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Abstract 17 

Visual field maps in human early extrastriate areas (V2 and V3) are traditionally 18 

thought to form mirror-image representations which surround the primary visual cortex 19 

(V1). According to this scheme, V2 and V3 form nearly symmetrical halves with 20 

respect to the calcarine sulcus, with the dorsal halves representing the lower 21 

contralateral quadrants, and the ventral halves representing the upper contralateral 22 

quadrants. This arrangement is considered to be consistent across individuals, and 23 

thus predictable with reasonable accuracy using templates. However, data that 24 

deviate from this expected pattern have been observed, but mainly treated as 25 

artifactual. Here we systematically investigate individual variability in the visual field 26 

maps of human early visual cortex using the large-scale 7T Human Connectome 27 

Project (HCP) retinotopy dataset. Our results demonstrate substantial and principled 28 

inter-individual variability in early visual retinotopy. Visual field representation in the 29 

dorsal portions of V2 and V3 were more variable than their ventral counterparts, 30 

including substantial departures from the expected mirror-symmetrical patterns. 31 

Surprisingly, only one-third of individuals had maps that conformed to the expected 32 

pattern. In addition, retinotopic maps in the left hemisphere were more variable than 33 

those in the right hemisphere. Our findings challenge the current view that inter-34 

individual variability in early extrastriate cortex is negligible, and that the dorsal 35 

portions of V2 and V3 are roughly mirror images of their ventral counterparts.  36 

Keywords 37 

human connectome project, retinotopy, high-resolution fMRI, 7T, vision, hemispheric 38 

differences, V3  39 
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Introduction  40 

Non-invasive imaging has been instrumental in mapping the topographic organization 41 

of human visual cortex (Wandell and Winawer, 2010). The visual field maps in early 42 

visual areas (V1, V2, and V3) have been reported to be remarkably consistent across 43 

people, and predictable with reasonable accuracy using a template (Benson et al., 44 

2014, 2012; Schira et al., 2010). While V1 contains a complete, first-order (continuous) 45 

representation of the contralateral visual hemifield, areas V2 and V3 form second-46 

order (discontinuous) representations (Rosa, 2002). In these areas, a field 47 

discontinuity near the horizontal meridian splits the maps into upper and lower field 48 

representations that are only connected at the foveal confluence (Figure 1a,b). 49 

Accordingly, in parcellation schemes (Glasser et al., 2016; Wang et al., 2015), early 50 

visual areas form concentric bands, arranged in nearly symmetrical halves with 51 

respect to the calcarine sulcus. These bands, each containing the representation of a 52 

contralateral visual field quadrant, are referred to as the dorsal and ventral portions of 53 

V2 and V3 (Figure 1a). However, observations originating in several laboratories has 54 

indicated departures from this pattern, particularly in the dorsal region (Allen et al., 55 

2021; Arcaro and Kastner, 2015; Benson and Winawer, 2018; Van Essen and Glasser, 56 

2018). Even so, small-sized datasets, variability in acquisition sites and protocols, and 57 

methodological constraints have limited the investigation of this variability. As a result, 58 

no consensus exists about deviations from the canonical mirror-symmetrical 59 

organization of V2 and V3.  60 
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 61 

Figure 1 – Visual field mapping in the human early visual cortex. a, Coarse scale 62 

visual field mapping in the early visual cortex. The left (L) hemisphere maps the right 63 

visual field, and the right (R) hemisphere maps the left visual field. The dorsal portion 64 

of early visual areas maps the lower hemifield, and the ventral portion the upper field. 65 

b, Fine scale visual field mapping with visual field maps represented in polar angles 66 

(0-360⁰). The vertical (90⁰ or 270⁰) and horizontal meridians (0⁰ for the left and 180⁰ 67 

for the right hemispheres) delineate boundaries between visual areas. c, Three 68 

