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Abstract

Summary: A Wheeler graph represents a collection of strings in a way that is particularly easy to index and query.
Such a graph is a practical choice for representing a graph-shaped pangenome, and it is the foundation for current
graph-based pangenome indexes. However, there are no practical tools to visualize or to check graphs that may
have the Wheeler properties. Here we present Wheelie, an algorithm that combines a renaming heuristic with a Sat-
isfiability Modulo Theory (SMT) solver to check whether a given graph has the Wheeler properties, a problem that
is NP complete in general. Wheelie can check a variety of random and real-world graphs in far less time than
any algorithm proposed to date. It can check a graph with 1,000s of nodes in seconds. We implement these al-
gorithms together with complementary visualization tools in the WGT toolkit, available as open source software at
https://github.com/Kuanhao-Chao/Wheeler_Graph_Toolkitl

1 Introduction

A Wheeler graph is a class of directed, edge-labeled graph that is particularly easy to index and query. It
is a generalization of the Burrows-Wheeler-Transform-based FM Index (9), and partly forms the basis for
existing pangenome alignment tools such as vg (11, 17).

A graph is a Wheeler Graph when its nodes can be totally ordered according to the co-lexicographical
order of the sets of strings spelled out on all paths leading into the nodes. Formally: an edge-labeled,
directed graph is a Wheeler graph if and only if there exists a total ordering over its nodes such that:

¢ (-indegree nodes come before all other nodes in the ordering
e For all pairs of edges (u,v) and (u’,v’) labeled a and ' respectively:

—a<d —sv<v

—a=d ANu<u —sv<v

Wheeler graphs generalize other graph- and tree-shaped structures important in genomics, includ-
ing tries, De Bruijn graphs, and the reverse deterministic automata that can be constructed from multi-
ple sequence alignments (10). These special cases of Wheeler graphs have been applied in the context of
pangenome alignment tools like GCSA (16), HISAT2 (13) and VARI (14).

Despite their popularity, there are no libraries that make it easy to use Wheeler graphs, or to check if a
particular graph has the requisite properties. This problem is NP-completeE]and hard to approximate (12).
An exponential-time algorithm was proposed in (12), but there is no implementation available.

We present WGT, an open source suite for generating, recognizing, and visualizing Wheeler graphs.
WGT includes functionality for generating graphs that do or do not have the Wheeler properties. Two
generators produce De Bruijn graphs and tries derived from one or more input sequences provided as
FASTA. Another generator produces reverse deterministic graphs (16) from multiple sequence alignments.
A third generator produces random graphs with parameterized by the desired number of nodes, edges,
distinct edge labels (i.e. alphabet size), and the most number of outgoing same-label edges.

Central to WGT is the fast Wheelie algorithm for Wheeler graph recognition. The algorithm combines
a renaming heuristic with two alternate solvers, both capable of reaching exact solutions to the recognition
problem. One solver uses an exhaustive search over possible node permutations, and the other uses a Sat-
isfiability Modulo Theory (SMT) solver (3). We call the overall algorithm “Wheelie”, while we use the
names “Wheelie-Pr” and “Wheelie-SMT” for the versions that use the permutation and SMT solvers
respectively. When run on a Wheeler graph, Wheelie also reports a node ordering for which the proper-
ties are satisfied and indexes the graph into O, I, and L three bitarrays (10), which are useful inputs to a
downstream tool for pattern matching.

Here we benchmark Wheelie’s solvers in comparison to each other and to the algorithm proposed by
Gibney and Thankachan (12). We benchmark with a variety of input graphs, including graphs derived
from real multiple alignments of DNA and protein sequences. We also use randomly-generated graphs
with various configurable characteristics. Finally, we implement and demonstrate a visualizer that allows
the user to picture the graph in light of the Wheeler properties.

IFor special-case graphs, e.g. when at most 2 edges outgoing from a node are permitted to have the same label, the problem is
tractable (1).
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In the following, G denotes a directed graph, N its set of nodes, and F its set of edges, with n = |N| and
e = |E|. ¥ denotes the set of edge labels appearing on at least one edge, with o = |X|.

