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Abstract
RNA sequencing (RNA-seq) can be applied to diverse tasks including quantifying gene
expression, discovering quantitative trait loci, and identifying gene fusion events. Although
RNA-seq can detect germline variants, the complexities of variable transcript abundance,
target capture, and ampli�cation introduce challenging sources of error. Here, we extend
DeepVariant, a deep-learning based variant caller, to learn and account for the unique
challenges presented by RNA-seq data. Our DeepVariant RNA-seq model produces highly
accurate variant calls from RNA-sequencing data, and outpe�orms existing approaches such
as Platypus and GATK. We examine factors that in�uence accuracy, how our model addresses
RNA editing events, and how additional thresholding can be used to facilitate our models' use
in a production pipeline.

Background

RNA-seq is a widely used method for transcriptome analysis. The technology is o�en used to
study gene expression in a variety of contexts. Expression can be examined over time1, in
response to disease or environmental changes2,3, or to examine di�erences across cell types,
tissues, or species4–7. In addition to gene expression, RNA-seq can be used for identifying
quantitative trait loci (QTL)8, quantifying isoform and allele-speci�c expression9–11, detecting
gene fusion events12, and in identi�cation of RNA-editing events13,14. Interestingly, it is also
possible to use RNA-seq to pe�orm germline variant calling15. However, although germline
variant calling with RNA-seq data could be bene�cial in many studies, it is an underutilized
application of RNA-sequencing16.
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The lack of studies using RNA-seq for germline variant calling is likely driven by a number of
challenges not present with traditional DNA sequencing (DNA-seq) approaches. For example,
alignment coverage, a proxy for gene expression, exhibits more dynamic range in RNA-seq
than DNA-seq. Coverage can range from li�le to none to excessively high levels. Low coverage
can reduce or eliminate evidence of germline variants and complicate genotype
classi�cation17,18. Additionally, RNA splicing, allele-speci�c expression, and RNA-editing can
skew allele frequencies, introduce a�ifacts, or remove variant signals. Sample preparation can
also introduce errors. For example, PCR can result in skewed allele frequencies due to
ampli�cation bias19. Finally, contamination by RNAse enzymes can degrade RNA, and RNA-seq
o�en requires an additional reverse transcription step to produce a cDNA library that can
introduce errors20. These issues can be challenging to address in clinical and research se�ings.

Despite these challenges, calling germline variants from RNA-seq data provides a number of
advantages over traditional DNA-seq approaches. Foremost is an economic consideration:
RNA-seq can provide germline variant calls where one might otherwise sequence an additional
DNA sample21. This is especially useful when characterizing coding variation which is captured
with most RNA-seq approaches, providing a rapid and cost-e�ective way to interrogate
coding regions. Additionally, the versatility of RNA-seq allows germline variation data to be
combined with information about transcription and enables  QTL discovery22.

Existing RNA-seq variant callers use statistical or algorithmic approaches23,24. However, these
methods are challenging to implement given the numerous additional sources of error and
unce�ainty in RNA-seq data, and the complex interactions between them. By contrast, deep
learning approaches are capable of learning distinct pa�erns, extracted from sequence data,
that are associated with the validity of candidate variants. In recent years, deep learning
approaches have been shown to be highly competitive and o�en exceed the pe�ormance of
statistical and algorithmic approaches25. Here we introduce a new method for pe�orming
variant calling on RNA-seq data. We adapt DeepVariant, a deep-learning based variant caller,
for use in calling germline variants from RNA-seq data. Our best pe�orming DeepVariant
RNA-seq model is trained using data from the Genotype-Tissue Expression (GTEx)
conso�ium,4,26 and can overcome challenges associated with RNA-seq variant calling and
accurately classify germline variants. Our GTEx-based DeepVariant RNA-seq model
outpe�orms existing approaches, achieving an F1-Score of 0.933 on coding sequences (CDS)
and 0.921 on exonic sequences.