“typical” polar angle maps, obtained from the left hemispheres of three individuals in 69 

the HCP retinotopy dataset, which conform to the traditional model. d, Three polar 70 

angle maps that deviate from this pattern, obtained from left hemispheres of three 71 

other individuals in the HCP retinotopy dataset. In the latter, the isopolar bands 72 

representing the anterior borders of dorsal V3 (V3d) and dorsal V2 (V2d) do not follow 73 

the proposed borders of V2 and V3 (dashed lines). 74 
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In humans, empirical visual field mapping using functional MRI (fMRI) is the primary 75 

means of delineating precise visual area boundaries in individuals. Visual field maps 76 

are typically defined in polar coordinates, resulting in two maps: one representing polar 77 

angle (or clock position) and the other eccentricity (or distance away from the fixation 78 

point) (Wandell and Winawer, 2010). In primates, isoangle bands representing the 79 

vertical and the horizontal meridians are thought to delineate boundaries between V1 80 

and V2, V2 and V3, and V3 and higher-order visual areas (Figure 1b). Particularly, in 81 

human probabilistic maps, boundaries between the dorsal portions of early visual 82 

areas are roughly mirror images of their ventral counterparts (Figure 1c). 83 

Nevertheless, boundaries that deviate from the expected ones exist, but these have 84 

been mainly treated as artifactual, with researchers often overlooking the irregularities 85 

by simply drawing the boundaries to resemble that of a typical map as best as possible 86 

(Figure 1d). Here, it may be important to remark that the border between the dorsal 87 

parts of V2 and V3 is well known to be variable in other mammals, and that it typically 88 

does not coincide with the representation of the horizontal meridian (see Rosa and 89 

Manger, 2005 for review). 90 

Although previous reports of individual variability in the dorsal portion of human early 91 

visual cortex were primarily anecdotal (Allen et al., 2021; Arcaro and Kastner, 2015; 92 

Benson and Winawer, 2018; Van Essen and Glasser, 2018), a recently developed 93 

deep learning model predicts that individual variability in retinotopy exists, and that this 94 

is correlated with variations in gross anatomy (e.g., the pattern of sulci and gyri) 95 

(Ribeiro et al., 2021). Moreover, studies modelling the formation of retinotopic maps 96 

in non-human primates also indicate that different variants could develop based on 97 

application of similar rules (Yu et al., 2020).  98 
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Motivated by these findings, here we systematically investigate individual variability in 99 

visual field maps of human early visual cortex using a recently released, large-scale 100 

dataset: the 181 participants, 7T Human Connectome Project (HCP) retinotopy 101 

dataset (Benson et al., 2018). Our aims were to quantify the level of individual 102 

variability throughout early visual cortex (V1-V3) and to determine whether there are 103 

common modes of retinotopic organization that differ from the established view (i.e., 104 

whether individual retinotopic maps differ from a template in similar ways). Our results 105 

challenge the current view that individual differences in retinotopic organization reflect 106 

experimental artifacts that may be dismissed for practical purposes. In particular, they 107 

demonstrate that the dorsal portions of human early visual areas are more 108 

heterogeneous than previously acknowledged. 109 

Materials and Methods 110 

Dataset 111 

We used the Human Connectome Project (HCP) 7T Retinotopy dataset (Benson et 112 

al., 2018) to investigate individual variability in retinotopic maps of human early visual 113 

cortex. This dataset consists of high-resolution functional retinotopic mapping and 114 

structural data from 181 participants (109 females, age 22-35) with normal or 115 

corrected-to-normal visual acuity. Participant recruitment and data collection were led 116 

by Washington University and the University of Minnesota. The Institutional Review 117 

Board (IRB) at Washington University approved all experimental procedures (IRB 118 

number 201204036; “Mapping the Human Connectome: Structure, Function, and 119 

Heritability”), and all participants provided written informed consent before data 120 
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collection (Van Essen et al., 2013). Additionally, the acquisition protocol has been 121 

described in previous work (Benson et al., 2018; Van Essen et al., 2013).  122 

Structural data were acquired at 0.7 mm isotropic resolution in a customized Siemens 123 

3T Connectome scanner (Van Essen et al., 2013). Briefly, cortical surfaces were 124 

reconstructed from T1w structural images using FreeSurfer and aligned to the 32k 125 

fs_LR standard surface space. This standard 32k fs_LR cortical surface consists of 126 

32,492 vertices sparsely connected, forming triangular faces. Functional data were 127 

later aligned with this standard surface space. 128 

Functional retinotopic mapping data were acquired using a Siemens 7T Magnetom 129 

scanner at 1.6 mm isotropic resolution and 1 s TR. Data were preprocessed following 130 

the HCP pipeline (Glasser et al., 2013), which included correction for head motion and 131 