2 Results

Graphs used for evaluation were generated using WGT’s generator algorithms, which can produce (a) De
Bruijn graphs, (b) tries, (c) a reverse deterministic graphs derived from a multiple alignments, (d) complete
random Wheeler graphs, and (e) a d-NFA random Wheeler graphs. All are discussed further in Methods
and Appendix[2] For graphs that start from biological sequences, we selected 25 genes and downloaded
their DNA and protein ortholog alignments in FASTA format from the Esnbmbl Comparative Genomics
page (6). All the experiments are conducted on a 24-core, 48-thread Intel(R) Xeon(R) Gold 6248R Linux
computer with 1024 GB memory, using a single thread of execution.

21 Comparing Wheelie with Gibney & Thanckachan

Gibney and Thankachan’s recognition algorithm (12) (henceforth “G & T”) works by enumerating all pos-
sible values for the O, I and L arrays making up the Wheeler Graph structure as described by Gagie et al
(10). The O bitarray is a concatenation of unary codes describing the outdegrees of each node. I is a similar
bitarray that does the same for indegrees. L is a sequence of characters labeling the edges in the order they
appear in the O array. Further, the inner loop of the algorithm must check if a given assignment for I, O,
and L is isomorphic to the input graph provided.

While the G & T algorithm explores an exponential-sized space, Wheelie explores the factorial-sized
space of node permutations. While this could represent a disadvantage for Wheelie, we hypothesized that
Wheelie could be made faster with the help of strategies for pruning the search space. Wheelie prunes
its search by assigning labels to nodes according to their rough positions in the order, a strategy we call the
“renaming heuristic”. This allows Wheelie to arrive rapidly at a rough ordering that either (a) reveals a
conflict that prevents the graph from having the Wheeler properties, or (b) reduces the problem size for the
downstream solving algorithm. The full algorithm is described in Methods Here we use a version
of the algorithm called Wheelie-Pr, which begins with the renaming heuristic then resolves remaining
ambiguities by exhaustively searching over the remaining node permutations. Unlike G & T, there is no
need to check graph isomorphsims.

We conducted a 30-second timeout test on both algorithms using graphs generated from four generators
(3.3) including both Wheeler and non-Wheeler graphs. Rather than implement G & T’s entire algorithm,
we implemented the enumeration of the I, O and L arrays but omitted the graph isomorphism check in the
inner loop. To compare the algorithms, we configured both to perform an exhaustive search, without the
possibility of early stopping if a solution is found. This differs from Wheelie-Pr’s default behavior, which
allows it to stop upon finding a node ordering for which the Wheeler properties are satisfied. Note that
early stopping is still possible for Wheelie-Pr in these experiments in the event that it identifies a conflict
that proves the graph is non-Wheeler.

Since G & T’s exhaustive search requires exponential time, we benchmarked using small graphs. Specif-
ically, we took a multiple alignment involving 25 genes, both their DNA and amino acid (AA) sequences,
and extracted the first 4 rows of each. To reduce graph size, we also truncated the graphs with respect to the
multiple-alignment columns; for De Bruijn graphs, we took columns 1 to 5 and set & to 3 and 4; for reverse
deterministic graphs, we took columns 2 to 15; for tries, we took columns 2 to 10. We constructed a total of
250 DNA / 250 AA De Bruijn graphs, 350 DNA / 350 AA reverse deterministic graphs and 225 DNA / 225
AA tries. We also benchmarked the algorithms using random graphs. Specifically, we generated a series of
random graphs with n set to 1 to 15, e from 1 to n and ¢ from 1 to 4, yielding 96 graphs in total.

Figure [1| shows that Wheelie-Pr is significantly faster, allowing it to recognize a range of Wheeler
and non-Wheeler graphs. Wheelie-Pr runtimes generally range from 100-1,000 microseconds, with some
random-graph inputs causing Wheelie-Pr to time out. In total only three input random graphs caused
Wheelie-Pr to time out whereas 1,748 input graphs caused G & T to time out.