The DeepVariant RNA-seq model and code are available under an open-source license at
h�ps://github.com/google/deepvariant.
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Methods

So�ware Implementation
DeepVariant is a deep-learning based variant caller that uses a convolutional neural network to
classify the genotype of a position in the genome by learning how read data correlates with
real and spurious variants27. To classify variants, DeepVariant �rst scans a BAM �le to identify
evidence of SNP or INDEL variation. For example, a candidate variant SNP is identi�ed when
two or more bases di�er from the reference at a pa�icular locus. When candidate sites are
identi�ed, DeepVariant will proceed to generate an example, or model input. Examples are
constructed using read pileups by extracting a series of sequence features into channels. Each
channel represents a sequence feature such as base, base quality, or mapping quality. These
channels are stacked to form a model input for training or inference. Following training,
DeepVariant can use the resulting model to classify candidate variants as being
homozygous-REF, heterozygous, or homozygous-ALT.

We adapted the data preprocessing stage of DeepVariant to allow for processing of RNA-seq
alignment data (BAMs). RNA-seq BAMs, in contrast to DNA-seq BAMs, contain SKIP CIGAR
operations which are used to represent skipped regions (Supplementary Figure S1) in the
reference genome. These are generally caused by splicing events, although structural variation
and mismapping of read segments are other possible explanations. Previously, DeepVariant
would incorporate these SKIP operations during the local realignment step, resulting in a
substantial increase in the computation time. To address this issue, we introduced a new �ag
(--split_skip_reads) that splits reads into multiple segments by removing their SKIP
operations. This change allowed DeepVariant to process RNA-seq data e�ciently
(Supplementary Figure S2). With these changes in place, model training and inference
operate similar to existing approaches that use DNA-seq.

Model Training and Evaluation
Once we updated DeepVariant to process RNA-seq data, we trained models using two
datasets. For the �rst model, we used samples from the Genome in a Bo�le conso�ium
(GIAB)27–29. The GIAB conso�ium has developed a high quality set of genotypes for seven
human cell-lines, derived from two sets of trios and a singleton. These genotypes can be used
as training labels or for benchmarking purposes. To train the DeepVariant RNA-seq GIAB
model (“DV RNA-seq [GIAB]”), we extracted RNA from cell pellets of lymphoblastoid lines
HG001 (GM12878; 10 replicates), and HG002 (GM26105; 3 replicates) obtained from the Coriell
institute. This RNA was sequenced with the Tempus xT assay, which includes exome-capture
regions that cover the exons of 19,433 human genes (34 Mb target region of the human
genome)30. Sequenced reads were aligned using STAR v2.5.4. The resulting BAMs were used
for training, using data from chr2-19; chr21 and chr22 were used for hyper-parameter
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optimization, with chr1 and chr20 held out for testing. For training we used the variants from
the truth set from Genome-in-a-Bo�le v4.1 and restricting to high con�dence regions31.

We used RNA-seq data from GTEx V8 (dbGaP phs000424.v8.p2) to train our second model
(“DV RNA-seq [GTEx]”). The GTEx conso�ium has extensively characterized human tissue
samples from postmo�em donors, and provides whole-genome DNA-seq and RNA-seq from
a large collection of tissues. RNA-seq data from the GTEx project was sequenced using the
Illumina TruSeq non-stranded polyA+ selection protocol. We assigned GTEx donors to a train or
test group, and randomly selected 1000 RNA-seq samples from our train donor group (526
unique donors across 41 tissue types; Supplementary Table S1). Similarly, we randomly
selected 200 RNA-seq samples for testing (74 unique donors across 36 tissue types;
Supplementary Table S1).