EPI spatial distortion, alignment of the fMRI data with the HCP standard surface space, 132 

and denoising for spatially specific structured noise. Retinotopic mapping stimuli 133 

comprised rotating wedges, expanding and contracting rings, and bars of different 134 

orientations moving across different directions in the visual field. A population 135 

receptive field (pRF) modeling procedure was then used to reconstruct visual field 136 

maps (Benson et al., 2018; Dumoulin and Wandell, 2008; Kay et al., 2013), which 137 

encompasses estimating the spatial preference of cortical surface vertices to different 138 

locations of the visual field (i.e., its receptive field) defined in polar coordinates – for 139 

more, see Benson et al, (2018). Hence, polar angle maps are retinotopic maps 140 

reflecting the polar angle (angle relative to the horizontal vertical meridian) in the visual 141 

field to which a vertex is most responsive, while eccentricity maps reflect the distance 142 

from the center of the visual field (i.e., the fixation point). The combination of a polar 143 

angle map and an eccentricity map completely specifies a map of the visual field.  144 
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Region of Interest 145 

Early visual areas were defined by a surface-based probabilistic atlas (Wang et al., 146 

2015). This probabilistic atlas includes the dorsal and ventral portions of V1, V2 and 147 

V3, not including the foveal confluence. For the clustering analysis, we slightly 148 

modified the atlas by extending the dorsal border of V3 and including V1/V2/V3 foveal 149 

confluence (Schira et al., 2009), in line with our previous work (Ribeiro et al., 2021).  150 

Individual variability 151 

We determined individual variability in visual field maps to quantify how variable these 152 

maps were across visual areas (V1, V2, and V3), portions (dorsal and ventral), and 153 

hemispheres (left and right) in human early visual cortex. First, we computed the 154 

average retinotopic maps across all 181 individuals from the HCP retinotopy dataset 155 

for both left and right hemispheres. Then, we iteratively calculated the vertex-wise 156 

difference between an individual’s retinotopic map and the average map. The 157 

difference between two angles is given by: 158 

MIN (|�̂� − 𝜽|, |�̂� − 𝜽 + 𝟐𝝅|, |�̂� − 𝜽 − 𝟐𝝅|)     (1) 159 

for 0< 𝜃< 2π. 160 

Finally, vertex-wise difference scores were averaged over vertices in the range of 1-161 

8⁰ of eccentricity within the dorsal and ventral portions of early visual areas, resulting 162 

in one scalar value per individual per visual area, which we refer to as the individual 163 

variability. The eccentricity mask was defined using the group-average eccentricity 164 

map. This range of eccentricity values was chosen because, in the original population 165 

receptive field mapping experiment of the HCP, the visual stimulus extended to 8° of 166 

eccentricity (Benson et al., 2018). Additionally, due to the inherent difficulty in mapping 167 
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the foveal confluence (Schira et al., 2009), we constrained our comparison to 168 

eccentricity values above 1°. According to studies in non-human primates, this 169 

corresponds approximately to half of the expected extent of V1, V2 and V3 (Gattass 170 

et al., 1988, 1981). 171 

Linear mixed-effects model 172 

We determined whether there were main effects and interactions of hemispheres (left, 173 

right), visual areas (V1, V2, V3), and portions (dorsal, ventral) on individual variability 174 

of retinotopic maps using linear mixed-effect (LME) models. Standard ANOVAs and t-175 

tests assume statistical independence of individuals’ data (Yu et al., 2022), which is 176 

often not the case. For example, the 7T HCP retinotopy dataset includes data from 50 177 

monozygotic and 34 dizygotic twins, totaling 168 individuals out of 181. Therefore, to 178 

meet the statistical independence criterion, many data points would have to be 179 

disregarded for standard statistical inference. However, LME models allow us to take 180 

full advantage of the dataset by explicitly modeling cluster-specific means (random 181 

intercepts). Indeed, individual variability from different visual areas is naturally 182 

clustered by individuals (Magezi, 2015). Therefore, using this statistical model, we can 183 

appropriately model individual-specific effects (Magezi, 2015; Yu et al., 2022).  184 

In our linear mixed effect model, the dependent variable is the individual variability (Y), 185 

which is modeled as a function of the fixed effects (β) of three factors (x) and their 186 

interactions. These three factors are: hemisphere, visual area, and portion. 187 

Additionally, we also consider the random effects (γi) associated with the individual (i 188 