2.2 Visualizing and characterizing challenging graphs

We sought to better understand which graphs require the most time for recognition. We selected a De Bruijn
graph with edges being k-mers and nodes being k-1-mers where k = 4 from the FigurdI|benchmarks. This
graph was derived from the first four rows of the multiple alignment of STAU2 DNA orthologues with
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Figure 1: Recognition time comparison between Wheelie-Pr exhaustive search and the G & T algorithm using (1)
De Bruijn graphs, (2) tries and (3) reverse deterministic graphs generated from DNA and protein alignments, and (4)
random graphs generated with given n, e and 0. Wheelie-Pr is on the y-axis, and G & T algorithm is on the x-axis.
Both axes are in log,, microsecond scale. Each dot represent a graph, and dots beyond the red lines denote inputs for
which the tool timed out after 30 seconds.

sequence length 4. We first visualized it by Graphviz online visualizer (8) (Figure[2A). We ran Wheelie-Pr
to find an ordering for which the Wheeler properties hold (Figure 2B). Finally, we visualized the graph
using WGT’s Python-based visualizer, which draws the ordered nodes in two replicas, with outgoing edges
leaving one replica and entering the other. This is a useful way to visualize and validate recognition results:
for a valid Wheeler ordering, nodes with no incoming edges will appear leftmost, nodes with incoming
edges of the smallest character will come next, nodes with incoming edges of the next-smallest character
next, etc. Additionally, no two same-color edges will cross each other. In this way, the diagram — used
previously by Boucher et al (5) — makes it visually obvious when an ordering has yielded the Wheeler
properties.

After investigating with these tools, we found that the graphs requiring the most recognition time
tended to have nodes with many outgoing same-label edges. Following Alanko et al (1), we use the term
d-NFA to describe a Wheeler Graph where all nodes have < d outgoing same-label edges, and at least one
node has exactly d outgoing same-label edges. The De Bruijn graph shown in Figure 2]is a 1-NFA. Figure
A-C are 2-NFAs with o equal to 1, 2 and 3 respectively. Figure[|D is a 3-NFA with o = 1. Note that the case
where d > 5 is the one that has been proven to be NP-complete (12). De Bruijn graphs and tries are 1-NFAs.

2.3 Recognizing challenging graphs with Wheelie—-SMT

Motivated by previous work that showed how boolean satisfiability formulations can solve special cases of
the recognition problem (1)), we hypothesized that Satisfiability Modulo Theories (SMT) solvers (3) could
be used to solve all or part of the Wheeler-graph recognition problem. SMT has found many uses in arti-
ficial intelligence and formal methods for hardware and software development. As a generalization of the
Boolean Satisfiability (SAT) (4), SMT allows us to encode the Wheeler graph properties in a fairly straight-
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Figure 2: (A) A k = 4 De Bruijn graph outputted from WGT’s De Bruijn graph generator. |t is the visualization from
Graphviz online visualizer. (B) The recognition result showing the Wheeler ordering outputted from Wheelie-Pr. (C)
The output from WGT'’s visualizer. Nodes are duplicated into two rows ordered in Wheeler ordering.
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forward way, building from the propositional logic formulas in the definition.

We conducted two series of 1,000-second timeout tests using graphs generated from the random gener-
ator comparing (1) Wheelie-Pr (renaming heuristic plus permutation) versus (2) Wheelie-SMT (renaming
heuristic plus SMT) on different types of d-NFA and various sizes of random graphs (2.3.2).

2.3.1 Recognizing d-NFAs

We fixed n = 1000, e = 3000 and ¢ = 4 and randomly generated d-NFAs with d from 1 to 8 and each group
with 20 graphs. Figurdd]shows that both solvers can solve graphs swiftly when d is 1 and 2; as d grows
beyond 2, all tools require much more time, demonstrating that d impacts the hardness of recognition
problem in practice. Wheelie-SMT outperforms Wheelie-Pr and avoids any timeouts; Wheelie-Pr has
some timeouts starting at d = 3 (4 out of 20 graphs), and consistently times out when d > 4.