To derive a truth dataset for training the GTEx model, we ran DeepVariant’s highly-accurate
WGS model on GTEx DNA-seq samples and used the resulting genotypes as labels for training
and testing our RNA-seq model. We refer to this training data as a ‘silver truth’ dataset because
our labels are unlikely to be as accurate as GIAB for training. Neve�heless, this approach
generated over 80.4 million training examples, 314x more than was used for the GIAB dataset,
and provided a set of training examples with more diversity across tissue and ancestry. We
also pa�itioned the genomes in our silver truth dataset: chr1-19 were used for training, chr21
and chr22 were used for tuning, and chr20 was held out for testing. We pe�ormed training by
subse�ing on exonic regions, and by warmsta�ing from an existing whole-exome sequence
trained DeepVariant model. A summary table of the datasets for both the GTEx and GIAB
models is provided in Supplementary Table S2. We used pre-aligned BAMs and CRAMs
provided by the GTEx conso�ium. The V8 release RNA-seq BAMs aligned using STAR v2.5.3a,
and DNA-seq BAMs aligned using BWA (v0.7.13-r1126).

Separately, we also sequenced HG002 (GM24385, GM26105, GM27730) and HG005
(GM26107) on the NovaSeq pla�orm using an mRNA poly-A based library preparation. These
samples were processed using the nf-core/rnaseq pipeline32 (10.5281/zenodo.1400710). We
used HG002 with our GTEx model to establish �ltering cuto� thresholds. HG005, which was
held out from training for both GIAB and GTEx models, was used to compare pe�ormance of
both models. Benchmarking was pe�ormed using GIAB Truth set v4.2.1. We used hap.py with
the RTG vcfeval engine to pe�orm benchmarking (h�ps://github.com/Illumina/hap.py). Variants
were required to have a minimum depth of 3x in the RNA-seq sample in order to be
considered.
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Results

DeepVariant RNA-seq Produces Accurate Germline Variant Calls

Table 1: Pe�ormance of GTEx and GIAB trained models on HG005. F1 scores are shown for DV
RNA-seq [GTEx] and DV RNA-seq [GIAB] for sample HG005 across di�erent regions. All regions are
intersected with a 3x minimum coverage bed �le from the HG005 RNA-seq sample. Bolded numbers
indicate the best pe�orming model by region  based on F1-score for each variant type (SNP or INDEL).

We trained two DeepVariant RNA-seq models: “DV RNA-seq [GTEx]” and “DV RNA-seq [GIAB]”.
We compared the pe�ormance of the GTEx and GIAB models using HG005 (GM26107 poly-A
capture), which was held out from training for both models. Pe�ormance was strati�ed across
coding sequences (CDS), exon, transcript, gene, high-con�dence GIAB regions (GIAB-hc),
chr20 (which was held out from all training data), and regions with a minimum of 3x depth. The
GTEx model outpe�orms the GIAB model, except for INDEL exon regions (Table 1). We chose
to focus most of our subsequent analysis on DV RNA-seq [GTEx] given that it outpe�ormed
the GIAB model and �ts a desirable use case of calling SNPs in CDS regions.

Comparison of DeepVariant RNA-seq to other open source callers
We compared the pe�ormance of our GTEx and GIAB models with several other RNA-seq
variant calling approaches using our GTEx-derived “silver truth” dataset. Our comparison
includes the warm-sta� model trained on whole-exome data and used for training (DV WES;
DeepVariant v1.1.0) to see how much training on RNA-seq data improved our model. We also
tested GATK HaplotypeCaller (v4.2.4.0)24 based on a RNA-seq work�ow developed by the
GATK team. Finally, we tested Platypus (v0.8.1.2)33. Platypus requires the BAM input to be
preprocessed with a tool called Opossum (v1.0), which pe�orms �ltering and processing of
RNA-seq BAMs to optimize them for RNA-seq variant calling23. We also tested other callers
with and without Opossum-pre-processed BAMs.

We used our GTEx test data to compare pe�ormance across variant callers. Similar to our
model comparison analysis, we strati�ed across several regions intersected at a 3x minimum
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coverage. We observe that DV RNA-seq [GTEx] achieves the highest median F1 score across all
region strati�cations (Table 2), pe�orming the best overall in CDS regions (Figure 1). We
observe the same trend with INDELs as well (Supplementary Figure S3). Interestingly, we
found that preprocessing with Opossum lowered the pe�ormance of DeepVariant, likely
because the alignment data was substantially modi�ed from our training dataset. However, our
modi�cations to DeepVariant obviate the need for preprocessing while still resulting in more
accurate results.