= 1, …, 181), and the random effects of each factor nested within the individual (γij, 189 

with j = 1, 2, and 3). This model is expressed as: 190 
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𝑌𝑖  = 𝛽0 +  ∑ 𝛽𝑗𝑥𝑗

3

𝑗 = 1

 +  𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽23𝑥2𝑥3 +  𝛽123𝑥1𝑥2𝑥3  + ∑ 𝛾𝑖𝑗

3

𝑗 = 1

+  𝛾𝑖  + 𝜀𝑖  191 

where β0 is the intercept and ε is the residual random error. We built two separate 192 

models for individual variability associated with polar angle and eccentricity maps 193 

using Jamovi (“The jamovi project (2021),” n.d.). 194 

Clusters of spatial organization 195 

Lastly, we performed an exploratory clustering analysis to determine whether 196 

retinotopic maps differ from the average map in similar ways, particularly in the dorsal 197 

portion of early visual cortex. Specifically, we investigated the spatial overlap between 198 

retinotopic maps as an unambiguous indicator of the similarity between two maps. 199 

First, to obtain such a measure of the spatial overlap, the continuous polar angle maps 200 

were converted into discrete maps, such that each vertex was categorized into one 201 

out of four possible labels: 202 

 𝜃𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 = {

0°, 𝑓𝑜𝑟 0° ≤ 𝜃𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ≤ 45°
90°, 𝑓𝑜𝑟 45° < 𝜃𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ≤ 180°

270°, 𝑓𝑜𝑟 180° ≤ 𝜃𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 < 315°
360°, 𝑓𝑜𝑟 315° ≤ 𝜃𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 < 360°

 203 

these categories were chosen because they highlight the location of visual area 204 

boundaries. Discrete eccentricity maps were determined by: 205 

𝜃𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 = {

0°, 𝑓𝑜𝑟 0° ≤ 𝜃𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ≤ 2°
2°, 𝑓𝑜𝑟 2° < 𝜃𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ≤ 4°
4°, 𝑓𝑜𝑟 4° < 𝜃𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ≤ 6°

6°, 𝑓𝑜𝑟 6° < 𝜃𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

 206 

Next, the spatial overlap between discrete maps from all possible pairs of individuals 207 

was estimated using the Jaccard similarity coefficient (Levandowsky and Winter, 1971; 208 

Taha and Hanbury, 2015). The Jaccard index estimates similarity between two maps 209 
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by taking the size of the intersection (in number of vertices) divided by the size of the 210 

union of two label sets. Hence, the Jaccard score ranges from 0 to 1; the closer to 1 211 

the score is, the more similar the two maps are. For our data and each pair of 212 

individuals, the Jaccard index is determined from the two possible individuals’ 213 

combinations (i.e., individual 1 vs. individual 2 and individual 2 vs. individual 1) since 214 

the order of the maps determines which map is the reference one. For each 215 

combination, we estimated the Jaccard index for each label, and their weighted 216 

average was determined using the number of labels’ instances in the reference map 217 

to account for label imbalance. Then, these two estimates were averaged, resulting in 218 

one estimate of the spatial overlap between two individuals’ discrete retinotopic maps.  219 

To assess whether inter-individual differences fell into stereotyped patterns, we 220 

applied a spectral clustering algorithm from Scikit-learn (Abraham et al., 2014; 221 

Pedregosa et al., 2011). This algorithm operates on the low-dimensional embedding 222 

of the affinity matrix (our Jaccard index-based similarity matrix), followed by K-means 223 

clustering of the components of the eigenvectors in the low-dimensional space. This 224 

low dimensional space is determined by selecting the most relevant eigenvectors of 225 

the graph Laplacian of the affinity matrix, of which corresponding eigenvalues reflect 226 

important properties of the affinity matrix that can be used to partition it (Luxburg, 227 

2007). In implementing the spectral clustering algorithm, we set the number of clusters 228 

to 6 and fixed the random state for replication purposes. We selected this number of 229 

clusters as there are at least five different models of third-tier visual cortex organization 230 

in non-human primates (Angelucci and Rosa, 2015), with a sixth cluster intended to 231 

capture noisy or unclear retinotopic organization. After clustering, we computed each 232 

cluster’s mean map by averaging the continuous retinotopic maps across individuals 233 

within each cluster.  234 
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Data and code availability 235 