Further, we observed that when d > 6, the median curve for Wheelie-SMT plateaus. This is because n
and e are too small for the d-NFA generator to produce uniformly distributed d-NFAs under the given pa-
rameters. More precisely speaking, the hardness of the recognition problem is a function of the distribution
of nodes having d — 1, d — 2, ..., 1 out-going edges with the same labels. As an example, take a d-NFA G
that has one node with d same-label out-going edges, and the rest of the nodes having at most one outgoing
same-label edge. Recognizing G is not harder than recognizing a uniformly-distributed d — 1-NFA. In short,
we observed that higher ds generally led to a harder recognition problem, but the true level of hardness was
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Figure 4: Recognition time for wheelie—-SMT and Wheelie—Pr as a function of the d parameter of the d-NFA. Upper
panel plots recognition time versus d and includes a line connecting the medians. 20 graphs were tested for each d.
The bottom bar chart shows the number of timeouts.

2.3.2 Recognizing random Wheeler graphs
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Figure 5: Recognition time comparison between Wheelie-SMT and Wheelie-Pr under various random Wheeler
graphs. Three experiments were conducted. (A) Experiment 1: fixing e = 8,000, o = 4 and scaling up the graph size (n
from 2,000 to 8,000). (B) Experiment 2: fixing n = 4,000, e = 20,000 and scaling up the label density (e/o from 1,000
to 4,000). (C) Experiment 3: Fixing both graph size (n) and label density (e/o), and scaling up both e and o (o/0min
from 1 to 20). The upper-panel plots show the recognition time versus the scale up parameter in microsecond scale.

Each dot represents a graph. Dots beyond the red dashed line means timeouts. Plots in the lower panel are the timeout
count bar charts.

We defined “graph size” as n and “label density” as e/o. We then benchmarked various sizes of random
graphs while varying these parameters.

First we fixed the number of edges (¢ = 8,000) and the number of labels (¢ = 4), and scaled up
the “graph size” (n from 2,000 to 8,000). Figur shows that as n grows, Wheelie-SMT outperforms
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Wheelie-Pr significantly. Wheelie-Pr starts to time out in some cases when n = 2,000, and most cases
when n > 2,500. In contrast, Wheelie-SMT can solve all cases with n up to 4,000, and most cases when
n = 4,500.

We then fixed the “graph size” (n = 4,000) and number of edges (¢ = 20,000) and varied the “label
density” (e/o from 1,000 to 4,000). Figure 5B shows that as the label density increases, the graphs take
more time to solve. Comparing Wheelie-Pr and Wheelie—-SMT, we can see that there are more timeout
cases in Wheelie—Pr from 1,200 to 4, 000 (most are timeouts when e/o > 2, 500) whereas the timeout cases
only occur in Wheelie-SMT when label density is 4, 000.

In a third experiment, we fixed the graph size (n = 2,000) and varied the number of edges (e) and
labels (o) while fixing the label density ratio (e/o = 2,000). Figurg5lC shows that as more edges and la-
bels are added, the recognition problem becomes easier. In short, this is because adding more constraints
to G breaks more of the ties that would otherwise obstruct Wheelie’s renaming heuristic. Comparing
Wheelie-Pr to Wheelie—-SMT, Figur shows that the solvers perform similarly, with Wheelie-Pr
performing slightly better when o /0,y ratio gets larger (> 5). These are likely cases where the graph is
sufficiently easy to recognize that the overhead of setting up the SMT setup problem becomes harmful.
When /0, gets smaller (3 and 4), Wheelie—-SMT is able to solve all 15 cases, whereas Wheelie—-Pr’s
times out for about half the cases.

2.4 Benchmarking Wheelie—-SMT alone

To isolate the effect of the Wheelie renaming heuristic, we conducted a 30-second timeout test with 60 sec-
onds timeout penalties on (1) Wheelie—-SMT (renaming heuristic plus SMT) and (2) a pure SMT solver start-
ing from scratch, without the constraints it would otherwise receive from the renaming heuristic. We bench-
marked these using two generators from DNA alignments: (1) De Bruijn graphs generated with options
~k from 5 to 8, -1 from 100 to 2,000 and -a from 6 to 10, 225 graphs in total and (2) reverse deterministic
graphs generated with options —1 from 100 to 500 and —a from 4 to 6, in total 225 graphs.