We also evaluated the pe�ormance on chr20 which was held out from training and again
found DV RNA-seq [GTEx] to outpe�orm alternative variant callers (Supplementary Table S2).

Table 2: Pe�ormance of variant callers on 200 GTEx samples across genomic regions. Each row
lists the median F1 score across 200 GTEx test samples for the given variant caller when using the
original BAM or an Opossum pre-processed BAM in each region type. Pe�ormance is so�ed by
F1-score descending. Bolded numbers indicate the best pe�orming model by region based on F1-score
for each variant type (SNP or INDEL).
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Figure 1: SNP F1 Scores in CDS regions for 200 GTEx RNA-seq samples. SNP F1 scores in CDS
regions are shown for 200 GTEx RNA-seq test samples across Platypus, GATK, DV WES, DV RNA-seq
[GIAB], and DV RNA-seq  [GTEx]. Data that was pre-processed with Opossum is labeled as such.

Factors Impacting RNA-seq Model Pe�ormance

Next, we investigated factors that impact DV RNA-seq [GTEx] pe�ormance, focusing on the
use case of calling SNPs in CDS regions. We examined F1 scores a�er restricting variant calling
to sites at a series of coverage thresholds in CDS regions (Figure 2A). For each threshold we
indicate the relative precision and sensitivity.

Assuming variants are detectable at a minimum depth of 3x, we asked what propo�ion of
these detectable variants remain across minimum coverage thresholds (Supplementary
Figure S4). Although our examination here will be dependent on coverage for a given sample,
our analysis suggests that a modest coverage threshold of 8x sample still captures 75% of CDS
label variants on average in GTEx samples.
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Figure 2: Impact of depth, RIN, and tissue on DV RNA-seq pe�ormance. (A) F1-scores are shown for
SNPs in CDS regions for a series of coverage thresholds. For each coverage threshold, we show the
distribution of F1 scores for 200 test RNA-seq samples. Below each box plot are the values for precision
(P), sensitivity (S) at the given threshold. (B) Correlation plot between RIN and F1-scores for CDS SNPs.
(C) F1-score distributions for SNPs in CDS regions across a collection of GTEx tissues. The number of
RNA-seq samples is indicated for each tissue at the top (n). We �ltered tissues with less than 5 samples
in our test set.

We also examined the correlation between the RNA Integrity Number (RIN) and RNA-seq
sample accuracy. A RIN score can be calculated for a given RNA-sample using an algorithm
that examines the ratio of 28S and 18S ribosomal RNA. RIN scores range from 1 (totally
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degraded) to 10 (intact)20, and are used as an indicator of RNA quality. We observe a weak
correlation between RIN and CDS SNP F1 scores (R = 0.26; p=0.00015; Figure 2B), suggesting
that DeepVariant RNA-seq can be used on samples with low RIN scores. We also observe a
weak correlation for INDELs as well (R=0.16, p=0.021; Supplementary Figure S5).

Tissue type can strongly in�uence RNA-seq data. We examined how GTEx tissues impacted
DeepVariant RNA-seq pe�ormance in CDS regions. We observed the highest F1 score with
skin and the lowest pe�ormance in blood (Figure 2C). However, pe�ormance for SNPs in CDS
regions was relatively consistent across tissues. One major factor that may drive di�erences in
pe�ormance across tissue is the propo�ion of abundant versus rare transcripts, which in turn
a�ects the coverage at variant positions.

  
Figure 3: SNP errors relative to exon boundary. Average counts of false negative (FN; top panel) and
false positive (FP; bo�om panel) errors per GTEx RNA sample (n=200) are shown based on a called SNPs
position relative to the nearest exon boundary for several variant callers. Negative positions correspond
to SNPs outside of exons, whereas positive positions indicate SNPs falling within exons. A value of 0
indicates a position falling on an exon boundary.