The data used in this study is publicly available at BALSA 236 

(https://balsa.wustl.edu/study/show/9Zkk). All accompanying Python source code will 237 

be available upon publication on GitHub. 238 

Results 239 

We defined an individual variability metric to quantify how variable visual field maps 240 

are across visual areas (V1, V2, and V3), portions (dorsal and ventral), and 241 

hemispheres (left and right) in human early visual cortex. First, we computed the 242 

average visual field maps across all 181 individuals from the HCP retinotopy dataset 243 

for both left and right hemispheres. Then, we iteratively calculated the difference 244 

between an individual’s visual field map and the average map. Finally, these 245 

differences were averaged over all vertices within the dorsal and ventral portions of 246 

early visual areas, resulting in one scalar value per individual per visual area, which is 247 

our individual variability metric. Figure 2 shows the distribution of individual variability 248 

scores across all participants.  249 
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 250 

Figure 2 – Individual variability in visual field maps of early visual areas. a, 251 

Hypothetical diagram of symmetrical distributions of individual variability across visual 252 

areas. Empirical distributions of individual variability of polar angle (b and c) and 253 

eccentricity (d and e) maps for both dorsal (dark shades) and ventral (lighter shades) 254 

portions of early visual areas in left (purple) and right (green) hemispheres. 255 

We built a linear mixed effect model (Yu et al., 2022) to test the fixed effects of 256 

hemispheres, visual areas, and portions on individual variability of polar angle (Table 257 

1) and eccentricity (Table 2) maps. Table 1 shows statistically significant main effects 258 

of all factors on individual variability of polar angle maps. Specifically, polar angle 259 

maps of the left hemisphere show higher individual variability than those found in the 260 

right hemisphere (mean difference = 3.35, p<.001). The dorsal portions of early visual 261 

areas are also more variable than the ventral portions (mean difference = 3.30, 262 

p<.001). Finally, post-hoc comparisons of visual areas indicated that V3 has higher 263 
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individual variability than V2 (mean difference = 1.60, p<.001) and V1 (mean difference 264 

= 3.99, p<.001); V2 also has higher individual variability than V1 (mean difference = 265 

2.38, p<.001). For brevity, we only show the main effects in Table 1, although we also 266 

found statistically significant interactions. Briefly, each visual area in the left 267 

hemisphere has significantly higher individual variability than its analogous area in the 268 

right hemisphere. In addition, the dorsal portion of each visual area of the left 269 

hemisphere is significantly more variable than its dorsal analogue in the right 270 

hemisphere and the ventral analogue of both the left and right hemispheres (for more, 271 

see the Supplementary Material). These findings suggest that individual variability in 272 

polar angle representations varies across hemispheres, visual areas, and according 273 

to dorsal/ventral locations.   274 
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Table 1 - Fixed effects parameter estimates for the linear mixed effect model of 275 

individual variability of polar angle maps. SE – standard error; CI – confidence 276 

interval. 277 

Polar angle 

    95% CI    

Names Effect Estimate SE Lower Upper df t p 

Intercept Intercept 18.58 0.30 17.99 19.17 180 61.86 <.001 

Hemisphere RH-LH -3.35 0.32 -3.97 -2.72 181 -10.47 <.001 

Visual area (1) V2-V1 2.38 0.29 1.81 2.95 210 8.21 <.001 

Visual area (2) V3-V1 3.99 0.32 3.36 4.61 187 12.54 <.001 

Portion ventral - dorsal -3.30 0.29 -3.86 -2.74 181 -11.50 <.001 

 278 

Moreover, Table 2 shows statistically significant main effects of the hemisphere, visual 279 

area, and the visual area portion on individual variability of eccentricity maps. Like 280 

polar angle maps, eccentricity maps of the left hemisphere show higher individual 281 

variability than those in the right hemisphere (mean difference = 0.14, p<.001). The 282 

dorsal portion of early visual areas is also more variable than the ventral portion (mean 283 

difference = 0.13, p<.001). For visual areas, post-hoc comparisons indicated that the 284 

only statistically significant difference was that of V3 versus V1, with V3 having higher 285 

individual variability than V1 (mean difference = 0.05, p<.004). In addition, statistically 286 

significant interactions were also found (Supplementary Material). Each visual area in 287 

the left hemisphere has significantly higher individual variability than analogous areas 288 