>

B Reverse deterministic graph

De Bruijn graph (DNA alignments) (DNA alignments)

le 1e10

8 10

0.8

0.6
—e— Wheelie-SMT

Pure SMT
0.4

Accumulated recognition time (us)
-
Accumulated recognition time (us)

Number of instances Number of instances

Figure 6: The cactus survival plots of (A) De Bruijn graphs and (B) reverse deterministic graphs generated from DNA
alignments using WGT’s generators. They show the aggregated time comparison between Wheelie-SMT and pure
SMT without the constraints from the renaming heuristic..

Figurdp| shows cactus plots on De Bruijn graphs and reverse deterministic graphs. Cactus plot is an
aggregated sorted time plots widely used in solver competitions. It shows how many problems a solver
can solve in a limited time period. In FigurdplA, Wheelie-SMT solved the whole De Bruijn graph set in
around 6.5 seconds whereas the pure SMT approach solved it in around 820 seconds. For reverse determin-
istic graphs (Figurd6B), Wheelie-SMT solved the whole set in less than 9 seconds whereas the pure SMT
approach solved it in around 10,170 seconds.

We concluded that the renaming heuristic is a crucial step, since it greatly narrows the space of possible
node ordering that must be resolved by the SMT solver. Wheelie-SMT can solve graphs several orders of
magnitude larger than a pure SMT approach.
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3 Methods

3.1 Wheelie and the renaming heuristic

Wheelie explores the space of possible node orderings until arriving either at a conflict (e.g. a node with
distinctly labeled incoming edges) or an ordering for which the Wheeler properties hold. While this is a
large (n!-sized) search space, Wheelie prunes the space by assigning labels to nodes according to their
rough position in the overall order. Initially, a rough ordering is determined according to the labels of
the immediate incoming edges for each node, following the Wheeler requirement that a < o’ — v < v/
for all edge pairs. This rough ordering is refined over the course of a procedure that iterates either until
the rough ordering becomes total ordering, or until the rough ordering stabilizes. In the latter case, the
remaining ambiguities are resolved by a non-heuristic solver. This procedure is detailed in Algorithm
and illustrated in Figure[7]

As the renaming heuristic iterates, it repeatedly visits the nodes in groupings according to the label of
their incoming edge(s). For each of these groupings, it sorts the edges by sources and destinations in
every label group, requiring O(] ] .y, €(g) log, e(g)) time, where e(g) is the number of edges labelled as g.
We observed that many non-Wheeler graphs can be recognized as such directly by the renaming heuristic,
without requiring a downstream solver.

At each iteration, the algorithm gathers a list of sorted unique temporary orders of nodes that go into
it, which we term the “in-node list.” By the Wheeler graph property that requires all edge pairs to satisfy
a=a ANu <u — v <, we can find rough orders by sorting the nodes by their in-node lists. Once this
has been done for each node group, we reach the end of the current iteration and we check if the rough
order changed since the previous iteration. If not, then we say the algorithm has converged and forward
any remaining ambiguities to the downstream solver as necessary.

3.2 Satisfiability Modulo Theories (SMT) solver

Motivated by the use of boolean satisfiability formulations to solve special cases of the recognition prob-
lem (1), we hypothesized that Satisfiability Modulo Theory (SMT) solvers (3) could be used to solve all or
part of the Wheeler-graph recognition problem. SMT has found many uses in artificial intelligence and
formal methods for hardware and software development. As a generalization of the Boolean Satisfiability
(SAT) (4), SMT allows us to encode the Wheeler graph properties in a fairly straightforward way, building
from the propositional logic formulas in the definition.

An SMT problem decides the satisfiability of a first-order formula with respect to one or more back-
ground theories. A formula is a set of atoms connected by Boolean connectives (A, V, =), where an atom
is a predicate which valuates to True or False given an assignment to the variables. A literal is either an
atom or its negation. A theory gives special meanings, known as interpretations, to functions and predicate
symbols within the theory. In this paper, we consider only the theory of Integer Difference Logic (IDL), which
requires atoms to be of the form z; — z; < ¢, where z; and z; are integer variables, ¢ an integer constant,
“—" the integer subtraction function, and “<” the usual binary ordering predicate. A theory solver decides
the satisfiability of a conjunction of literals. In particular, an IDL theory solver can be implemented as the
Bellman-Ford algorithm which runs in polynomial time. Incorporating a SAT solver and a theory solver,
an SMT solver takes in a formula and outputs an assignment to the variables if the formula is satisfiable or
otherwise reports unsatisfiability.