Unlike DNA, RNA-seq reads possess splicing boundaries. We reasoned that error rates might
increase near exon boundaries where read context around candidate variants will drop o� and
make accurate variant classi�cation more di�cult. Unsurprisingly, we observe this e�ect
across several RNA-seq variant calling methods (Figure 3). However, DV RNA-seq [GTEx]
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appears to largely eliminate this e�ect for false-positive (FP) SNP variants at exon boundaries,
and achieves low false-negative (FN) levels as well.

Our Model Learns to Ignore RNA-editing events

Figure 4: RNA-editing events are ignored. Exonic variants classi�ed as false-negative (FN),
false-positive (FP), or true-positive (TP) are shown by base pair change and whether they are present
within the REDIpo�al database for GTEx sample GTEX-ZZ64-1126-SM-5GZXY.
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RNA is subject to editing by ADAR (adenosine deaminases acting on RNA), which can result in
Adenosine-to-inosine (A-to-I) changes34. These A-to-I changes are observed in RNA-seq
datasets as apparent A-to-G and T-to-C changes which do not re�ect real variants in the DNA,
and can increase the germline false positive rate. We sought to examine how our GTEx-based
model treated these types of events. To do this, we annotated variants that belonged to an
RNA editing database called REDIpo�al35. REDIpo�al has identi�ed and annotated genomic
positions where RNA-editing has been observed using GTEx data.

We asked how the variants compared with the label dataset based on the base change
observed and whether they were present in the REDIpo�al database. Interestingly, we observe
that the DV RNA-seq [GTEx] model has a large reduction in the number of false positives at
REDIpo�al sites compared to the DV WES model. In Figure 4, we show a representative
example of this for GTEx sample GTEX-ZZ64-1126-SM-5GZXY. We also observe this
phenomenon in an aggregate analysis (Supplementary Figure S6). The REDIpo�al ~ FP panel
shows a considerable reduction in the false-positive rate at sites where RNA editing has been
observed. The reduction in false positives does appear to slightly increase the false negative
rate at these sites. However, we observe an overall reduction in errors, suggesting that our
model learns to ignore RNA-edited sites. We suspect that our model picks up on sequence
context and allele frequency di�erences at these sites as a basis for �ltering them out.

Selecting a cut-o� for practical implementation

When implementing a variant caller into a production analysis pipeline, it is convenient to select
a cuto� based on quality scores to maintain a desired true positive (TPR) or false discovery
rate (FDR) based on the application. For example, the 1000 Genomes Project FDR target was
5% (although ultimately the project delivered calls at 1% FDR)36.

Variability between samples is expected due to both random sampling during the sequencing
process and variation among samples. Therefore, cuto� scores should be established by
examining multiple replicates or samples using validated variants. We examined 3 HG002
cell-lines (GM24385, GM26105, GM27730), which were evaluated with the DV RNA-seq [GTEx]
model in high-con�dence GIAB CDS regions to identify an appropriate cut-o� score that
would maintain a FDR of 1.5% while retaining high sensitivity.

We considered two quality scores to use for se�ing a cuto�: Genotype quality (GQ) and
quality (QUAL). GQ describes the probability of a variant call being incorrect, whereas QUAL
describes the probability a given site is not a variant. We found GQ worked well for both SNPs
and INDELs for thresholding in comparison to QUAL scores, and decided on a cuto� of
GQ>=18 (GQ: Figure 5; QUAL: Supplementary Figure S6). This threshold achieves a FDR of
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<1.5% for both SNPs and INDELs while maintaining high sensitivity for SNPs, and modest
sensitivity INDELs.

Figure 5: Selection of a QUAL cut-o� to maintain FDR of 1.5%. The FDR (x-axis) is plo�ed against the
TPR (y-axis) for both SNP and INDELs across 3 HG002 cell lines in high con�dence GIAB regions. Each
point represents a given GQ cuto�. The red line indicates a FDR of 1.5%. Larger markers indicate the
selected cuto� of GQ>=18.

