x)
x← StructureModule(s′n)
if use_plm and use_msa then

sn+1 ← [s′n;Linear(msa_profile);ESM-2(aatype)]
else

sn+1 ← s′n
end if

end for
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B Validation targets

B.1 CAMEO

7EQH_A, 7ER0_A, 7ERN_C, 7F0A_A, 7F9H_A, 7MKU_A, 7OPB_D, 7POI_C, 7PRQ_B, 7PSG_C,
7SO5_H, 7TZE_C, 7TZG_D, 7X9E_A, 7Z5P_A, 7EQS_A, 7MLA_B, 7N29_B, 7NQD_B, 7OA7_A,
7Q4L_A, 7QAO_A, 7QAP_A, 7QRY_B, 7QS2_A, 7QS5_A, 7R5Z_B, 7R63_C, 7T4Z_A, 7TNI_C,
7VNX_A, 7YWG_B, 7CTX_B, 7EQE_A, 7ETS_B, 7F2Y_A, 7FEV_A, 7FJS_L, 7OB6_A, 7OD9_C,
7OVP_A, 7PB4_I, 7PXY_A, 7QIL_A, 7RPR_A, 7RPS_A, 7RQF_A, 7SCI_A, 7VGM_A, 7YXG_A,
7F0O_B, 7MHW_A, 7N3T_C, 7OSW_A, 7PC3_A, 7PC4_A, 7PC7_B, 7PC9_A, 7PNO_D, 7RI3_C,
7T7Y_A, 7U2R_A, 7V1K_A, 7X4E_A, 7ELF_C, 7EQB_A, 7MSK_A, 7O0B_A, 7Q4I_B, 7RAW_A,
7RPY_A, 7UGH_A, 7ULH_A, 7VNA_A, 7W5S_A, 7W5U_A, 7WME_A, 7X0D_A, 7Z79_B, 7EGT_B,
7EJG_C, 7FIW_B, 7M5W_A, 7O4O_A, 7P0H_A, 7P3I_B, 7PW1_A, 7QBP_A, 7R09_A, 7VU7_A,
7WNW_B, 7WWR_A, 7X8V_A, 7EFS_D, 7EHG_E, 7MYV_B, 7Q05_E, 7QDW_A, 7QSS_A, 7QSU_A,
7R74_B, 7S2R_B, 7TV9_C, 7V8E_B, 7VMC_B, 7VNO_A, 7W26_A, 7WWX_A, 7A67_A, 7A67_B,
7ERP_B, 7ESO_A, 7ETR_A, 7ETR_C, 7PC6_A, 7QBZ_A, 7RCZ_A, 7SGN_C, 7TCR_C, 7VWT_A,
7W1F_B, 7B0K_A, 7EBQ_A, 7ED1_A, 7ED6_A, 7F3A_A, 7PUJ_A, 7QBG_E, 7TBU_A, 7ACY_B,
7EAD_A, 7KO9_A, 7KOB_A, 7LXK_A, 7LXS_A, 7N0E_A, 7NUV_A, 7QDV_A, 7TXP_A, 7U5F_D,
7U5Y_A, 7V4S_A, 7WRK_A

B.2 CASP14

T1041-D1, T1039-D1, T1082-D1, T1049-D1, T1056-D1, T1030-D2, T1031-D1, T1035-D1,
T1037-D1, T1053-D1, T1070-D3, T1099-D1, T1038-D2, T1042-D1, T1029-D1, T1038-D1,
T1090-D1, T1054-D1, T1043-D1, T1055-D1, T1040-D1, T1078-D1, T1053-D2, T1032-D1,
T1026-D1, T1074-D1, T1033-D1, T1030-D1, T1045s2-D1, T1065s2-D1, T1046s2-D1,
T1047s1-D1, T1046s1-D1
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