We observed that SMT is a natural way of encoding the Wheeler graph recognition problem. Firstly, for
each node a variable is created representing the ordering of the node. Recalling the constraints, for all pairs
of edges (u,v) and (u',v’) labeled a and &’ respectively:

a<a —v<, 1)

a=d ANu<u —v<v. )

By indexing the known labels lexicographically, we obtained an SMT formula containing constraints (1)) and
(2), in which all atoms are of the form v < v’ satisfying the IDL requirement. Note that the strict inequality
v < v’ can be rewritten using the the non-strict one as v — v < —1. Besides constraints and , we
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Figure 7: lllustration of the renaming heuristic. (A) an 8-node graph with nodes divided into four groups according to
in-coming edge label (with @ representing 0-indegree nodes). (B) presents the workflow of the renaming heuristic. The
first table in (B) shows the initialized in-node lists for eight nodes. After initialization, the algorithm sorts and relabels
nodes in each group until convergence. Then, it passes the range information to either wheelie-Pr Or Wheelie—-SMT.

also enforced all-different constraints and range constraints for all nodes, which have the form 1 < v < n.
The node orderings can be obtained from the satisfying assignment by solving the SMT formula iff it is
satisfiable. In Wheelie-SMT, we used the Z3 Theorem Prover (7) to encode the Wheeler Graph constraints.

As the number of constraints and variables are the main factors affecting runtime, simplifying the prob-
lem or providing additional information can improve performance. We noticed that the problem can be
simplified using the rough order obtained from the renaming heuristic described in Section By adding
the range information to the formula, notice that constraint (1) can be removed from the formula. More-
over, the all-different constraints of nodes from different groups can also be removed. The rationale is that
if the graph was not reported non-Wheeler during the renaming heuristic, the range constraints provided by
the procedure must automatically imply constraint (I). The benefits are twofold: not only the number of
constraints is reduced, the search space is also significantly pruned.

3.3 WGT’s graph generating algorithms

We implemented five generators in Python scripts to produce tries, reverse deterministic graphs (16), De
Bruijn graphs and complete and d-NFA random Wheeler graphs. The first three generators take either DNA
or protein multiple sequence alignments and produce the corresponding graph structures. As for the two
random generators, users can produce a Wheeler graph given its n, ¢, and ¢, and d-NFA random generator
can further take d, which controls the most number of edges coming out from a node with the same label
(d-NFA) as user input.
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Algorithm 1 Wheeler graph Recognition Algorithm, Wheelie

Require:
Input: Graph G as DOT file
Input: Solver S input from -s or ——solver tag.
1: Find all 0-indegree nodes, Roots| ]

2: Group edges by their labels in a hashMap, label_2_edges (key: label, value: list of edges)
3: accum_order < Roots.size() > Relabel nodes with the largest possible order
4: for each root € Roots do
5: relabel _node(root, accum_label)
6: end for
7: for each [label, edges| € label 2_edges do
8: accum_order < accum_order + unique(edges.destination_nodes).size()
9: for each edge € edges do
10: relabel_node(edge.destination_node, accum_order)
11: end for
12: end for
13: converged < False > renaming heuristic
14: ranges] |
15: while not converged do
16: ranges.clear()
17: accum_order < 0
18: innode_list| |
19: for each [label, edges] € label 2_edges do
20: nodes < unique(edges.destination_nodes)
21: for each node € nodes do
22: innode_list. Add(get_innodelist(node)) > get.innodelist: lists distinct predecessor nodes in order by label
23: end for
24: indices = sort_node_by_innodelist(nodes, innode_list)
25: relabel_node(nodes, innode_list, indices, accum_order) > Assign order_range to prev_order_range for each node
26: accum_order < accum_order + nodes.size()
27: end for
28: converged < True
29: for each node € nodes do
30: ranges.Add(node.order_range)
31: if node.order_range # node.prev_order_range then
32: converged < False
33: Break
34: end if
35: end for