Finally, we evaluated the GQ>=18 threshold using HG005 (GM26107; poly-A selected) to see
how it would pe�orm against un�ltered models and other RNA-seq variant callers. We again
examined pe�ormance in high-con�dence GIAB regions intersected with CDS regions. We
�nd that DV RNA-seq [GTEx] GQ>=18 is able to achieve a precision of 0.998 on SNPs and 0.989
on INDELs while retaining a high level of sensitivity (Table 3).
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Table 3: Precision and recall in high con�dence CDS regions. The DeepVariant RNA-seq [GTEx]
model with a GQ>=18 cuto� is listed with alternative RNA-seq variant calling methods.  For each variant
calling method, we show the precision, recall, F1-score, number of false positives (# FP), and number of
true positives (# TP) in high-con�dence GIAB regions intersected with CDS regions. Bolded values
indicate the best pe�orming variant caller for each column, grouped by variant type (SNP or INDEL).

Runtime

We Examined the runtime pe�ormance of our DeepVariant RNA-seq models against existing
approaches (Supplementary Figure 8). All runtimes were measured using GTEx RNA-seq BAM
�les on Google Cloud n1-standard-64 vi�ual machines (64 cores, 240 Gb ram). Using
Opossum preprocessed bams generally reduced the required runtime of variant callers, but
would add an additional runtime of ~15.6 minutes to preprocess BAM �les. DeepVariant
RNA-seq models are faster than GATK (Table 4). Although Platypus runs faster than
DeepVariant, running Platypus requires preprocessing with Opossum. The total runtime of
Platypus + Opossum results in a similar runtime to DeepVariant RNA-seq models without
Opossum preprocessing (Table 4).

model Duration (Opossum) Duration (Caller) Duration (Total)

Platypus (Opossum) 932s (~15.53 minutes) 479s (~7.98 minutes) 1410s (~23.5 minutes)

DV RNA-seq [GTEx] 1426s (~23.77 minutes) 1426s (~23.77 minutes)
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DV RNA-seq [GIAB] 1427s (~23.78 minutes) 1427s (~23.78 minutes)

DV WES 1434s (~23.9 minutes) 1434s (~23.9 minutes)

DV WES (Opossum) 937s (~15.62 minutes) 1006s (~16.77 minutes) 1943s (~32.38 minutes)

DV RNA-seq [GTEx] (Opossum) 937s (~15.62 minutes) 1011s (~16.85 minutes) 1948s (~32.47 minutes)

DV RNA-seq [GIAB] (Opossum) 937s (~15.62 minutes) 1017s (~16.95 minutes) 1954s (~32.57 minutes)

GATK 2868s (~47.8 minutes) 2868s (~47.8 minutes)

Table 4: Runtime Pe�ormance Of Variant Callers and Opossum on GTEx BAMs

Discussion
This study introduces DeepVariant RNA-seq, an extension of DeepVariant that enables
germline variant calling using Illumina sho�-read RNA-seq data. To the best of our knowledge,
this is the �rst deep-learning based RNA-seq germline variant caller. However, an existing tool
called Sma�RNASeqCaller37 is a machine-learning based post-processing pipeline that
operates on variants called with germline RNA-seq variant callers such as GATK. DeepVariant
RNA-seq can operate in a standalone manner, without requiring pre or post processing.

Additionally, we have demonstrated that a “silver-truth set” can be used to generate highly
accurate models when used appropriately. The GTEx-based model was trained using label
variants derived from the DeepVariant whole-genome sequencing (DV WGS). Although these
labels are likely of poorer quality than GIAB-based truth sets, we observed that this approach
allowed for a substantially larger and more diverse training dataset than the GIAB-based
model. This approach ultimately yielded improved pe�ormance compared with the
GIAB-based training approach, suggesting that a silver-truth may be appropriate in cases
which can dramatically expand gold standard datasets of limited size.