in the right hemisphere, except for V3. Eccentricity maps of each visual area's dorsal 289 

portion in the left hemisphere are significantly more variable than the dorsal 290 
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counterpart in the right hemisphere, and the ventral analogues in both the left and the 291 

right hemispheres.  292 

Table 2 – Fixed effects parameters estimates for the linear mixed model of 293 

individual variability of eccentricity maps. SE – standard error; CI – confidence 294 

interval. 295 

Eccentricity 

    95% CI    

Names Effect Estimate SE Lower Upper df t p 

Intercept Intercept 0.81 0.02 0.77 0.85 180 41.86 <.001 

Hemisphere RH-LH -0.14 0.01 -0.16 -0.11 181 -10.91 <.001 

Visual area (1) V2-V1 0.01 0.01 -0.01 0.04 402 0.98 0.326 

Visual area (2) V3-V1 0.05 0.01 0.02 0.08 182 3.24 0.001 

Portion ventral - dorsal -0.13 0.03 -0.18 -0.07 180 -4.64 <.001 

Next, we performed an exploratory analysis to determine whether retinotopic maps 296 

differ from the average map in similar ways, particularly in the dorsal portion of early 297 

visual cortex of the left hemisphere. We focus on results for polar angle maps here as 298 

no meaningful differences were observed across eccentricity map clusters 299 

(Supplementary Figure 1). We computed the extent of overlap between discrete polar 300 

angle maps from all possible pairs of individuals using the Jaccard index, resulting in 301 

a similarity matrix (Figure 3a). Next, we applied a spectral clustering algorithm with a 302 

fixed number of clusters equal to 6 (Figure 3b). Finally, we averaged the continuous 303 

polar angle maps across individuals within each cluster to visualize common patterns 304 

of retinotopic organization in the dorsal portion of early visual cortex (Figure 3c).  305 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.10.16.511648doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.16.511648
http://creativecommons.org/licenses/by-nc-nd/4.0/


 306 

Figure 3 - Clusters of retinotopic organization in the dorsal portion of early 307 

visual cortex. a, Continuous polar angle maps were converted into discrete maps, 308 

such that each vertex would be categorized into one out of four possible labels. Spatial 309 

overlap between discrete maps was estimated using the Jaccard similarity coefficient 310 

from all possible pairs of individuals, resulting in a 181×181 similarity matrix. b, Then, 311 

we applied a spectral clustering algorithm – setting the number of clusters to 6. c, An 312 

average map (discrete and continuous) was calculated for each cluster by averaging 313 

the continuous polar angle maps across all individuals within each cluster.  314 

Our findings clearly indicate shared patterns of retinotopic organization that deviate 315 

from the typical polar angle representation in the dorsal portion of early visual cortex 316 
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(Figure 1c). Specifically, average maps from clusters 1 and 5 capture nearly a third of 317 

individuals and show typical polar angle representations, with clear boundaries 318 

between V1/V2 and V2/V3 (Figure 1c and Figure 3c). However, clusters 2, 3, and 4 319 

capture nearly two thirds of individuals and deviate from this typical polar angle 320 

representation (Figure 3c). The average map from cluster 2 shows that the boundaries 321 

between V1 and V2, and the most anterior portion of V3 and higher-order visual areas, 322 

merge to form a Y-shaped (or forked) lower vertical representation. Clusters 3 and 4 323 

show a truncated V3 boundary, indicating that dorsal V3 does not cover the entire 324 

quarter visual field (i.e., from 360⁰ to 270⁰) either throughout its length or only in its 325 

most anterior portion. Finally, cluster 6 reflects unclear retinotopic organization, with a 326 

handful of individuals' retinotopic maps showing overall low correspondence with the 327 

typical retinotopic organization.  328 

Qualitatively, individual maps seem to agree with their corresponding average cluster 329 

map, but there are some exceptions (Figure 4, Supplementary Figure 2). Figure 4 330 

shows the average cluster maps from each cluster and examples of individuals’ maps 331 

that are qualitatively similar and dissimilar to their corresponding average cluster map. 332 

While most polar angle maps correspond well with their average cluster maps (as seen 333 

in the middle row of Figure 4), there is also an apparent mismatch between a few maps 334 

and their corresponding cluster average (bottom row in Figure 4). For example, 335 

individual #132118 was assigned to Cluster 4, but their polar angle map is qualitatively 336 

more similar to Cluster 5. These mismatches are likely due to the extensive overlap 337 

between within-cluster and between-clusters distributions of pairwise Jaccard scores 338 