36: end while

37: if unique(ranges).size() = ranges.size() then > Solved by renaming heuristic
38: G is a Wheeler graph

39: else

40: if S =="Permutation" then

41: Permutation(G, ranges) > Use Wheelie-Pr solver to resolve multi-node groups
42: elseif S =="SMT" then

43: SMT(G,ranges) > Use Wheelie—SMT solver to resolve multi-node groups
44: end if

45: end if
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Tries and De Bruijn graphs are Wheeler graphs by definition. These generators start by removing gap
placeholders from the multiple alignments. The trie generator iterates through the prefixes of each sequence
in the multiple alignment, inserts characters into the trie and creates a new node at the end of a path if a
prefix cannot be traversed from the source. Edges are labelled according to the label of the parent. The
De Bruijn graph generator constructs a distinct £ — 1-mer dictionary from the sequences. It connects edges
between adjacent two nodes and label the edge with the first character in the k£ — 1-mer of the child node.
Reverse deterministic graphs are usually invalid Wheeler graphs but might be valid when the graphs are
small, and once violations occur, adding more nodes and edges cannot turn them back to Wheeler graphs.

The reverse deterministic graph generator iterates through columns of a multiple sequence alignments
from right to left. At a column i, it creates distinct nodes for the characters found there, connecting them to
the current node with the node of the previous ungapped character with the direction pointing to the end
of the alignments and the label of the previous ungapped character. This follows the procedure described
in the GCSA study (16).

Last, three generators initializes the names of nodes with the breadth first search orders and outputs the
constructed graph in DOT format.

For the two random generators, complete Wheeler graph and d-NFA Wheeler graph generators, we ex-
plain our design concepts in Appendix section2}

4 Discussion

We demonstrated that Wheelie-SMT is the fastest and most robust algorithm available for the Wheeler
Graph recognition problem. We showed this across a variety of graph types, including large graphs (thou-
sands of nodes and edges) and challenging graphs, such as those that are d-NFAs with values of d up to 8.
We also demonstrated WGT’s facilities for visualizing and understanding these graphs.

When Wheelie determines that a graph is is Wheeler Graph, it is able to report a node ordering that can
then be used to index the graph. In the future, it will be important to extend Wheelie to report other useful
information, including when the graph is not a Wheeler Graph. For instance, when Wheelie encounters a
conflict that proves the graph to be non-Wheeler, Wheelie could supply the user with an explanation for
why the graph cannot be Wheeler. Such an explanation could also allow Wheelie to suggest modifications
to the graph that would make it a Wheeler Graph, without changing which strings it encodes. A trivial
example would be a node with two incoming edges having two distinct labels. This violates the Wheeler
Graph properties, but also suggests a potential solution: the node could be duplicated, with outgoing edges
also duplicated. The initial inbound edges could be redrawn to point to the distinct duplicates, possibly
restoring the Wheeler properties. A more general approach for understanding Wheeler violations could
work by extracting conflicting sets of clauses from the SMT algorithm, and converting them into a human-
understandable or other actionable form.

It may also be possible to encode the renaming heuristic as a set of clauses in the SMT solver, potentially
allowing the entire algorithm to execute within the SMT solver. Finally, as different SMT solvers such as
CVC5 ) or Z3 (7) adopt different heuristics, they could potentially be substituted into WGT, or combined
for increased efficiency (15).
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1 Wheelie’s permutation based approach

While the G & T algorithm explores an exponential-sized space of possible array assign-
ments, Wheelie explores a factorial-sized space of node permutations. This may or may
note lead to a larger search space for Wheelie, depending on the graph’s properties. To be
specific, the G & T’s algorithm may have to consider all 22(¢+™)+¢1%8(?) assignments for I, O
and L. Our approach might need to consider n! node permutations in the worst case. We
sought a rough comparison between the approaches in light of the fact that G & T’s space de-
pends not only on n but also on e and o. Below Derivatio we fixed n for both, defining a
new variable C as e(2+log ). We then found some values for C' that equalize the algorithms’
search space size under various values for of ns (Table . For instance, when n = 100, C
can be at most 324 in order for G & T’s algorithm has an equal or smaller search space than
Wheelie-Pr, which is a strict threshold, and furthermore, this comparison is done with
Wheelie-Pr skipping the renaming heuristic, which in reality makes Wheelie-Pr superi-
orly faster (Resultd2.4).