Our examination of RNA editing events suggests our model learns to ignore these types of
events, because it is trained on germline variant calls only. Conversely, this suggests that we
could train a model capable of calling these RNA-editing events by con�guring our model to
produce an additional output (e.g. probability of a site being an RNA editing event). Such
functionality could integrate germline and RNA-editing events into a single variant call format
(VCF) �le, and allow for investigations of RNA editing and germline variant interactions.
Consider the result when a heterozygous variant occurs adjacent to an RNA editing event
within a codon. For example, [heterozygous genotype: T/C] + [RNA edit: A/G] + [C] could
produce four di�erent protein isoforms: UAC (Tyr), UGC (Cys), CAC (His), and CGC (Arg).
Although CDS editing is rare, this extension of our work would allow for these types of events
to be identi�ed, in addition to long-range combinatorial e�ects of genotype and RNA edits.
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By releasing the DeepVariant RNA-seq models, we hope to provide reliable methods to add
RNA-seq variant detection to typical RNA analysis use cases. We welcome community
feedback to fu�her enhance DeepVariant RNA-seq.

Availability of So�ware and Data
The DeepVariant RNA-seq GTEx model and documentation are available at
h�ps://github.com/google/deepvariant.

Supplementary Tables are available here.

URLs for GIAB RNA-seq FASTQs and BAM are available and are listed in Supplementary Table
4.
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Supplementary Tables
Supplementary Table S1 - GTEx sample information.
Supplementary Table S2 - Summary of GTEx and GIAB datasets.
Supplementary Table S3 - Pe�ormance across variant callers, restricted to chr20 only.
Supplementary Table S4 - URLs for GIAB RNA-seq FASTQs and BAM Files.
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Supplementary Figures

Supplementary Figure S1

Supplementary Figure S1: RNA-seq data. A screenshot of the Integrative Genomics Viewer (IGV)
showing skip regions present in RNA-seq data.
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Supplementary Figure S2

Supplementary Figure S2: The split_skip_reads �ag. The time required to make examples and
pe�orm realignment is shown in seconds for chromosome 1�1-100kb. Se�ing --split_skip_reads

signi�cantly reduces the time required to pe�orm local-realignment when processing RNA-seq data.

Supplementary Figure S3
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Supplementary Figure S3: INDEL F1-scores in CDS regions for 200 RNA-seq samples. INDEL F1
scores in CDS regions are shown for 200 GTEx RNA-seq samples across Platypus, GATK, DeepVariant
WES, and DeepVariant RNA-seq. Data that was pre-processed with Opossum is labeled as such.
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Supplementary Figure S4

Supplementary Figure S4: Propo�ion of detectable sites The propo�ion of detectable benchmark
sites  are shown across minimum coverage thresholds. “Detectable” sites are label sites present within
3x regions that remain at higher coverage thresholds. Curves are shown for SNP and INDEL variants
present within or outside of CDS regions. These curves show how the propo�ion of 3x variant sites is
reduced when imposing higher minimum coverage thresholds.
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Supplementary Figure S5

Supplementary Figure S5: Correlation between RIN and F1-score for INDELs in CDS regions. The
correlation between RIN and the F1 score is shown for 200 RNA-seq samples for INDEL calls in CDS
regions.
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Supplementary Figure S6

Supplementary Figure S6: Aggregate summary of RNA edited site classi�cation. The distribution of
false negative (FN), false positive (FP) and true positive (TP) events is shown by base change and
whether or not a variant has previously been characterized as an RNA edit event in the REDIpo�al
database. Results are shown for the DeepVariant RNA-seq and DeepVariant WES models.
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Supplementary Figure S7

Supplementary Figure S7: Selection of a QUAL cut-o� to maintain FDR of 1.5%. The FDR (x-axis) is
plo�ed against the TPR (y-axis) for both SNP and INDELs across 3 HG002 cell lines. Each point
corresponds with the FDR (x-axis) and TPR (y-axis) at a given QUAL cuto�. The red line indicates a FDR
of 1.5%. Larger markers indicate a cuto� of QUAL>=25.
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Supplementary Figure S8

Supplementary Figure S8: The runtime distribution of a random sample of 100 runs for each variant
caller and Opossum are shown. Filtering was pe�ormed to remove excessive runtime outliers (>1 hr).
These were only observed for GATK.
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