(Figure 5). Note in Figure 5 that the within-cluster distributions highlighted in grey are 339 

generally shifted to the right compared to the between-clusters distributions, indicating 340 

their higher Jaccard scores. However, the overlap between these distributions is 341 
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substantial. For example, the between cluster 1 and 5 distribution overlaps with within-342 

cluster 1 distribution throughout its entirety, which is justified by the significant 343 

similarity between their average maps. Despite this, we found that the average within-344 

cluster Jaccard score is 0.54 (SD = 0.07), while the average between-clusters score 345 

is 0.46 (SD = .08), showing that pairs of maps within a cluster are, on average, more 346 

similar than between-clusters.  347 

 348 

Figure 4 - Qualitative evaluation of clusters. Average cluster maps are shown in 349 

the top row. The middle row shows examples of maps from each cluster with a similar 350 

retinotopic organization to the corresponding average map. Finally, in the bottom row, 351 

examples of those with dissimilar organizations are shown.  352 
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 353 

Figure 5 - Distributions of pairwise Jaccard scores. Within and between-clusters 354 

distribution of Jaccard scores across all pairs of individuals. Within-cluster distributions 355 

are highlighted in grey. Between-clusters distributions are the same regardless of the 356 

order of the clusters, i.e., the Jaccard score distribution between cluster 1 and cluster 357 

2 (‘between 1 and 2’) is the same as the one between cluster 2 and 1. Black vertical 358 

lines indicate distributions’ means. 359 

Discussion 360 

We systematically investigated individual variability in visual field representation of 361 

human early visual cortex using the HCP 7T retinotopy dataset. We found that 362 

retinotopic maps in the left hemisphere were more variable than those in the right 363 
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hemisphere. Moreover, in the left hemisphere the dorsal portions of early visual areas 364 

were more variable than their ventral counterparts. Additionally, we investigated 365 

whether there are common motifs in the observed individual variability in retinotopic 366 

maps. This analysis showed that deviations from the canonical model of continuous, 367 

alternating bands of vertical and horizontal meridian representation in V2 and V3 exist 368 

in the majority of individuals. Overall, our findings challenge the current view that the 369 

dorsal portions of early visual areas form retinotopic maps which are consistent 370 

between individuals as roughly mirror images of their ventral counterparts. 371 

Although previous evidence for the variability seen across dorsal early visual cortex in 372 

humans has been mostly anecdotal, a number of studies have indicated a complex, 373 

retinotopic organization of dorsal early visual areas in non-human primates, using both 374 

electrophysiological recordings and high-resolution fMRI (Angelucci and Rosa, 2015; 375 

Gattass et al., 1988; Sereno et al., 2015; Zhu and Vanduffel, 2019). Accordingly, there 376 

is a long-standing debate about the number of visual areas – and their boundaries – 377 

in the third-tier visual cortex of New and Old-World monkeys (Angelucci and Rosa, 378 

2015; Hadjidimitrakis et al., 2019). However, the question of whether the areal 379 

boundaries in this region show significant individual variability has not been studied 380 

systematically in non-human primates. Only Gattass et al. (1988) reported, in the 381 

macaque monkey, that the representation of the lower vertical meridian in dorsal V3 382 

varied across individuals, but firm conclusions could not be drawn due to the small 383 

sample. These authors indicated that some animals showed a continuous 384 

representation of this meridian along the rostral border of this area, whereas in others 385 

additional field discontinuities created a discontinuous representation. Notably, the 386 

same discontinuities in the anterior border of dorsal V3 were also found in our 387 

systematic investigation of individual variability in human polar angle maps. It is also 388 
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significant that the same pattern of variation (relatively simple and reproducible 389 

representations of the upper contralateral quadrant, and complex and variable 390 

representations of the lower quadrant) characterize V2 and V3 in at least one non-391 

primate, the cat (Rosa and Manger, 2005; Tusa et al., 1979). Overall, our findings in 392 

humans demonstrate that the organization of dorsal early visual areas is more 393 

heterogeneous than previously acknowledged and suggest that this may be a common 394 

feature of mammals with developed vision. 395 

Although different models of third-tier visual cortex organization in non-human 396 

primates (Angelucci and Rosa, 2015) also suggest unusual eccentricity mapping, we 397 

did not find meaningful differences in clusters of eccentricity maps. This may be 398 

associated with the limited extent of the visual stimulus (up to 8° of eccentricity) 399 