To gain a further advantage over the G & T algorithm, Wheelie further strives to prune
the search space, using a renaming heuristic, an SMT solver, or both, as detailed in Meth-

ods3l
n  C threshold
10 1.79
22(n+e)+e><log0' —nl (1) 20 21.08
22n+e><(2+logcr) —n ) 30 47.71
40 79.16
60 152.13
Let C :=e(2 +logo) 80 234.83
2n 4+ C =log, n! (3) 100 324.76
n 150 572.86
C=> logyz—2n (4) 200 845.38

=1
Table 1: Threshold values of C as a function of n
Derivation 1: The relationship between such that values greater than the threshold cause
Cand n the permutation-based approach to have a smaller
search space compared to the G & T approach.

2 Random generators

We implemented two random generators, a complete Wheeler graph generator and a d-NFA
Wheeler graph generator. We first fix the ordering of nodes and then try to select edges such
that both user-specified constraints and Wheeler graph properties are satisfied. Let N; be
the nodes with incoming edges labeled i and E; be the edges labeled i where : = 1,2, ..., 0,
and also let n; = |N;| and e; = | ;. In both generated graphs, we assume that n; ~ “-* and
e; = < where 7 is the number of nodes without incoming edges.

We say a Wheeler graph G is complete if no more edges can be added to G while main-
taining the Wheeler graph properties.
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Property 1. Given number of nodes n and number of labels o, the number of edges of a Wheeler
graph is upper bounded by e€,,q, where

emaz =N Xo+n—oc—r=mn—-1)(c+1)—r+1 )

Proof. Consider the bipartite representation of a Wheeler graph G' with number of nodes n
and number of labels o. Note that .
Z n;=mn-—r. (6)
i=1

Observe that for each label i, the number of edges that is labeled i is at most n + n; — 1.
Taking the sum of edges of each label and applying Equation (6), we have

g o
emaz:Z(n—i—ni—l):nxa—a+2ni:nxa—a+n—r. (7)

i=1 i=1
O

One way of generating complete Wheeler graphs is to have all nodes connect to the first
node of N; and the last node additionally connect to the rest of the nodes in V; for each label
i (the last node has n; outgoing edges in total). By randomly selecting n; — 1 nodes from
N and connecting the selected nodes to consecutive nodes in N;, a new complete Wheeler
graph can be generated by appropriately shifting the destination node of each edge such
that the Wheeler graph property is maintained. Figure [1|shows an example of a complete
Wheeler graph with (n, e, o,7) = (7, 18,2, 1). With a complete Wheeler graph of n nodes and
o labels, we are able to generate random Wheeler graphs with e < e, edges by sampling
e distinct edges from the complete Wheeler graph.

1i 2. 3 ai 5.i 6.i w0
— 1

Figure 1: Complete Wheeler graph with (n, e, o,7) = (7,18,2,1). In this example we have ny = n; =
3. The selected nodes for label 0 is node 1 and 5 and for label 1 node 3 and 5.

For generation of d-NFA Wheeler graphs, let =, be the number of nodes with k outgoing
edges of the same label i. Thus, given e and o we have

d
Z k-xzp = ¢ (8)
k=1

2
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Also the minimum number of nodes n,,;, needed to accommodate e; edges must be less
than n;. Note that 21 does not present in the formula below.

d
nmmzl—i—Z(k—l)-kani (9)
k=2

By finding a solution to z, that satisfies Equation (8) and (9), we can guarantee a d-NFA
Wheeler graph by randomly selecting x;, nodes and connecting k outgoing edges of label i
to nodes in N;. To generate non-trivial Wheeler graphs, we set all xj, to be the same, and if
not possible assign the residual to z; to satisfy Equation (8).
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