(Benson et al., 2018) and remains to be further investigated. Another alternative is 400 

having a complex pattern of polar angle representation coexisting with a preserved 401 

eccentricity gradient, as demonstrated by previous work in areas V2 and V3 of cats 402 

(Tusa et al., 1979), flying foxes (Rosa, 1999), ferrets (Manger et al., 2002) and tree 403 

shrews (Sedigh-Sarvestani et al., 2021).  404 

Our investigation provides firm evidence for individual variability in the retinotopic 405 

organization across parts of early visual areas in the human visual cortex. Moreover, 406 

the exploratory analysis indicates the presence of shared patterns of retinotopic 407 

organization that deviate from the typical polar angle representation in the dorsal 408 

portion of early visual cortex. Future work could extend these insights through 409 

additional analyses – for example, by employing different similarity metrics, using 410 

different features, or changing the number of clusters. Here, we limited our analysis to 411 

the spatial overlap of discrete polar angle maps, which means that a pair of 412 

qualitatively similar but spatially misaligned polar angle maps, for example, might have 413 
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a low Jaccard score. If another more suitable metric can consider the topographic 414 

organization of polar angle maps regardless of the spatial location, it would be possible 415 

to increase the consistency between an individual's map and their cluster average 416 

map. It would also be possible to estimate the similarity between two individuals' 417 

retinotopic maps from specific features extracted from the maps (such as linear 418 

magnification along isoeccentricity lines), to provide insights into changes in these 419 

properties as a function of cortical location (Schira et al., 2010). Finally, it is important 420 

to note that selecting the ideal number of clusters depends on the similarity metric 421 

employed, prior knowledge, and the clustering algorithm. Therefore, future work could 422 

be performed to explore the effect of the number of clusters on clustering quality 423 

(perhaps as indicated by within- vs. between-cluster similarity measures).  424 

Given the presence of the variability across early visual cortex in humans, another 425 

potential line of investigation involves the origin of this variability. Pertinently, we 426 

recently developed a deep learning model of retinotopy able to predict this individual 427 

variability from individual-specific cortical curvature and myelin maps (Ribeiro et al., 428 

2021), suggesting that it is a structure-related variation. In our subsequent work 429 

(Ribeiro et al., 2022), we further explored this model of retinotopy to unravel which 430 

anatomical feature (curvature or myelin) was the most important for individual 431 

variability in the dorsal portion of early visual cortex. Although we found neither feature 432 

was redundant, the model seems to be differentially relying on myelin feature maps to 433 

determine individual variability in the dorsal portion of early visual cortex. Studies 434 

modelling the formation of retinotopic maps in development have suggested that 435 

multistable solutions may occur depending on factors such as the degree of elongation 436 

of the area (Sedigh-Sarvestani et al., 2021; Wolf et al., 1994) and adjacency with other 437 

areas (Yu et al., 2020), which do not violate the need to minimize the length of 438 
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connections (Durbin and Mitchison, 1990; Swindale, 1996). Therefore, future work 439 

could evaluate whether there is an overlap between function- and anatomy-based 440 

clusters to help elucidate the developmental mechanisms underlying the variability of 441 

human dorsal extrastriate cortex.  442 

Finally, another finding that requires consideration is the interhemispheric difference 443 

revealed in our data: retinotopic maps in the left hemisphere showed more variation 444 

than those in the right hemisphere. To date, there has been no report of 445 

interhemispheric differences in early visual cortex of other mammals, including non-446 

human primates. In part, this may be traced to the relatively small samples in these 447 

studies, in comparison with those possible using human fMRI. However, another 448 

possibility is that such differences may arise more frequently in human brains, due to 449 

the scaling of callosal connections with brain size (Rilling and Insel, 1999), which may 450 

promote a higher degree of connectional independence during development.  451 

In conclusion, using a large-scale brain imaging dataset, we provide new insights into 452 

the variability in the topographical organization of human visual cortex. These insights 453 

may prove crucial in guiding further experimental investigations and theories about 454 

retinotopic organization differentiation across species, development, and individuals.  455 
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